
Well�Founded Touch
Optimization for Futures

Cormac Flanagan
Matthias Felleisen

Rice COMP TR������

October ����

Department of Computer Science
Rice University
P�O� Box ����
Houston� TX ����������



Copyright c����	 by

Cormac Flanagan and Matthias Felleisen



Well�Founded Touch Optimization for Futures

Cormac Flanagan� Matthias Felleisen�

Department of Computer Science�

Rice University�

Houston� TX ����������

Abstract

The future annotations of MultiLisp provide a simple method for taming the implicit par�
allelism of functional programs� but require touch operations within all placeholder�strict prim�
itives to ensure proper synchronization between threads� These touch operations contribute
substantially to program execution times� We use an operational semantics of future devel�
oped in a previous paper to derive a program analysis algorithm and an optimization algorithm
based on the analysis that removes provably�redundant touch operations�Experiments with the
Gambit compiler indicate that this optimization substantially reduces program execution times�

�Supported in part by NSF grant CCR �������� and a sabbatical at Carnegie Mellon University�



Contents

� Futures� Touches and Transparency �

� Review� The Language and Its Parallel Semantics �

� Touch Optimization �


�� Non�touching Primitives � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�� The Touch Optimization Algorithm � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Set�Based Analysis for Futures �
	�� Deriving Set Constraints for Program Variables � � � � � � � � � � � � � � � � � � � � � ��
	�� Soundness of the Set Constraints � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��
	�
 From Set Constraints to Set�Based Analysis � � � � � � � � � � � � � � � � � � � � � � � ��
	�	 Solving the Set Constraints � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Experimental Results �	


 Related Work ��

	 Conclusion ��

A Correctness Proof for Abstract Representation ��

B Set Based Analysis Algorithm ��



November ��� ���� � �� � �� DRAFT �

� Futures� Touches and Transparency

Programs in functional languages oer numerous opportunities for executing program components
in parallel� In a call�by�value language� for example� the evaluation of every function application
could spawn a parallel thread for each argument expression� However� if such a strategy were applied
indiscriminately� the execution of a program would generate far too many parallel threads� The
overhead of managing these threads would clearly outweigh any bene�ts from parallel execution�

The future annotations of MultiLisp and its Scheme successors ��� �� provide a simple method
for taming the implicit parallelism of functional programs� If a programmer believes that the par�
allel evaluation of some expression outweighs the overhead of creating a separate task� he may
annotate the expression with the keyword future� An annotated functional program has the same
observable behavior as the original program� but the run�time system may choose to evaluate the
future expression in parallel to the rest of the program� If it does� the evaluation will proceed as
if the annotated expression had immediately returned� Instead of a proper value though� it returns
a placeholder� which contains enough information for retrieving the actual result of the annotated
expression when needed� When a program operation requires speci�c knowledge about the value
of some subcomputation but �nds a placeholder� the run�time system performs a touch opera�
tion� which synchronizes the appropriate parallel threads� and eventually retrieves the necessary
information�

The standard way of implementing touch operations on placeholders requires a modi�cation
of all program operations that need to know speci�c aspects of values� For example� procedure
application must know that the value of the �rst sub�expression is a procedure� an if�expression
demands a proper value in the test position� not only a placeholder� and� addition can only add
its inputs if they are numbers� Hence� these operations must be modi�ed so that they �rst check
whether the appropriate arguments are placeholders or proper values and must possibly perform
some synchronization�

Past research on futures has concentrated on the e�cient implementation of the underlying task
creation ��� �	� ��� ��� ��� and on the extension of the concept to higher�order control constructs ����
�
�� Little eort has gone into the development of a semantic characterization of the idea or the
use of such a semantic framework for the optimization of task creation or coordination� In contrast�
the driving force behind our eort is the desire to develop semantically well�founded optimizations
for the execution of futures� The speci�c example we choose to consider is the development of an
algorithm that safely eliminates as many touch operations as possible� Other optimizations will be
the subject of future eorts�

In a previous paper ���� we developed a series of semantics for an idealized functional language
with future� The last semantics is particularly suited to the develelopment of analysis and opti�
mization algorithms� since it exposes appropriate details regarding program executions� We now use
that semantics to derive a program analysis algorithm� and a provably�correct touch optimization
algorithm based on the analysis� An implementation of the optimization on the Gambit Scheme
compiler ��� produced signi�cant speedups on a standard set of benchmarks� We believe that this
development can be extended to larger languages and other implementation techniques�

The presentation of our results proceeds as follows� The second section introduces a sim�
ple� functional language with futures� and recalls the low�level parallel abstract machine for the
language ���� The third section discusses the cost of touch operations and presents a provably cor�
rect algorithm for eliminating unnecessary touch operations� The latter is based on the set�based
analysis algorithm of the fourth section� The �fth section describes the implementation of these
algorithms on the Gambit compiler and compares the modi�ed compiler to the original compiler
on a standard set of benchmarks� The sixth section discusses related work�



November ��� ���� � �� � �� DRAFT �

� Review� The Language and Its Parallel Semantics

Given the goal of developing a semantics that is useful for proving the soundness of optimizations�
we develop the de�nitional semantics for futures for an intermediate representation of an idealized
functional language� Speci�cally� we use the subset of A�normal forms ��� of an extended ��calcu�
lus�like language that includes conditionals and a future construct� see Figure ��

M � �a ��� x �Terms�
j �let �x V � M �
j �let �x �futureM �� M �
j �let �x �car y�� M �
j �let �x �cdr y�� M �
j �let �x �if y M M �� M �
j �let �x �apply y z�� M �

V � Value ��� c j x j ��x�M � j �cons x y� �Values�

x � Vars � fx� y� z� � � �g �Variables�

c � Const � ftrue� false� �� 	� � � �g �Constants�

Figure � The A�normalized Language �a

In a previous paper ���� we developed a series of abstract machines� each specifying the semantics
of futures at a dierent level of abstraction� The last of these machines� called the P �CEK��
machine� is particularly suited to the development of program analyses� since contains explicit
binding information relating program variables to their values� The machine is also suited to the
development of a touch optimization algorithm� since it exposes the use of explicit placeholder
objects and performs touch operations on these objects� We use this machine� de�ned in Figures �
and 
� as the basis for the development of this paper�

Notation We use the following notations throughout the paper� P denotes the power�set con�
structor� f � A �� B denotes that f is a total function from A to B� f � A ��p B denotes that f
is a partial function from A to B� M � P denotes that the term M occurs in the program P � and
har� x�M�Ei refers to either a normal activation record har x�M�Ei or a tagged activation record
hary x�M�Ei�

� Touch Optimization

The P �CEK��machine performs touch operations on arguments in placeholder�strict positions of all �rst
mention of
ph�strict

program operations� These implicit touch operations guarantee the transparency of placeholders�
which makes future�based parallelism so convenient to use� Unfortunately� these compiler�inserted
touch operations impose a signi�cant overhead on the execution of annotated programs� For ex�
ample� an annotated doubly�recursive version of �b performs ��
 million touch operations during
the computation of ��b ����

Due to the dynamic typing of Scheme� the cost of each touch operation depends on the program
operation that invoked it� If a program operation already performs a type dispatch to ensure that



November ��� ���� � �� � �� DRAFT 


Evaluator�

evalpcek � ��
a �� Answers � ferror��g

evalpcek�P � �

����
���

unloadpcek
E�x�� if hP� �� �i ����

pcek hx�E� �i
error if hP� �� �i ����

pcek error

� if �i � N �Si � Statepcek� ni�mi � N such that
mi � �� S� � hP� �� �i and Si ���

ni�mi

pcek Si��

Data Speci�cations�

S � Statepcek ��� hM�E�Ki j error�f�let �p S� S� �States�
M � �a �A�nf Language�
E � Envpcek ��� Vars ��p Valuepcek �Environments�
V � Valuepcek ��� PValuepcek j Ph�Obj pcek �Run�Time Values�
W � PValuepcek ��� c j x j Clpcek j Pairpcek �Proper Values�

Clpcek ��� h��x�M �� Ei �Closures�
Pairpcek ��� �cons V V � �Pairs�
Ph�Obj pcek ��� hph p 	i j hph p V i �Placeholder Values�

K � Contpcek ��� � j har x�M�Ei�K j hary x�M�Ei�K �Continuations�
F � FinalStatepcek ��� hx�E� �i j error �Final States�
A � Answers ��� c j procedure j �cons A A� �Answers�

Auxiliary Functions�

unloadpcek � Value
�
pcek �� Answers

unloadpcek
c� � c

unloadpcek
h��x�M �� Ei� � procedure

unloadpcek
�cons V� V��� � �cons V �
� V �

��
where V �

i � unloadpcek
Vi�
unloadpcek
hph p V i� � unloadpcek
V �

touchpcek � Valuepcek �� PValuepcek � f	g
touchpcek
hph p 	i� � 	
touchpcek
hph p V i� � touchpcek
V �

touchpcek
W � � W

Placeholder Substitution S
p �� V ��

M 
p �� V � � M with all occurrences of hph p 	i updated to hph p V i

�f�let �p� S�� S��
p �� V � �

�
�f�let �p� S�
p �� V �� S�� if p � p�

�f�let �p� S�
p �� V �� S�
p �� V �� if p 
� p�

Figure � The P �CEK��machine� Evaluator and Data Speci�cations

its arguments have the appropriate type� e�g�� car� cdr� apply� etc� then a touch operation is free�
Put dierently� an implementation of �car x� in pseudo�code is�

�if �pair� x� �unchecked�car x�
�error �car �Not a pair���

Extending the semantics of car to perform a touch operation on placeholders is simple�

�if �pair� x� �unchecked�car x�
�let ��y �touch x��� �if �pair� y� �unchecked�car y� �error �car �Not a pair�����

The touching version of car incurs an additional overhead only in the error case or when x is a
placeholder� For the interesting case when x is a pair� no overhead is incurred� Since the vast



November ��� ���� � �� � �� DRAFT 	

Transition Rules�
h�let �x c� M �� E�Ki ������

pcek hM�E
x� c��Ki �bind�const �

h�let �x y� M �� E�Ki ������
pcek hM�E
x� E�y���Ki �bind�var �

h�let �x ��y�N �� M �� E�Ki ������
pcek hM�E
x� h��y�N �� Ei��Ki �bind�lam�

h�let �x �cons y z�� M �� E�Ki ������
pcek hM�E
x� �cons E�y� E�z����Ki �bind�cons �

hx�E� har y�M�E�i�Ki ������
pcek hM�E�
y � E�x���Ki �return�

h�let �x �car y�� M �� E�Ki ������

pcek�
hM�E
x� V���Ki if touchpcek
E�y�� � �cons V� V��
error if touchpcek
E�y�� 
� Pairpcek � f	g

�car �

h�let �x �cdr y�� M �� E�Ki ������
pcek analogous to car �cdr �

h�let �x �if y M� M��� M �� E�Ki ������

pcek�
hM�� E� har x�M�Ei�Ki if touchpcek
E�y�� 
� ffalse� 	g
hM�� E� har x�M�Ei�Ki if touchpcek
E�y�� � false

�if �

h�let �x �apply y z�� M �� E�Ki ������
pcek�

hN�E�
x� � E�z��� har x�M�Ei�Ki if touchpcek
E�y�� � h��x�� N �� E�i
error if touchpcek
E�y�� 
� Clpcek � f	g

�apply�

h�let �x �futureN �� M �� E�Ki ������
pcek hN�E� hary x�M�Ei�Ki �future�

hx�E� hary y�M�E�i�Ki ������
pcek hM�E�
y � E�x���Ki �future�id�

hM�E�K��hary x�N�E�i�K�i ������

pcek

�f�let �p hM�E�K�i� hN�E�
x� hph p 	i��K�i� p 
� FP �E�� � FP �K�� �fork�

�f�let �p hx�E� �i� S� ������
pcek S
p �� E�x�� �join�

�f�let �p error� S� ������
pcek error �join�error�

�f�let �p� �f�let �p� S�� S��� S�� ������
pcek �f�let �p� S�� �f�let �p� S�� S��� �lift�

p� 
� FP �S��

�f�let �p S�� S�� ���a�c�b
pcek �f�let �p S�

�� S
�

�� �parallel�

if S� ���
a�b
pcek S

�
� ���

c�d
pcek S

�
�

S ������

pcek S �re�exive�

S ���a�c�b�d
pcek S�� �transitive�

if S ���a�b
pcek S

�� S� ���c�d
pcek S

��� a� c � �

Figure � The P �CEK��machine� Transition Rules



November ��� ���� � �� � �� DRAFT �

majority of Scheme operations already perform a type�dispatch on their arguments�� the overhead
of performing implicit touch operations appears to be acceptable at �rst glance�

Unfortunately� a standard technique for increasing execution speed in Scheme systems is to dis�
able type�checking typically based on informal correctness arguments or based on type veri�ers for
the underlying sequential language ����� When type�checking is disabled� most program operations
do not perform a type�dispatch on their arguments� Under these circumstances� the source code
�car x� translates to the pseudo�code�

�unchecked�car x�

Extending the semantics of car to perform a touch operation on placeholders is now quite expensive�
since it then performs an additional check on every invocation�

�if �placeholder� x� �unchecked�car �touch x�� �unchecked�car x��

Performing these placeholder� checks can add a signi�cant overhead to the execution time� Kranz ����
and Feeley ��� estimated this cost at nearly ���� of the �sequential� execution time� and our ex�
periments con�rm these results �see below��

The classical solution for avoiding this overhead is to provide a compiler switch that disables
the automatic insertion of touches� and a touch primitive so that programmers can insert touch
operations explicitly where needed ��� ��� ���� We believe that this solution is �awed for several
reasons� First� it clearly destroys the transparent character of future annotations� Instead of an
annotation that only aects executions on some machines� future is now a task creation construct
and touch is a synchronization tool� Second� to use this solution safely� the programmer must know
where placeholders can appear instead of regular values and must add touch operations at these
places in the program� In contrast to the addition of future annotations� the placement of touch
operations is far more di�cult� while the former requires a prediction concerning computational
intensity� the latter demands a full understanding of the data �ow properties of the program� Since
we believe that an accurate prediction of data �ow by the programmer is only possible for small
programs� we reject this traditional solution�

A better approach than explicit touches is for the compiler to use information provided by
a data��ow analysis of the program to remove unnecessary touches wherever possible� This ap�
proach substantially reduces the overhead of touch operations without sacri�cing the simplicity or
transparency of future annotations�

��� Non�touching Primitives

The current language does not provide primitives that do not touch arguments in placeholder�strict
positions� To express and verify an algorithm that replaces touching primitives by non�touching
primitives� we extend the language �a with non�touching forms of the placeholder�strict primitive
operations� denoted car� cdr� if and apply� respectively�

M ��� � � �

j �let �x �car y�� M�
j �let �x �cdr y�� M�
j �let �x �if y M M�� M�
j �let �x �apply y z�� M�

�Two notable exceptions are if� which does not perform a type�dispatch on the value of the test expression� and the
equality predicate eq�� which is typically implemented as a pointer comparison�



November ��� ���� � �� � �� DRAFT �

As their name indicates� a non�touching operation behaves in the same manner as the original
version as long as its argument in the placeholder�strict position is not a placeholder� If the
argument is a place�holder� the behavior of the non�touching variant is unde�ned� The extended
language is called �a�

We de�ne the semantics of the extended language �a by extending the P �CEK��machine with
the additional transition rules described in Figure 	� The evaluator for the extended language�
evalpcek � is de�ned in the usual way �cmp� Figures � and 
�� Unlike evalpcek � the evaluator evalpcek
is no longer a function� There are programs in �a for which the evaluator evalpcek can either
return a value or can be unspeci�ed because of the application of a non�touching operation to a
placeholder� Still� the two evaluators clearly agree on programs in �a�

Lemma ��� For P � �a� evalpcek�P � � evalpcek�P ��

��� The Touch Optimization Algorithm

The goal of touch optimization is to replace the touching operations car� cdr� if and apply by the
corresponding non�touching operation whenever possible� without changing the semantics of pro�
grams� For example� suppose that a program contains �let �x �car y��M� and we can prove that y is
never bound to a placeholder� Then we can replace the expression by the form �let �x �car y��M��
which the machine can execute more e�ciently without performing a test for placeholdership on y�

This optimization technique relies on a detailed data��ow analysis of the program that deter�
mines a conservative approximation to the set of run�time values for each variable� More speci�cally�
we assume that the analysis returns a valid set environment � which is a table mapping program
variables to a set of run�time values� that subsumes the set of values associated with that variable
during an execution�

Denition ���� �Set environments� E j� E� S j� E� P j� E� Let P be a program and let VarsP
be the set of variables occurring in P �

� A mapping E � VarsP � P�Valuepcek� is a set environment for P �

� E j� E �read E validates E� if for all x � dom�E�� E�x� � E�x��

� The relation S j� E �read S validates E� is de�ned inductively�

� hM�E�Ki j� E if E j� E �

� �f�let �p S�� S�� j� E if S� j� E and S� j� E �

� P j� E �read P validates E� if for every state S such that hP� �� �i ����

pcek S� S j� E �

The basic idea behind touch optimization is now easy to explain� If a valid set environment
shows that the argument of a touching version of car� cdr� if or apply can never be a placeholder�
the optimization algorithm replaces the operation with its non�touching version� The optimization
algorithm T � parameterized over a valid set environment E � is de�ned in Figure ��

The function sba� described in the next section� always returns a valid set environment for
a program� Assuming the correctness of of set�based analysis� the touch optimization algorithm
preserves the meaning of programs� For every transition step of a source program P there exists a
corresponding transition step for the optimized program T �P ��

�Or a least a representation of this set that provides the appropriate information�



November ��� ���� � �� � �� DRAFT �

h�let �x �car y�� M �� E�Ki ������
pcek

��
�

hM�E
x� V���Ki if E�y� � �cons V� V��
unspeci�ed if E�y� � Ph�Obj pcek
error otherwise

�car�

h�let �x �cdr y�� M �� E�Ki ������
pcek analogous to car �cdr�

h�let �x �if y M� M��� M �� E�Ki ������

pcek

��
�

hM�� E� har x�M�Ei�Ki if E�y� � false

unspeci�ed if E�y� � Ph�Obj pcek
hM�� E� har x�M�Ei�Ki otherwise

�if �

h�let �x �apply y z�� M �� E�Ki ������

pcek

����
���

hN�E�
x� � E�z���
har x�M�Ei�Ki

if E�y� � h��x�� N �� E�i

unspeci�ed if E�y� � Ph�Obj pcek
error otherwise

�apply�

Figure � Non�touching transition rules

TE � �a���a

TE 
x� � x

TE 
�let �x c� M �� � �let �x c� TE 
M ��
TE 
�let �x y� M �� � �let �x y� TE 
M ��

TE 
�let �x ��y�N �� M �� � �let �x ��y� TE �N ��� TE 
M ��
TE 
�let �x �cons y z�� M �� � �let �x �cons y z�� TE 
M ��
TE 
�let �x �futureN �� M �� � �let �x �future TE 
N ��� TE 
M ��

TE 
�let �x �car y�� M �� �

�
�let �x �car y�� TE 
M �� if E�y� � PValuepcek
�let �x �car y�� TE 
M �� if E�y� 
� PValuepcek

TE 
�let �x �cdr y�� M �� � analogous to car

TE 
�let �x �if y M� M��� M �� �

�
�let �x �if y M� M��� TE 
M �� if E�y� � PValuepcek
�let �x �if y M� M��� TE 
M �� if E�y� 
� PValuepcek

TE 
�let �x �apply y z�� M �� �

�
�let �x �apply y z�� TE 
M �� if E�y� � PValuepcek
�let �x �apply y z�� TE 
M �� if E�y� 
� PValuepcek

