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Abstract

The future annotations of MultiLisp provide a simple method for taming the implicit par-
allelism of functional programs, but require touch operations within all placeholder-strict prim-
itives to ensure proper synchronization between threads. These fouch operations contribute
substantially to program execution times. We use an operational semantics of future devel-
oped in a previous paper to derive a program analysis algorithm and an optimization algorithm
based on the analysis that removes provably-redundant fouch operations.Experiments with the
Gambit compiler indicate that this optimization substantially reduces program execution times.
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1 Futures, Touches and Transparency

Programs in functional languages offer numerous opportunities for executing program components
in parallel. In a call-by-value language, for example, the evaluation of every function application
could spawn a parallel thread for each argument expression. However, if such a strategy were applied
indiscriminately, the execution of a program would generate far too many parallel threads. The
overhead of managing these threads would clearly outweigh any benefits from parallel execution.

The future annotations of MultiLisp and its Scheme successors [1, 9] provide a simple method
for taming the implicit parallelism of functional programs. If a programmer believes that the par-
allel evaluation of some expression outweighs the overhead of creating a separate task, he may
annotate the expression with the keyword future. An annotated functional program has the same
observable behavior as the original program, but the run-time system may choose to evaluate the
future expression in parallel to the rest of the program. If it does, the evaluation will proceed as
if the annotated expression had immediately returned. Instead of a proper value though, it returns
a placeholder, which contains enough information for retrieving the actual result of the annotated
expression when needed. When a program operation requires specific knowledge about the value
of some subcomputation but finds a placeholder, the run-time system performs a touch opera-
tion, which synchronizes the appropriate parallel threads, and eventually retrieves the necessary
information.

The standard way of implementing touch operations on placeholders requires a modification
of all program operations that need to know specific aspects of values. For example, procedure
application must know that the value of the first sub-expression is a procedure; an if-expression
demands a proper value in the test position, not only a placeholder; and, addition can only add
its inputs if they are numbers. Hence, these operations must be modified so that they first check
whether the appropriate arguments are placeholders or proper values and must possibly perform
some synchronization.

Past research on futures has concentrated on the efficient implementation of the underlying task
creation [5, 14, 20, 21, 22] and on the extension of the concept to higher-order control constructs [16,
23]. Little effort has gone into the development of a semantic characterization of the idea or the
use of such a semantic framework for the optimization of task creation or coordination. In contrast,
the driving force behind our effort is the desire to develop semantically well-founded optimizations
for the execution of futures. The specific example we choose to consider is the development of an
algorithm that safely eliminates as many touch operations as possible. Other optimizations will be
the subject of future efforts.

In a previous paper [7], we developed a series of semantics for an idealized functional language
with future. The last semantics is particularly suited to the develelopment of analysis and opti-
mization algorithms, since it exposes appropriate details regarding program executions. We now use
that semantics to derive a program analysis algorithm, and a provably-correct touch optimization
algorithm based on the analysis. An implementation of the optimization on the Gambit Scheme
compiler [5] produced significant speedups on a standard set of benchmarks. We believe that this
development can be extended to larger languages and other implementation techniques.

The presentation of our results proceeds as follows. The second section introduces a sim-
ple, functional language with futures, and recalls the low-level parallel abstract machine for the
language [7]. The third section discusses the cost of touch operations and presents a provably cor-
rect algorithm for eliminating unnecessary touch operations. The latter is based on the set-based
analysis algorithm of the fourth section. The fifth section describes the implementation of these
algorithms on the Gambit compiler and compares the modified compiler to the original compiler
on a standard set of benchmarks. The sixth section discusses related work.
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2 Review: The Language and Its Parallel Semantics

Given the goal of developing a semantics that is useful for proving the soundness of optimizations,
we develop the definitional semantics for futures for an intermediate representation of an idealized
functional language. Specifically, we use the subset of A-normal forms [8] of an extended A-calcu-
lus-like language that includes conditionals and a future construct: see Figure 1.

M € A, = x (Terms)
| (let (z V) M)
| (let (z (future M)) M
| (let (z (car y)) M)
| (let (z (cdr y)) M)
| let (= (it y M M)) M)
| (let (z (apply y 2)) M)
V e Value == cla| (Ae. M) | (cons x y) (Values)
z € Vars = {e,y,2,...} (Variables)
¢ € Const = {true, false,0,1,...} (Constants)

Ficure 1 The A-normalized Language A,

In a previous paper [7], we developed a series of abstract machines, each specifying the semantics
of futures at a different level of abstraction. The last of these machines, called the P(C'EK)-
machine, is particularly suited to the development of program analyses, since contains explicit
binding information relating program variables to their values. The machine is also suited to the
development of a touch optimization algorithm, since it exposes the use of explicit placeholder
objects and performs touch operations on these objects. We use this machine, defined in Figures 2
and 3, as the basis for the development of this paper.

Notation We use the following notations throughout the paper: P denotes the power-set con-
structor; f : A — B denotes that f is a total function from A to B; f: A —, B denotes that f
is a partial function from A to B; M € P denotes that the term M occurs in the program P; and
(ar? x, M, F) refers to either a normal activation record (ar z, M, F) or a tagged activation record

(art o, M, F).

3 Touch Optimization

The P(C E K )-machine performs touch operations on arguments in placeholder-strict positions of all
program operations. These implicit touch operations guarantee the transparency of placeholders,
which makes future-based parallelism so convenient to use. Unfortunately, these compiler-inserted
touch operations impose a significant overhead on the execution of annotated programs. For ex-
ample, an annotated doubly-recursive version of fib performs 1.3 million touch operations during
the computation of (fib 25).

Due to the dynamic typing of Scheme, the cost of each touch operation depends on the program
operation that invoked it. If a program operation already performs a type dispatch to ensure that

first
mention of
ph-strict
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Evaluator:

evalpeer : A —  Answers U {error, L}
unloadp.c[E(x)] if (P,0,€) ) . {2, E,€)

B error if (P,0,¢€) .., error
evalpeek (P) = L it Vi € N 35; € Statepcer, ni, m; € N such that
m; > 0,5y = (P,0,¢) and S; '_ﬁcl!l?l Si+1
Data Specifications:

S € Statepcer w= (M, E K) | error(f-let (p S) 5) (States)

M € A, (A-nf Language)

E € Envpeer n= Vars —p Valuepeer (Environments)

Ve Valuepeer = PValueycer | Ph-0bj .1, (Run-Time Values)

W € PValuepeer = c|a| Clpoer | Pairpees (Proper Values)

Clyce = {(Axe. M), E) (Closures)

Pairpcer = (cons V' V) (Pairs)

Ph-0bj .1, = (phpo)| {(phpV) (Placeholder Values)

K € Conlpeer = e¢|{ar o, M,E)K | {ar} «, M, E).K (Continuations)

F € FinalStatepcer = {(z,E,€)| error (Final States)

A € Answers = ¢ | procedure | (cons A A) (Answers)

Auxiliary Functions:
unloadpeer, Valuegcek —  Answers touchpeer @ Valueyoey, ——  PValuepoep U {o}
unloadpeerlc] = ¢ touchpecp[(phpo)] = o
unloadpeer[{(Ax. M), E)] = procedure touchyecr[(php V)] = touchper[V]
unloadpeer[(cons Vi V)] = (cons VY V) touchpcx[W] = W
where V' = unload .. [Vi]
unloadpeer[(Php VY] = unloadpccr[V]

Placeholder Substitution S[p := V]:

Mlp:=V] = M with all occurrences of (ph p o) updated to (ph p V)

, o (#let (¢ Si[p = V) S if p=pf
(Flet (7 51) Sa)lp = V] = { (Flet (1 Sip = V) Sa = V) ity