Figure � The touch optimization algorithm T

Lemma ��� �Step Correspondence� Let P be a program with E � sba�P �� and let S be a state

for which E is valid� could use
any valid E

�� Suppose S ���n�m
pcek S

�� Then TE�S� ���
n�m
pcek TE�S

���

�� Suppose TE�S� ���
n�m
pcek S

��� Then S ���n�m
pcek S

� where TE�S�� � S���

Proof� We prove the �rst part by induction on n and by case analysis of S ���n�m
pcek S

��



November ��� ���� � �� � �� DRAFT �

� We �rst consider the case where S ������
pcek S

� via the transition rule car � Then
S � h�let �x �car y�� M�� E�Ki� There are four sub�cases to consider� depending
on whether or not TE�y� contains placeholders and whether or not E�y� is a pair�

� Suppose if E�y� �� PValuepcek and touchpcek �E�y�� � �cons V� V��� Then�

S� � hM�E�x	 V��� Ki

TE�S� � h�let �x �car y�� TE�M��� TE�E�� TE�K�i

touch�TE�E��y�� � �cons TE�V�� TE�V���

TE�S
�� � hTE�M�� TE�E�x

� 	 V���� TE�K�i

Hence TE�S� ���
���
pcek TE�S

�� via the rule car �

� Suppose if E�y� �� PValuepcek and touchpcek �E�y�� �� Pairpcek 
 f�g� Then�

S� � herror� �� �i

TE�S� � h�let �x �car y�� TE�M��� TE�E�� TE�K�i

touchpcek �TE�E��y�� �� Pairpcek 
 f�g

TE�S
�� � herror� �� �i

Hence TE�S� ���
���
pcek TE�S

�� via the rule car �

� Suppose if E�y� � PValuepcek and touchpcek �E�y�� � �cons V� V��� Then

S� � hM�E�x	 V��� Ki

TE�S� � h�let �x �car y�� TE�M��� TE�E�� TE�K�i

E�y� � �cons V� V��

TE�E��y� � �cons TE�V�� TE�V���

TE�S
�� � hTE�M�� TE�E�x

� 	 V���� TE�K�i

Hence if E�y� � PValuepcek via the rule car�

� Finally� suppose E�y� � PValuepcek and touchpcek �E�y�� �� Pairpcek 
 f�g�
Then

E�y�� �� Pairpcek 
 f�g

S� � herror� �� �i

TE�S� � h�let �x �car y�� TE�M��� TE�E�� TE�K�i

TE�E��y� �� Pairpcek 
 f�g

TE�S
�� � herror� �� �i

Hence TE�S� ���
���
pcek TE�S

�� via the rule car�

Hence if S ������
pcek S

� via the rule car � then TE�S� ���
���
pcek TE�S

�� via one of the rules
car or car�

� The other cases are similar�

The second part of the proof proceeds in a similar manner by induction on n and by
case analysis of TE�S� ���

n�m
pcek S

���



November ��� ���� � �� � �� DRAFT �

� Consider the case where TE�S� ���pcek S
�� via the transition rule car�

TE�S� � h�let �x �car y�� TE�M��� TE�E�� TE�K�i

S � h�let �x �car y�� M�� E�Ki by the de�nition of TE

E�y� � PValuepcek

� Suppose that TE�E��y� � �cons TE�V�� TE�V���� Then

S�� � hTE�M�� TE�E��x	 TE�V���� TE�K�i

E�y� � �cons V� V��

S� � hM�E�x	 V��� Ki

Hence S ������
pcek S

� via the rule car � and TE�S
�� � S���

� Alternatively suppose that TE�E��y� �� Pairpcek � Then

touchpcek�E�y�� �� Pairpcek 
 f�g

S�� � herror� �� �i

S� � herror� �� �i

Hence S ������
pcek S

� via the rule car � and TE�S
�� � S���

� The other cases are similar�

The Step Correspondence Lemma implies that a touch optimized program exhibits the same
behavior as the corresponding unoptimized program�

Theorem ��� For P � ��
a� evalpcek�Tsba�P ��P �� � evalpcek�P ��

Proof� Both the fact that evalpcek is well�de�ned on Tsba�P ��P � and that the equality holds follow
from Lemma 
�
�

In summary� the touch optimization algorithm we present removes redundant touch operations
from programs based on the information provided by set�based analysis� This optimization al�
gorithm is provably�correct with respect to the semantics of future as speci�ed by the extended
evaluator evalpcek � Any implementation that realizes evalpcek correctly can therefore make use of
our optimization technique�

� Set�Based Analysis for Futures

The development of a sound program analysis consists of two parts� First� we use the transition
rules of the P �CEK��machine to derive constraints on the sets of run�time values that a variable
in a given program may assume� Any set environment satisfying these constraints is a valid set
environment� Second� we develop an algorithm for �nding the minimal �i�e�� most accurate� set
environment satisfying these constraints� Our set constraints are similar to the constraints in
Heintze�s work on set�based analysis for SML ����� but our derivation diers from his�



November ��� ���� � �� � �� DRAFT ��

��� Deriving Set Constraints for Program Variables

A set constraint is of the form�
A

B

where A and B are statements concerning E � and A also depends on the program being analyzed�
A set environment E satis�es this constraint if whenever A holds for E � then B also holds for E �

Suppose P is the program of interest� and suppose that the evaluation of P involves the transi�
tion S ���n�m

pcek S
�� We derive constraints on E su�cient to ensure that S� j� E if S j� E � We proceed

by case analysis on the last transition rule used for S ���n�m
pcek S

�� and we present four representative
cases�

� Suppose S ������
pcek

S� via the transition rule �bind�const��

h�let �x c� M�� E�Ki ������
pcek hM�E�x	 c�� Ki

The transition pairs x with the constant c in the extended environment� To ensure that the
set E�x� includes c� we introduce the constraint�

�let �x c� M� � P

c � E�x�
�CP

� �

This constraint requires that for each term of the form �let �x c� M� occurring in P � the
constant c must be recorded in E as one of the possible values of the variable x�

� Suppose S ������
pcek S

� via the transition rule �apply�� In the interesting case� y is bound� either
directly or via a placeholder object� to a closure h��x�� N�� E�i� which implies that�

h�let �x �apply y z�� M�� E�Ki ������
pcek hN�E

��x� 	 E�z��� har x�M�Ei�Ki

Then this rule binds x� to the value E�z�� To ensure that E accounts for the binding of x� to
E�z�� we demand that E satisfy the constraint�

�let �x �apply y z�� M� � P Vy � E�y�
touchpcek �Vy� � h��x�� N�� Ei V � E�z�

V � E�x��
�CP

� �

� Suppose S ������
pcek S

� via the transition rule �return��

hx�E�� har y�M�Ei�Ki ������
pcek hM�E�y	 E��x��� Ki

To acount for transitions according to �return�� our constraint system must ensure that E�y�
includes the value E��x�� However� a syntax�directed program analysis cannot extract the
possible activation records that may receive the value of the �nal variable in a procedure from
the variable or its immediate context� However� it will determine all potential call sites of the
procedure and can enforce a relationship between the �return� variable of the procedure and
the variable that receives the result of the function call� Thus� if FinalVarN is a function
that determines the innermost ��result�� variable of N � then the crucial constraint on this
variable is as follows�

�let �x �apply y z�� M� � P Vy � E�y�
touchpcek �Vy� � h��x�� N�� Ei V � E�FinalVar�N ��

V � E�x�
�CP

� �

The de�nition of FinalVar is straightforward�



November ��� ���� � �� � �� DRAFT ��

Denition ���� �FinalVar�

FinalVar � �a �� Vars

FinalVar �x� � x

FinalVar��let �x V � M�� � FinalVar �M �
FinalVar��let �x �future N�� M�� � FinalVar �M �

FinalVar��let �x �car y�� M�� � FinalVar �M �
FinalVar ��let �x �cdr y�� M�� � FinalVar �M �

FinalVar ��let �x �if y M� M��� M�� � FinalVar �M �
FinalVar ��let �x �apply y z�� M�� � FinalVar �M �

� The analysis for the transition rules �future�id�� �fork� and �join� is analogous to the above
case� The constraints CP