Ficure 2 The P(CEK )-machine: Evaluator and Data Specifications

its arguments have the appropriate type, e.g., car, edr, apply, etc, then a touch operation is free.
Put differently, an implementation of (car z) in pseudo-code is:

(if (pair? z) (unchecked-car z)
(error ’car "Not a pair"))

Extending the semantics of car to perform a touch operation on placeholders is simple:

(if (pair? z) (unchecked-car z)
(let ([y (touch z)]) (if (pair? y) (unchecked-car y) (error ’car "Not a pair"))))

The touching version of car incurs an additional overhead only in the error case or when z is a
placeholder. For the interesting case when z is a pair, no overhead is incurred. Since the vast
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Transition Rules:

<(1et ( C) M)’E’[(> zl;gek <M’E[$ - c] >
(et (zy) M), E,K) w0y (M, Elz — E(y)], K)
(et (z (\y. N) M), E,K) w0 (M, E[e — (0. N), E)], K)
((et (x (coms y z)) M), E, K) e (M, E[z — (cons E(y) E(2))], K)
(z, B, {ar y, M, E'). K) vk (M, E'ly — E(2)], K)
((let (z (car y)) M), E, K) o

P
(M, E[z — W], K) if touchpeex[E(y)] = (cons Vi V5)
error if touchpeer[E(y)] € Pairpeer U {o}

{(let (z (cdr y)) M), E, K) RS

peek analogous to car

((let (z (if y My Ma)) M), E,K) v+,
(Mq,E,(ar ¢, M, E).K) if touchy..;[E(y)] € {false, o}
(Ms, E,{ar o, M, E).K) if touch,..;[E(y)] = false

((let (z (apply y 2z)) M), E, K) bl

peek
{ (N,E'[2' — E(2)],{ar , M, E} K} if touchp..x[E(y)] = {(Az’.N), E')
error if touchpeer[E(y)] € Clycer U {0}
((let (z (future N)) M), F, K) '_Ql;ék (N, E {ar} «, M, E).K)
(v, B, (art y, M,E")K) +— " (M E'y— E)],K)

(M,E, K, (ar} #, N, E').Ks) "

peek

(f-let (p (M, E, K1) (N, E'lx — (ph p )], K3)) p & FP(E')U FP(K>)

(f-let (p (2, E,¢)) S) H;gek Slp == E(x)]

(f-let (p error) S) '—Ql;ék error
(f-let (py (f-let (p1 S1) S2)) S2) e, (Flet (py S1) (Flet (py S2) Ss))
1 ¢ FP(Sg)

(f-let (p S1) So)  —F2b  (f-let (p S’)S’)
if Sy b g ed gt

peek pcek
0,0
S — S

g a+tec,b+d SH

peek b 4
a 12 i < 1"
if St S S et S a e > 0

Ficure 3 The P(C EK)-machine: Transition Rules

(bind-const)
(bind-var)
(bind-lam)
)

)

(bind-cons

(apply)

(future)
(future-id)

(fork)
(join)
(join-error)
(hft)
(parallel)
(reflexive)

(transitive)
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majority of Scheme operations already perform a type-dispatch on their arguments,! the overhead
of performing implicit touch operations appears to be acceptable at first glance.

Unfortunately, a standard technique for increasing execution speed in Scheme systems is to dis-
able type-checking typically based on informal correctness arguments or based on type verifiers for
the underlying sequential language [26]. When type-checking is disabled, most program operations
do not perform a type-dispatch on their arguments. Under these circumstances, the source code
(car z) translates to the pseudo-code:

(unchecked-car z)

Extending the semantics of car to perform a touch operation on placeholders is now quite expensive,
since it then performs an additional check on every invocation:

(if (placeholder? z) (unchecked-car (touch z)) (unchecked-car z))

Performing these placeholder? checks can add a significant overhead to the execution time. Kranz [19]
and Feeley [5] estimated this cost at nearly 100% of the (sequential) execution time, and our ex-
periments confirm these results (see below).

The classical solution for avoiding this overhead is to provide a compiler switch that disables
the automatic insertion of touches, and a touch primitive so that programmers can insert touch
operations explicitly where needed [5, 17,25]. We believe that this solution is flawed for several
reasons. First, it clearly destroys the transparent character of future annotations. Instead of an
annotation that only affects executions on some machines, future is now a task creation construct
and touch is a synchronization tool. Second, to use this solution safely, the programmer must know
where placeholders can appear instead of regular values and must add touch operations at these
places in the program. In contrast to the addition of future annotations, the placement of touch
operations is far more difficult: while the former requires a prediction concerning computational
intensity, the latter demands a full understanding of the data flow properties of the program. Since
we believe that an accurate prediction of data flow by the programmer is only possible for small
programs, we reject this traditional solution.

A better approach than explicit touches is for the compiler to use information provided by
a data-flow analysis of the program to remove unnecessary touches wherever possible. This ap-
proach substantially reduces the overhead of touch operations without sacrificing the simplicity or
transparency of future annotations.

3.1 Non-touching Primitives

The current language does not provide primitives that do not touch arguments in placeholder-strict
positions. To express and verify an algorithm that replaces touching primitives by non-touching
primitives, we extend the language A, with non-touching forms of the placeholder-strict primitive
operations, denoted car, cdr, if and apply, respectively:

M = e
| (let (x (car y)) M)
| (let (z (cdr y)) M)
| (let (z (if y M M)) M)
| (let (z (apply y 2)) M)

1Two notable exceptions are if, which does not perform a type-dispatch on the value of the test expression, and the
equality predicate eq?, which is typically implemented as a pointer comparison.
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As their name indicates, a non-touching operation behaves in the same manner as the original
version as long as its argument in the placeholder-strict position is not a placeholder. If the
argument is a place-holder, the behavior of the non-touching variant is undefined. The extended
language is called A,.

We define the semantics of the extended language A, by extending the P(C'E K )-machine with
the additional transition rules described in Figure 4. The evaluator for the extended language,
evalyeey, is defined in the usual way (cmp. Figures 2 and 3). Unlike evalpcr, the evaluator evalyc.x
is no longer a function. There are programs in A, for which the evaluator eval,. can either
return a value or can be unspecified because of the application of a non-touching operation to a
placeholder. Still, the two evaluators clearly agree on programs in A,.

Lemma 3.1 For P € A,, evalyecr(P) = evalpeer(P).

3.2 The Touch Optimization Algorithm

The goal of touch optimization is to replace the touching operations car, edr, if and apply by the
corresponding non-touching operation whenever possible, without changing the semantics of pro-
grams. For example, suppose that a program contains (let (z (car y)) M) and we can prove that y is
never bound to a placeholder. Then we can replace the expression by the form (let (z (car y)) M),
which the machine can execute more efficiently without performing a test for placeholdership on .

This optimization technique relies on a detailed data-flow analysis of the program that deter-
mines a conservative approximation to the set of run-time values for each variable. More specifically,
we assume that the analysis returns a valid set environment, which is a table mapping program
variables to a set of run-time values? that subsumes the set of values associated with that variable
during an execution.

Definition 3.2. (Set environments, ' =&, S |EE, PEE) Let P be a program and let Varsp
be the set of variables occurring in P.

o A mapping & : Varsp — P(Value,eer) is a set environment for P.
o I/|=E& (read E validates &) if for all x € dom(FE), E(z) € £(x).

o The relation S |= & (read S validates £) is defined inductively:

— (M,E,K) =il E €.
— (f-let (p 51) 92) E £if 51 = & and 53 = €.
o P& (read P validates &) if for every state S such that (P,0,¢) 7> , 5, 5 €.

The basic idea behind touch optimization is now easy to explain. If a valid set environment
shows that the argument of a touching version of car, edr, if or apply can never be a placeholder,
the optimization algorithm replaces the operation with its non-touching version. The optimization
algorithm 7, parameterized over a valid set environment £, is defined in Figure 5.

The function sba, described in the next section, always returns a valid set environment for
a program. Assuming the correctness of of set-based analysis, the touch optimization algorithm
preserves the meaning of programs. For every transition step of a source program P there exists a
corresponding transition step for the optimized program 7 (P).

20r a least a representation of this set that provides the appropriate information.
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(M, Elx — W], K) if E(y) = (cons V; V3)

((let (z (car y)) M), E, K) — ek unspecified if E(y) € Ph-Obj,..; (car)
error otherwise

((let (z (cdr y)) M), E, K) '—Ql;ék analogous to car (cdr)

(Ma, E {ar , M, E).K) if E(y) = false
((let (z (if y My My)) M), E,K) ', unspecified if E(y) € Ph-Obj,..; (if)
(M, E, {ar x, M, E).K) otherwise

(N, B'[2" — E(2)],

. 1 E(y)={(Ax'.N),E
b 2 a4 0 peek unspecified if E(y) € Ph-0bj .. —=

error otherwise

Ficure 4 Non-touching transition rules

Te :Ag— Ao
Te[z] = =
Te[(et (2 ¢) M) = (let (x ¢) Te[M])
Telllet (x ) M)] = (let (x y) Te[M))
Tel(let (= (. N)) M) = (et (x (\p. Te(N))) Te[M])
Te[(let (z (cons y 2)) M)] = (let (z (cons y z)) Tz[M])
Te[(let (z (future N)) M)] = (let (¢ (future 7¢[N])) T [M])

B M)) if E(y) C PValuep..
Te[(let (x (car y)) M)] = { (let (z (car y)) Tg[M]; if SEZ; ¢z PValuepcez

Te[(let (z (edr y)) M)] = analogous to car

(let (z (if y My M>)) Te[M)]) if E(y) C PValuepeer
M

Te[(let (w (if y My M) M)] = { (let (2 (if y My, Mz)) Te[M]) if £(y) € PValuepoer

[ (let (z (apply y 2)) Te[M]) if E(y) C PValuey..
Ze[(let (x (apply y 2)) M)] = { (et (« <a§§1§ ) ) T it g(Z) 7 Plalucoos

FicurE 5 The touch optimization algorithm 7°

Lemma 3.3 (Step Correspondence) Let P be a program with & = sba(P), and let S be a state

for which & is valid. could use

any valid £
1. Suppose S +——"" 8" Then Te(S)——"1" Te(S").

pcek pcek

2. Suppose Te(S) =17 S, Then S —— 17 " where Te(S') = 5.

pcek

Proof: We prove the first part by induction on n and by case analysis of .5 |—>;£2 S7.
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e We first consider the case where § '__>]1)7clek S’ via the transition rule car. Then
S = {((let (z (car y)) M), L/, K'). There are four sub-cases to consider, depending
on whether or not 7¢(y) contains placeholders and whether or not E(y) is a pair.

— Suppose if E(y) € PValuepeer, and touchper[E(y)] = (cons Vy V3). Then:

S =

Te(S
touch(Te(E)(y)
( /

Hence 7¢(8) —1L Te(S") via the rule car.

pcek
— Suppose if E(y) € PValuepeer, and touchpeer[E(y)] € Pairpeer U {o}. Then:

(M, Elz — V1], K)
) = ((let (z (car y)) Te(M)), Te(E), Te(K))
) = (coms Tg(Vh) Te(V2))
) = (Te(M), Te(Ela" — V1)), Te(K))

5" = (error,{,e)

Te(5) = ((let (z (car y)) Te(M)), Te(L), Te(K))
touchpeer[Te(E)(y)] & Pairpeer U {o}
Te(S5') = (error,(,¢)
Hence 7¢(5) p7cek 7¢(5") via the rule car.

— Suppose if E(y) C PValuepeer, and touchper[E(y)] = (cons Vy V3). Then

= (M, E[lz = V1], K)
= ((let ( (car y)) Te(M)), Te(E), Te( K))
E(y) = (cons Vq V3)
Te(E)(y) = (cons Te(V1) Te(V2))
Te(S') = (Te(M), Te(E[2" — V1)), Te(K))

Hence if £(y) C PValue,eer via the rule car.

— Finally, suppose E(y) C PValueyeer and touch,.cp[E(y)] ¢ Pairpeer U {o}.
Then

E(y)) ¢ Pairyee, U{o}
5" = (error,0,¢)
) = (et (z (car y)) Te(M)), Te(E), Te( X))
( )( ) & Pairpeer U{o}
5"y = (error,(,¢)
Hence 7¢(5) péek

Hence if '__>]1)7clek S’ via the rule car, then 7¢(.5)+

T¢(57) via the rule car.

p7cek 7¢(S5") via one of the rules

car or car.
e The other cases are similar.

The second part of the proof proceeds in a similar manner by induction on n and by

case analysis of 7¢(5) '——>ZCZ;§ 5™
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o Consider the case where 7¢(5) —peer S” via the transition rule car.

i\
N
I

((let (z (car y)) Te(M)), Te(E), Te( K ))
= ((let (z (car y)) M), £, K) by the definition of Z¢
E(y) C PValueyeek

o
[

— Suppose that 7¢(F)(y) = (cons T¢(Vy) Z¢(V2)). Then

%
|

= (Te(M), Te(E)[x — Te(V1)], Te(K))
E(y) (cons V; 13)
5" = (M,E[z — V4], K)

Hence S '__>]1)7clek S’ via the rule car, and 7g(5') = 5.
— Alternatively suppose that 7¢(E)(y) € Pairycer. Then

touchpeek[E(y)] & Pairpeer U {o}
5" = (error,(,¢)

5" = (error,{,e)

Hence S '__>]1)7clek S’ via the rule car, and 7g(5') = 5.

e The other cases are similar.
]

The Step Correspondence Lemma implies that a touch optimized program exhibits the same
behavior as the corresponding unoptimized program.

Theorem 3.4 For P € AY, evalpcek(’fsba(P)(P)) = evalyeer(P).
Proof: Both the fact that eval,..; is well-defined on sta(P)(P) and that the equality holds follow
from Lemma 3.3.

In summary, the touch optimization algorithm we present removes redundant touch operations
from programs based on the information provided by set-based analysis. This optimization al-
gorithm is provably-correct with respect to the semantics of future as specified by the extended
evaluator evaly..p. Any implementation that realizes eval,..) correctly can therefore make use of
our optimization technique.

4 Set-Based Analysis for Futures

The development of a sound program analysis consists of two parts. First, we use the transition
rules of the P(C'E K )-machine to derive constraints on the sets of run-time values that a variable
in a given program may assume. Any set environment satisfying these constraints is a valid set
environment. Second, we develop an algorithm for finding the minimal (i.e., most accurate) set
environment satisfying these constraints. Our set constraints are similar to the constraints in
Heintze’s work on set-based analysis for SML [11], but our derivation differs from his.
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4.1 Deriving Set Constraints for Program Variables

A set constraint is of the form:

A

B
where A and B are statements concerning &£, and A also depends on the program being analyzed.
A set environment & satisfies this constraint if whenever A holds for £, then B also holds for £.
Suppose P is the program of interest, and suppose that the evaluation of P involves the transi-
tion § ——7"" S’. We derive constraints on & sufficient to ensure that 5 |= £ if §' [= £. We proceed
by case analysis on the last transition rule used for 5 »——>;£2 57, and we present four representative

cases:

e Suppose S |—>]1)’c16k S’ via the transition rule (bind-const):

((let (z ¢) M), E, K) H_;jek (M,E[z — ], K)

The transition pairs x with the constant ¢ in the extended environment. To ensure that the
set £(x) includes ¢, we introduce the constraint:

(let (x ¢) M)e P
ce&(x)

This constraint requires that for each term of the form (let (z ¢) M) occurring in P, the
constant ¢ must be recorded in £ as one of the possible values of the variable z.

(1)

e Suppose S|—>;’clek S’ via the transition rule (apply): In the interesting case, y is bound, either
directly or via a placeholder object, to a closure ((Az'. N'), E'), which implies that:

((let (2 (apply y z)) M), F, K) '__ﬁlaélek (N,FE'[z" — E(2)],{ar z, M, E).K)

Then this rule binds 2’ to the value E(z). To ensure that £ accounts for the binding of 2’ to
E(z), we demand that & satisfy the constraint:

(let (z (apply y z)) M) e PV, € &(y)
touchyeer[Vy] = (A2’  N), E) Ve&(z)

Ve é&(a) (¢7)

e Suppose S l—>}1)’clek S’ via the transition rule (return):

(¢, FE' (ar y, M, E).K) H;;k (M, Ely — E'(2)], K)

To acount for transitions according to (return), our constraint system must ensure that £(y)
includes the value E’(2). However, a syntax-directed program analysis cannot extract the
possible activation records that may receive the value of the final variable in a procedure from
the variable or its immediate context. However, it will determine all potential call sites of the
procedure and can enforce a relationship between the “return” variable of the procedure and
the variable that receives the result of the function call. Thus, if FinalVarN is a function
that determines the innermost (“result”) variable of N, then the crucial constraint on this
variable is as follows:
(let (z (apply y z)) M) e PV, € &(y)
touchyeer[Vy] = (A2’ . N), E) V e &(FinalVar[N))
Veé&(x)

The definition of FinalVar is straightforward.

(CF)
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Definition 4.1. (FinalVar)

FinalVar : A, — Vars

FinalVarlz] = =
FinalVar[(let (z V) M)] = FinalVar[M]
FinalVar[(let (¢ (future N)) M)] = FinalVar[M]
FinalVar[(let (z (car y)) M)] = FinalVar[M]
FinalVar[(let (z (edr y)) M)] = FinalVar[M]
FinalVar[(let (« (if y My My)) M)] = FinalVar[M]
FinalVar[(let (z (apply y 2)) M)] FinalVar[M]

e The analysis for the transition rules (future-id), (fork) and (join) is analogous to the above
case. The constraints C{, and C{] ensure that, for each future expression in the program,
the set environment &£ accounts for the bindings created by any (future-id), (fork) or (join)
transitions that correspond to that future expression.

Examining each of the transition rules of the machine in a similar manner results in eleven
program-based set constraints CT,...,C1: see Figure 6.

4.2 Soundness of the Set Constraints

Proving the soundness of the set constraints requires showing that if a set environment £ satisfies
the set constraints with respect to a given program P, then £ must be valid for P.

Assume that & satisfies C¥, ..., CH. To prove that P |= &, we need to show that (P, 0, €>i——>;é:2
S implies S |= €. The natural approach is to proceed by induction on n. As part of the proof, we
will need to consider intermediate transitions starting from states other than (P,(,¢). Therefore,

we need to strengthen the induction hypothesis to:
S Ep & and S 5" implies S" [=p €

where the relation S |=p £ is an appropriately chosen relation. This relation needs to assert a
number of properties about the state S in order to support the proof of the induction hypothesis:

o First, the relation needs to assert that the terms contained in S must occur in P, i.e., the
evaluation of programs does not involve the creation of new terms.

o Next, the relation needs to assert that S can only contain values and environments that are
compatible with P and €. A value V is compatible with P and &, written V ©p &, if each
term in V occurs in P and each environment in V' is compatible with P and £. Similarly, an
environment F is compatible with P and &, written E ©Op &, if each binding in ¥ occurs in &
and each value in F is compatible with P and &.

Definition 4.2. (V op &, F0p &)
— The relation V ©p £ is the smallest relation satisfying the following clauses:

c@Op & if coccursin P

xoOpé& if x occursin P (phpo)yopé
(M. M),E)op& if (Ae.M)e Pand Fop& (phpV)epf& if Vopé
(cons Vi Vo) op & if Viop&and Vo0p €&
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(let (z c) M)e P P
o )
(let (z y) M)e P Ve &y P
Ve&(r) (&)
(let (z (Ay.N)) M) e P Vo € dom(FE). E(x) € £(x) (c”)
((Ay.N), E) € E(x) ’
(let (z (cons y1 y2)) M) € P Vie&n) Vo € E(y2) (CF)
(cons V; V) € E(x) 4
(let (z (car y)) M)e PV, € E(y) touchycer[Vy] = (cons Vi Va) P
e £) (C5)
(let (z (edr y)) M) e P Vy € E(y) touchpcer[Vy] = (cons Vi V5) P
Vo€ £) (Cs)
(let (z (apply y z)) M) € P Vy € E(y)
touchy.cx[Vy] = ((A2'. N), E) Ve&(z) P
Ve () ()
(let (z (apply y z)) M) € P Vy € E(y)
touchy.cx[Vy] = ((A2'. N), E) V € &(FinalVar[N]) P
Ve&(r) (Cs)
(let (¢ (if y My My)) M) e P V € E(FinalVar[M;]) U E(FinalVar[Ms)]) P
Ve&(r) (C5)
(let (z (future N)) M) e P Vi € E(FinalVar[N]) P
Vi € E(x) (ph p V) € E() (C1o)
(let (z (future N)) M) e P (")

(ph p o) € &(x)

Ficure 6 Set Constraints on £ with respect to P.

— E@p & holds if for all z € dom(FE), E(z) € E(z) and E(z)op £.

o The relation must also assert that &£ already contains the bindings that could be created
during a subsequent (return) transition to an existing activation record. This requirement
is necessary to support the induction hypothesis in the case of a (return) transition. It is

enforced by CF .

o Similarly, the relation must assert that £ already contains the bindings that could be created
during a subsequent (future-id) or (join) transition. The formalization of this assertion refers
to the auxiliary function ResultVar. The result of any state S will be the potential values of
the variable ResultVar[S], where ResultVar is the following function from states to variables:



November 14, 1994 — 21 :59 DRAFT 13

Definition 4.3. (ResultVar)

ResultVar : State,cer, — Vars

ResultVar[(M, FE,e)] = FinalVar[M]
ResultVar[(M, E, K .(ar?z, N, E'))] = FinalVar[N]
ResultVar[(f-let (p S1) S2)] = ResultVar[S,]

e Finally, to allow for error transitions, the relation must hold for the error state error.

The complete relation relation, which asserts all of the above properties, is defined by induction
on the structure of states.

Definition 4.4. (S |=p &)

L Sl |:P 57‘92 |:P &
(f-let (p S1) S2) Ep & & { and YV € &(ResultVar[Sy]), So[p:=V]=p €

MeP EGpE
and K = (ar? aq, My, Fq).---(ar? z,, M, F,)
and x; € PM; €e PE;0pEforl1 <i<mn
and &(final-var(M;)) C E(zi4q) for 1 <i<n
and &(final-var(M)) C E(zq)ifn >0
and if K = Ky.(art o, M, F).K; then
Vp € Ph-Vars,(ph p o) € £(z) and
VYV € E(ResultVar[(M, E, K1)]),(php V) € £(2)

(M,E,K)|=p & &

error |=p &

The invariant relation is a stronger relation than the validates relation, i.e., if a states satisfies
the invariant relation for a set environment with respect to a given program, then that state
obviously validates the set environment.

Lemma 4.5 S =p & implies 5 |= &

Our chosen invariant relation supports the proof of the induction hypothesis: if the invariant
holds for a given state 5, then the invariant also holds for the successors of 5.

Lemma 4.6 Suppose & satisfies CT,...,Ct. Then S |=p & and S oy S implies 8" Ep £.

Proof: By induction on n and by case analysis of the last transition rule for Sl——>;£2 S7.

We present the cases for the transition rules (car), (apply) and (return) in detail.

e Suppose S '—>]1)7clek S’ via the transition rule (bind-const). Then:

S ((let (z ¢c) M), L, K)

S" = (M,E[z — ], K)
Since S |=p &, we know that (let (z ¢) M) € P, E ©p £ and the conditions on
K in the definition of the invariant are satisfied. Because & satisfies C{", we have

that ¢ € £(z). Also, by definition, ¢ ©p €. Therefore E[z — ¢]©p &, which implies
that S’ |Ip £.
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e Suppose S '—>]1)7clek S’ via the transition rule (apply). Then:
S = ((let (z (apply y 2)) M), I, K)

Since the analysis of the error case is trivial, we only consider the case where y is
bound, either directly or via a placeholder object, to a closure ((Az’. N), E'). In
this case:

touchyeer[E(y)] = ((Aa'.N), E')
S" = (N,F'[2' — E(z)],(ar z, M, E).K)

It is easy to see that N € P. To show that the new environment E'[z' — F(z)]is
compatible with P and &, we proceed as follows:

From the relation S' |=p £ we know that E©p&. But FOpE& implies that E(y)opE,
which in turn implies £’ ©p €. Also, from E ©p £ we have that E(z) € &£(z),
which, since & satisfies CF, implies that E(2) € £(z'). Finally, £ ®p £ implies
that F(2) ©p £. Combining the facts £/ Op &, E(z) € £(2') and E(z) Op &, we
have that E'[2" — E(z)]®p&, i.e., the new environment is compatible with P and
E.

Finally, we must show that the appropriate conditions on the new continuation
(ar z, M, E).K hold. That &(FinalVar[N]) C &(z) follows from C{’, and the
remaining conditions on the continuation are implied by the relation S |=p &.
Therefore, the invariant holds for 5’.

o The final case we consider is for the transition rule (return). For this case:

S = (a,F' (ar y, M, E).K)
§" = (M, Ely — E'(2)], K)

That M € P follows from the relation S [=p £. To show that the new environment
Ely — FE'(x)] is compatible with P and & we proceed as follows:

From the relation S [Ep & we know that E' ©p &, and hence E'(z) ©p £. The
invariant also implies that £(z) C &(y), which in turn implies that E'(2) € £(y).
Finally, the invariant implies that £ ©p £. Putting together the facts E'(z) Op
E, E'(z) € E(y) and E Op &, we have that Ely — FE'(2)] @p &, i.e., the new
environment is compatible with P and &.

The required conditions on K follow from the relation S |=p £. Therefore, the
invariant holds for $’.

The remaining cases have similar proofs. =

Since the invariant trivially holds for the initial state (P, , €), it follows that the set constraints are
sound, i.e., if £ satisfies the set constraints relative to P, then £ is a valid set environment for P.

Theorem 4.7 (Soundness of Constraints) If £ satisfies C1,...,Cf, then P |= €.

Proof: Suppose £ satisfies CT,...,CH. Let § be a state such that (P,0,¢€) |——>;£2 5.
By the definition of the invariant relation, (P,0,¢) =p £. Therefore Lemma 4.6 implies
that S |=p &, and hence by Lemma 4.5, 5 |= €. The latter is true for any state derivable

from the initial state (P,0,¢), hence P = E.

In summary, any set environment satisfying the set constraints with respect to a program P is
a conservative approximation to the set of bindings created during the execution of P.
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4.3 From Set Constraints to Set-Based Analysis

The class of set environments for a given program P, denoted SetEnvp, forms a complete lattice
under the natural pointwise partial ordering C defined by:

& C & if and only if Vo € Varsp. &1(z) C ()

Smaller set environments correspond to more accurate approximations, since they include fewer
extraneous potential values per variable. Therefore, we define set-based analysis as a function that
returns the least set environment satisfying the set constraints.

Definition 4.8. (sba)

sba : A, — SetEnvp
sba(P) = T{& | € satisfies CT,...,CL}

The function sba is well-defined. Since the set constraints are monotonic, it follows that sba(P)
is a valid set environment for P. Furthermore, a value V' is in sba(P)(z) if and only if from the
assumption that a set environment & satisfies C¥,...,Cf, we can prove that V € E(x). All that
remains is to produce an algorithm for calculating sba(P).

4.4 Solving the Set Constraints

Since sba(P) typically maps variables to infinite sets of possible values, we need a finite represen-
tation for these infinite sets. A systematic inspection of the set constraints suggests that the set of
closures for a A-expression can be represented by the A-expression itself, that the set of closed pairs
for a cons-expression can be represented by the cons-expression, etc. The actual sets of run-time
values can easily be reconstructed from the representative terms and the set environment. In short,
we can take the set of abstract values for a program P to be:

V € AbsValuep ::= cp | (A\x. M)p | (cons z y)p | (ph zp) | (ph o)

where the constant cp, the A-expression (Az. M )p, the pair (cons z y)p and the variable zp are
all the respective subterms of P. The size of AbsValuep is O(|P]), where | P| is the length of P.

Abstract values provide a finite representation for the infinite set environments encountered in
set-based analysis. Specifically, an abstract set environment € is a mapping from variables in P
to finite sets of abstract values. Each abstract value V in £(x) represents a set of run-time values
V (depending on &) according to the relation V ingV, and in a similar manner each set £(z) of
abstract values represents a set of machine values according to the relation V ing

c zng p
(Az. M), E) ing (Ax. M)p & Vo € dom(E). E(z)ing x
(cons Vi V3) ing (cons yy y2) & V; ?ng i

(php V) zng (ph yp) & Vingy

(ph p o) inz (ph o)

Viing x & 3V € &(x) with VingV
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(let (x ¢c) M)e P -

= ()
ep € E(x)
(let (z y) M)e P Ve &y —5
Ve &(x) (@)
(let (z (A\y.N)) M)e P —
(Ay. N)p € E(x) (C3)
(let (z (cons y; y2)) M) € P E_(yl) +0 E(y2) # 0 (F)
(cons ¥y, y2)p € E(x) 4
(let (z (car y)) M) e P Vy € &(y) (cons z1 z2)p € W[E, Vy] Ve&(n) (F)
Ve &(x) ¥
(let (¢ (edr y)) M) e P Vy € E(y) (cons z1 z3)p € M[E, Vy] Ve E(zz) (F)
Ve &(x) °
(let (z (apply y 2)) M)e PV, € E(y)
(M’ N)p € tou h_[SV | Ve& &3
Ve&(x) 7
(let (z (apply y 2)) M)e PV, € &(y)
(Az'. N)p € touch [E i] V € E(FinalVar[N]) (F)
Ve &(x) ®
(let (¢ (if y My My)) M) e P V € E(FinalVar[M,]) U E( Final Var[Ms]) (F)
Ve &(x) ?
(let (x (future N)) M) e P Vv € &(FinalVar[N]) (C_P)
Vv €&(x)  (ph FinalVar[N]p) € E(x) o
(let (z (future N)) M) e P (C'_ﬁ)

{ph o) € £(x)
Auxiliary Function:

touch : AbsEnvp x AbsValuep — P(AbsValuep)
—— =1 [ {V} ifV=cporV=_A M)porV:(consxy)p
fouch[€, V'] = { {W | U € E&(y) and W € touch[E,U ]} if V = (ph yp)

FIGURE 7 Abstract Constraints on £ with respect to P.

The class of all abstract set environments for P given program is denoted AbsFnvp. Fach abstract
set environment & is a finite representation of a potentially infinite set environment, according to
the following function:

F : Absknvp —— SetEnvp

F(E)(x) = {V|Vinga)

Reformulating the set constraints from Figure 6 for abstract set environments produces the
abstract constraints CT, ... CT on € with respect to P: see Figure 7. We define sba(P) to be the
least abstract set environment satisfying the abstract constraints with respect to P.
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Definition 4.9. (sba)

sba: A, — AbsEnvp
sba(P) = N{& | € satisfies C—f, . .,C—ﬁ

Since each of the abstract constraints in monotonic, sba(P) satisfies C—f, .. .,C—ﬁ. Furthermore
V' € sba(P)(z) if and only if we can prove, based on the assumption that an abstract set environment

& satisfies CF,...,CF, that V € &(x).
The correspondence between set constraints and abstract constraints implies that sba(P) is a
finite representation for sba(P).

Theorem 4.10 (Correctness of Abstraction) sba(P) = F(sba(P))

Proof: See Appendix A.

The class of abstract set environments forms a complete lattice of size O(| P|?) under the natural
pointwise partial order. Therefore we can calculate sba(P) in an iterative manner, starting from
the empty abstract set environment £(z) = (), and repeatedly extending & with additional bindings
as required by the set constraints, until £ contains all the required bindings. Since we can extend
& at most O(|P|?) times, this algorithm terminates. Furthermore, each time we extend & with a
new binding, calculating the additional bindings implied by that new binding takes at most O(|P])
time. Hence, the entire algorithm runs in O(|P|®) time. We include an implementation of this
algorithm in Appendix B.

Optimization algorithms can interpret the abstract set environment sba(P) in a straightforward
manner. For example, the query on sba(P) from the touch optimization algorithm:

sba(P)(y) C PValuepeer,
is equivalent to the following query on sba(P):

sba(P)(y) C {cp, (M. M)p,(cons z y)p}

In a similar manner other queries on sba(P) can easily be reformulated in terms of sba(P).

5 Experimental Results

We extended the Gambit compiler [5, 6], which makes no attempt to remove touch operations
from programs, with a preprocessor that implements the set-based analysis algorithm and the
touch optimization algorithm. The analysis and the optimization algorithm are as described in
the previous sections extended to a sufficiently large subset of functional Scheme.> We used the
extended Gambit compiler to test the effectiveness of touch optimization on the suite of benchmarks
contained in Feeley’s Ph.D. thesis [5] on a GP1000 shared-memory multiprocessor [2]. Figure 8
describes these benchmarks.

Fach benchmark was tested on the original compiler (standard) and on the modified compiler
(touch optimized). The results of the test runs are documented in Figure 9. The first two columns

®Five of the benchmarks include a small number (one or two per benchmark) of explicit touch operations for coordi-
nating side-effects. They do not affect the validity of the analysis and touch optimization algorithms.
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Program | Description

fib Computes the 25" fibonacci number using a doubly-recursive algorithm.

queens Computes the number of solutions to the n-queens problem, for n = 10.

rantree Traverses a binary tree with 32768 nodes.

mm Multiplies two 50 by 50 matrices of integers.

scan Computes the parallel prefix sum of a vector of 32768 integers.

sum Uses a divide-and-conquer algorithm to sum a vector of 32768 integers.

tridiag Solves a tridiagonal system of 32767 equations.

allpairs | Parallel Floyd’s algorithm, computes shortest path between all pairs in a 117 node graph.

abisort Sorts 16384 integers using the adaptive bitonic sort algorithm.

nst Computes the minimum spanning tree of a 1000 node graph.

gsort Uses a parallel Quicksort algorithm to sort 1000 integers.

poly Computes the square of a 200 term polynomial, and evaluates the resulting polynomial.

Ficure 8 Description of the Benchmark Programs
standard touch optimized
Benchmark touches (n=1) touches (n =1) speedup over standard (%)
count(K) | overhead(%) || count(K) | overhead(%) n=1 | n=4 | n=16

fib 1214 85.0 122 10.2 40.5 39.9 36.7
queens 2116 41.2 35 1.5 28.1 304 28.1
rantree 327 67.5 14 2.6 38.7 37.2 26.8
mm 1828 121.0 3 <1 54.7 44.1 23.6
scan 1278 126.8 66 4.1 54.1 43.4 19.0
sum 525 107.3 33 6.1 48.8 37.9 20.0
tridiag 811 110.8 7 <1 52.1 29.4 5.8
allpairs 32360 150.4 14 <1 60.0 39.6 <1
abisort 5751 106.5 9 <1 51.3 31.1 24.4
mst 20422 914 750 5.3 45.0 17.2 <1
gsort 253 43.3 78 19.9 16.4 <1 <1
poly 526 65.3 121 16.2 29.7 12.5 <1

FIGURE 9 Benchmark Results

present the number of touch operations performed during the execution of a benchmark using the

standard compiler (column 1), and the sequential execution overhead of these touch operations
(column 2). To determine the absolute overhead of touch, we also ran the programs on a single
processor after removing all touch operations. The next two columns contain the corresponding

measurements for the touch optimizing compiler. The touch optimization algorithm reduces the
number of touch operations to a small fraction of the original number (column 3), thus reducing
the average overhead of touch operations from approximately 90% to less than 10% (column 4).

The last three columns show the relative speedup of each benchmark for one, four, and 16
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processor configurations, respectively. The number compares the running time of the benchmarks
using the standard compiler with the optimizing compiler. As expected, the relative speedup
decreases as the number of processors increases, because the execution time is then dominated
by other factors, such as memory contention and communication costs. For most benchmarks,
the benefit of our touch optimization is still substantial, producing an average speedup over the
standard compiler of 37% on four processors, and of 20% on 16 processors. The exceptions are
the last three benchmarks, mst, gqsort, and poly. However, even Feeley [5] described these as
“poorly parallel” programs, in which the effects of memory contention and communication costs
are especially visible. It is therefore not surprising that our optimizing compiler does not improve
the running time in these cases.

6 Related Work

Kranz et al. [13, 20] briefly describe a simplistic algorithm for touch optimization based on a first-
order type analysis. The algorithm lowers the touch overhead to 65% from 100% in standard
benchmarks, that is, it is significantly less effective than our touch optimization. The paper does
not address the semantics of future or the well-foundedness of the optimizations. Knopp [18]
reports the existence of a touch optimization algorithm based on abstract interpretation. His paper
presents neither a semantics nor the abstract interpretation. He only reports the reduction of static
counts of touch operations for an implementation of Common Lisp with future. Neither paper
gives an indication concerning the expense of the analysis algorithms.*

At LFP’94, Jaganathan and Weeks [15] described an analysis for explicitly parallel symbolic
programs, which they intend to use in a forthcoming compiler. They remark that the analysis could
be used for touch optimizations. Their semantics and their derivation of the analysis significantly
differ from ours so that we have not been able to compare the two analyses in detail. They do not
have an implementation of their algorithm for a full language like functional Scheme, and they do
not have optimization algorithms that exploit the results of their analysis.

Much work has been done on the static analysis of sequential programs, including abstract
interpretation [3] and OCFA [24]. Our analysis is most closely follows Heintze’s work on set-based
analysis for the sequential language ML [10], but the extension of this technique to parallel languages
requires a substantial reformulation of the derivation and correctness proof. Specifically, Heintze
uses the “natural” semantics framework to define a set-based “natural” semantics, from which he
reads off “safeness” conditions on set environments. He then presents set constraints whose solution
is the minimal safe set environment. We start from an parallel abstract machine and avoid these
intermediate steps by deriving our set constraints and proving their correctness directly from the
abstract machine semantics.

Other techniques for static analysis of sequential programs include abstract interpretation [3,
4] and Shivers” 0CFA [24]. The relationship between abstract interpretation and set-based analysis
was covered by Heintze [10].

Sequential optimization techniques such as tagging optimization [12] and soft-typing [26] are
similar in character to touch optimization. Both techniques remove the type-dispatches required
for dynamic type-checking wherever possible, without changing the behavior of programs, in the
same fashion as we remove touch operations. However, the analyses relies on conventional type
inference techniques.

*Ito’s group [[to: personal communication, April 22, 1994] reports an attempt at touch optimization based on abstract
interpretation. His group abandoned the effort due to the exponential cost of the abstract interpretation algorithm.
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7 Conclusion

The development of a semantics for futures directly leads to the derivation of a powerful program
analysis. The analysis is computationally inexpensive but yields enough information to eliminate
numerous implicit touch operations. We believe that the construction of this simple touch opti-
mization algorithm clearly illustrates how semantics can contribute to the development of advanced
compilers. We intend to use our semantic characterization for the derivation of other program op-
timizations in Gambit and for the design of truly transparent future annotations for languages
with imperative constructs.

Acknowledgments We thank Marc Feeley for discussions concerning touch optimizations and
for his assistance in testing the effectiveness of our algorithm, and Nevin Heintze for discussions on
set-based analysis and for access to his implementation of set based analysis for ML.

A Correctness Proof for Abstract Representation

We use inp as shorthand for in%(P).

Theorem 4.10 (Correctness of Abstraction) F (%(P)) = sba(P)

Proof: We show the equivalence of sba(P) and F (%(P)) by proving the set inclusion
in both directions. Let x be a variable in Varsp. Then:

Ve F (sba(P)) (x)

= Vipx by definition of F
= V € sba(P)(x) by Lemma A.1
Also:
V € sba(P)(x)
= 3V € sba(P)(x) with Vinp V' by Lemma A.3
= Vinp x
= VeF (%(P)) (z) by definition of F

Hence F (%(P)) = sba(P). n
Lemma A.1 (sba includes sba) V inp x implies V € sba(P)(z).

Proof: Assume that V inp . Then there exists V € sba(P)(z) with V inp V. Hence
there must be a proof, based on the assumption that sba(P) satisfies the abstract
constraints, that proves V' € sba( P)(x). We proceed by lexicographic induction on the
size of V and on the length of this proof, and by case analysis on the last abstract
constraint used in the proof.

C—f Suppose V € sba( P)(x) via constraint C—f. Then V = cp, V = cand (let (z ¢) M)
occurs in P, and hence by C{ we have that V € sba(P)(z).
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C—f Suppose V € sba(P)(x) via constraint C—f. Then (let (2 y) M) occurs in P. Also,
V' € sba(P)(y) via a shorter proof, so by induction we have V € sba(P)(y). Using
constraint C4 gives us V € sba( P)(z).

C—:]; Suppose V € sba(P)(x) via constraint C—ZI;. Then (let (z (Ay. N)) M) occurs in P,
V =(\y.M)pand V = ((Ay. N), E) where for each » € dom(FE), E(z) inp z. Each
E(z) is smaller than V, therefore by induction we have that for each z € dom(FE),

E(z) € sba( P)(#). Using constraint C¥ then shows that V € sba(P)(z).

CT Suppose V € sba(P)(z) via constraint C—f. Then (let (z (cons y; y2)) M) occurs
in P,V = (cons y; y2)p and V = (cons V; V5) where V; inp y;. Each V; is smaller
than V', therefore by induction we have that V; € sba(P)(y;). Using constraint C¥
then shows that V' € sba(P)(z).

CF Suppose V € sba(P)(x) via constraint C—f. Then (let (2 (car y)) M) occurs in
P. We first with the case where V, is not an abstract placeholder. In this case
V, = (cons z; 23)p and V, € sba( P)(y) via a shorter proof. By Lemma A.2, there
exists V' inp (cons 21 z3)p, therefore there exists Vo inp z3. Since V inp V and V €

sba(z1), (cons V V3)inp (cons 21 z;). By induction we have that (cons V V3) €
sba(P)(y), and finally Cf implies that V € sba( P)(x).

The case where V, is an abstract placeholder follows by a similar argument.

C—éj The analysis for the constraint C—éj is similar to the previous case.

CF Suppose V € sba(P)(z') via constraint C¥'. Again, we first with the case where
V, is not an abstract placeholder. In this case (Az’. N)p € sba(P)(y) and V €
sba(P)(z) via shorter proofs. Since ((Az’. N),0)inp (Az’. N)p, by induction we
have that ((Aa’. N),0) € sba(P)(y), and that V' € sba(P)(z). An application of
CF proves that V € sba(P)(a').

The case where V, is an abstract placeholder follows by a similar argument.
CL The analysis for the constraint C—éj is similar to the previous case.

CéD,C—fO The analysis for the constraint C—éj and the left implication ofC—fDO is similar to the
analysis for O,

C1f, Suppose V' € sba(P)(x) via the right implication of constraint C), where V' =
(ph FinalVar[N]) and V inp (ph FinalVar[N]). Then V = (ph p Vi) where Viy inp FinalVar[N].
By induction, Vy € sba(P)(FinalVar[N]). Hence the constraint C'}, implies that
V € sba(P)(z).

C—ﬁ The analysis for the constraint C—ﬁ is trivial.

Lemma A.2 (Non-emptiness of abstract values) V € sba(P)(z) implies there exists V inp V.

Proof: The proof is by induction on the length of the proof that V' € sba(P)(z). We
proceed by case analysis on the last constraint used in the proof.
C—f Suppose V € sba(P)(x) via constraint C—f. Then V = ¢p, and cinp V.

C—f Suppose V € sba(P)(z) via constraint C—f. Then V' € sba(P)(y) via a shorter
proof, and the lemma holds by induction.
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CT Suppose V € sba(P)(z) via constraint C—ZI;. Then V = (Ay.M)p and hence

(Ay. M), 0)inp V.

Suppose V' € sba(P)(z) via constraint CI'. Then V = (cons 3 y2)p, and V; €
sba( P)(y;), for some V;, i = 1,2, via shorter proofs. Therefore by induction, there
exists V; inp V;, and hence (cons V; Vy)inp V.

The analysis of the constraints C', CF. CF, CF, Cf and the left implication of
C1 is similar to the analysis for C'1".

CE, Suppose (ph FinalVar[N]) € sba(P)(z) via constraint C—fo. Then we have Vy €

sba( P)(FinalVar[N]) via a shorter proof, so by induction there exists V inp V.
Hence we have that (ph p V) ing (ph FinalVar[N]).

22

Lemma A.3 (sba includes sba) V € sba(P)(x) implies there exists V € sba( P)(z) with V inp V.

Proof: Assume that V' € sba(P)(z). Then there exists a proof, based on the assumption
that sba( P) satisfies the set constraints, that proves that V' € sba(P)(x). We proceed
by induction on the length of this proof, and by case analysis on the last step in the
proof.

cf
cy

cy

We take V = cp, and the lemma holds.

For this case V' € sba(P)(y) via a shorter proof, so by induction there exists
V € sba(P)(y) with V inp V. Then CT implies that V € sba(P)(z).

In this case, V' = ((Ay.N), E), and for each z; € dom(F). E(z;) € sba(P)(z)
via shorter proofs. Therefore, there exist V; such that V; € sba(P)(z) and
E(z)inpV,;. Now take V = (Ay.N)p, then by C—:]; we have V' € sba(P)(z),
and ((A\y.N), E)inp V.

In this case, V = (cons V; V3), and V; € sba(P)(y;) via shorter proofs. Therefore,
there exist V; € sba(P)(y;) with V;inp V;. Now take V = (cons y; y2), then by
CT we have that V € sba(P)(z).

Suppose Vi € sba(P)(x) via constraint CL". For simplicity, we consider only the
case where V), is not a placeholder, since the case involving placeholder is similar
but more complicated.

Thus V, = (cons Vj Vi) € sba(P)(y) via a shorter proof. By induction there
exists V', such that V', € sba(P)(y) and V, inp V. Hence V, = (cons z; z3)p,
V; € sba(P)(z1) and V inp V. From CE we can prove Vy € sba(P)(z), and the
lemma holds for this case.

This case is analogous to the previous case.

Suppose V' € sba(P)(z') via constraint C¥. For simplicity, we consider only the
case where V), is not a placeholder, since the case involving placeholder is similar
but more complicated.

Thus V, = ((A2’.N),E) € sba(P)(y) via a shorter proof. By induction there
exists V,, such that V,, € sba(P)(y) and V, inp V,. Hence V = (Aa’. N)p. Also,
V € sba(P)(z) via a shorter proof, so by induction there exists V such that V €
sba(P)(y) and V inp V. Hence, by C¥ we have V € sba(P)(a’).
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CL Again, we consider only the case where V is not a placeholder.

Thus V, = ((A2’. N), E), and V,, € sba(P)(y) via a shorter proof. By induction
there exists V, such that V, € sba(P)(y) and V, inp V. Hence V,, = (Az’. N)p.
Also, V' € sba(P)(FinalVar[N]) via a shorter proof, so by induction there exists
V such that V' € sba( P)(FinalVar[N]) and V inp V. Hence, by CL we have V €
sba(P)(x).

C¥,Cfy The analysis for the constraint C4” and the left implication of C{j is similar to the
analysis for O,

CT Suppose (ph p Vi) € sba(P)(z) via the right implication of C{). Then we have
Vn € sba(P)(FinalVar[N]) via a shorter proof, so by induction there exists V y €
sba( P)(FinalVar[N]) with Vi inp V. By Cf; we have that (ph FinalVar[N]) €
sba(P)(z), and (ph p Vi) inp (ph FinalVar[N]).

CF This case is trivial.

B Set Based Analysis Algorithm

A complete O(|P|?) set-based analysis algorithm for the intermediate language A, is included in
Figure 10°. The algorithm is written in Scheme extended with a special form match for pattern
matching.

The algorithm relies on a group of auxiliary functions that maintain, for each program variable,
an associated set of abstract values and an associated set of constraints, both of which are initially
empty. The function add-absvalue! extends the abstract value set of a variable; the predicate
in-absvalue-set? tests for membership in that set, and the iterator function (foreach-absvalue var
fn) calls fn on each abstract value associated with the variable var. The functions add-aconstraint!,
in-constraint-set? and foreach-constraint behave in a similar manner on constraint sets. We assume
that the functions add-absvalue!, add-aconstraint!, in-absvalue-set? and in-constraint-set? operate
in constant time, and that the functions foreach-absvalue and foreach-constraint operate in time
linear in the number of elements in the appropriate set.

The function SBA traverses an expression to ensure that the expression satisfies the abstract
constraints, and returns the final variable of that expression. Certain constraints cannot be satisfied
immediately. For example, the constraint C requires that all abstract values in £(y) must be in
&(x), but during the analysis of a program we may not yet know all the abstract values that may
be added to £(y). Therefore, we associate a constraint ‘(propogate-to ,z) with the variable y. This
constraint ensures that whenever an abstract value is added to &(y), then that abstract value is
also propogated to £(z). The function interpret-constraint is called for constraint and abstract
value associated with a given variable, and ensures that the constraint is satisfied, by creating new
abstract values or new constraints as necessary.

The O(] P|?) time bound can be verified as follows: Each call of the functions new-absvalue! and
new-constraint! takes constant time, excluding the time spent in the body of the respective unless
expressions. The number of variables, the number of abstract values, and the number of constraints
are all O(|P]). Therefore the test conditions of the two unless expressions succeed at most O(| P|?)

For simplicity, the algorithm implements simpler versions of the abstract constraints C_f and Cf that do not include
that non-emptyness conditions £(y;) # 0 and £(FinalVarN) # #. We believe the extra degree of approximation
introduced by this simplification is negligible in practice.



November 14, 1994 — 21 :59 DRAFT 24

times each. Hence the body of each unless expression is executed at most O(|P|?) times, and
function interpret-constraint is called at most O(|P|*) times. FEach call of interpret-constraint
terminates in constant time. Therefore, the entire algorithm takes O(|P|?) time.
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(define SBA
(lambda (expression)
(match expression
[(¢ variable? z) z)
[‘(let (, ,exp) ,body)
(match ezp
[(¢ constant? ¢) (new-absvalue! z ¢)]
[(¢ variable? y) (new-constraint! y ‘(propogate-to ,z))]
[‘(cons ,yl ,y2) (new-absvalue! z ‘(cons ,yl ,y2))]

[‘(lambda ,y ,N)

(let ([finalvar-N (SBA N)])

(new-absvalue! = ‘(lambda y ,N finalvar-N)))]

[‘(future ,N)

(let ([finalvar-N (SBA N)])

(new-constraint! finalvar-N ‘(propogate-to ,z))
(new-absvalue! © ‘(ph finalvar-N))
(new-absvalue! © ’(ph-circ)))]

[‘(car ,y) (new-constraint! y ‘(propogate-car-to ,z))]

[‘(edr ,y) (new-constraint! y ‘(propogate-cdr-to ,z))]

[if .y ,MI ,M2)

(let ([finalvar-M1 (SBA M1)][finalvar-M2 (SBA M2)])
(new-constraint! finalvar-M1 ‘(propogate-to ,z))
(new-constraint! finalvar-M2 ‘(propogate-to ,z)))]

[‘(apply ,y ,2) (new-constraint! y ‘(application ,z ,z))])

(SBA body)]))

(define new-absvalue!
(lambda (var absvalue)
(unless (in-absvalue-set? var absvalue)
(add-absvalue! var absvalue)
(foreach-constraint var (lambda (constraint) (interpret-constraint constraint absvalue))))))

(define new-constraint!
(lambda (var constraint)
(unless (in-constraint-set? var constraint)
(add-constraint! var constraint)
(foreach-absvalue var (lambda (absvalue) (interpret-constraint constraint absvalue))))))

(define interpret-constraint
(lambda (constraint absvalue)
(match (cons constraint absvalue)

[‘((propogate-to ,z) . ,v) (new-absvalue! © v)]

‘((propogate-car-to ,z) . (cons ,yl ,y2)) (new-constraint! yi ‘(propogate-to ,z
g g

‘((propogate-cdr-to ,z) . (cons ,yl ,42)) (new-constraint! y2 ‘(propogate-to ,z
g g

[‘((application ,result ,arg) . (lambda ,para ,_ finalvar))

(new-constraint! finalvar ‘(propogate-to ,result))

(new-constraint! arg ‘(propogate-to ,para))]

[- (voud)])))

FiGureE 10 The Set-Based Analysis Algorithm.
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