�� and CP
�� ensure that� for each future expression in the program�

the set environment E accounts for the bindings created by any �future�id�� �fork� or �join�
transitions that correspond to that future expression�

Examining each of the transition rules of the machine in a similar manner results in eleven
program�based set constraints CP

� � � � � � C
P
��� see Figure ��

��� Soundness of the Set Constraints

Proving the soundness of the set constraints requires showing that if a set environment E satis�es
the set constraints with respect to a given program P � then E must be valid for P �

Assume that E satis�es CP
� � � � � � C

P
��� To prove that P j� E � we need to show that hP� �� �i���n�m

pcek

S implies S j� E � The natural approach is to proceed by induction on n� As part of the proof� we
will need to consider intermediate transitions starting from states other than hP� �� �i� Therefore�
we need to strengthen the induction hypothesis to�

S j�P E and S ���n�m
pcek S

� implies S� j�P E

where the relation S j�P E is an appropriately chosen relation� This relation needs to assert a
number of properties about the state S in order to support the proof of the induction hypothesis�

� First� the relation needs to assert that the terms contained in S must occur in P � i�e�� the
evaluation of programs does not involve the creation of new terms�

� Next� the relation needs to assert that S can only contain values and environments that are
compatible with P and E � A value V is compatible with P and E � written V �P E � if each
term in V occurs in P and each environment in V is compatible with P and E � Similarly� an
environment E is compatible with P and E � written E �P E � if each binding in E occurs in E
and each value in E is compatible with P and E �

Denition ���� �V �P E � E �P E�

� The relation V �P E is the smallest relation satisfying the following clauses�

c�P E if c occurs in P

x�P E if x occurs in P

h��x�M�� Ei�P E if ��x�M� � P and E �P E
�cons V� V���P E if V� �P E and V� �P E

hph p �i �P E
hph p V i �P E if V �P E



November ��� ���� � �� � �� DRAFT ��

�let �x c� M � � P

c � E�x�
�CP

� �

�let �x y� M � � P V � E�y�

V � E�x�
�CP

� �

�let �x ��y�N �� M � � P �x � dom�E�� E�x� � E�x�

h��y�N �� Ei � E�x�
�CP

� �

�let �x �cons y� y��� M � � P V� � E�y�� V� � E�y��

�cons V� V�� � E�x�
�CP

� �

�let �x �car y�� M � � P Vy � E�y� touchpcek
Vy� � �cons V� V��

V� � E�x�
�CP

� �

�let �x �cdr y�� M � � P Vy � E�y� touchpcek
Vy� � �cons V� V��

V� � E�x�
�CP

� �

�let �x �apply y z�� M � � P Vy � E�y�
touchpcek
Vy� � h��x�� N �� Ei V � E�z�

V � E�x��
�CP

� �

�let �x �apply y z�� M � � P Vy � E�y�
touchpcek
Vy� � h��x�� N �� Ei V � E�FinalVar 
N ��

V � E�x�
�CP

	 �

�let �x �if y M� M��� M � � P V � E�FinalVar 
M��� � E�FinalVar 
M���

V � E�x�
�CP


 �

�let �x �future N �� M � � P VN � E�FinalVar 
N ��

VN � E�x� hph p VN i � E�x�
�CP

���

�let �x �futureN �� M � � P

hph p 	i � E�x�
�CP

���

Figure 
 Set Constraints on E with respect to P �

� E �P E holds if for all x � dom�E�� E�x� � E�x� and E�x��P E �

� The relation must also assert that E already contains the bindings that could be created
during a subsequent �return� transition to an existing activation record� This requirement
is necessary to support the induction hypothesis in the case of a �return� transition� It is
enforced by CP

� �

� Similarly� the relation must assert that E already contains the bindings that could be created
during a subsequent �future�id� or �join� transition� The formalization of this assertion refers
to the auxiliary function ResultVar � The result of any state S will be the potential values of
the variable ResultVar �S�� where ResultVar is the following function from states to variables�



November ��� ���� � �� � �� DRAFT �


Denition ���� �ResultVar�

ResultVar � Statepcek �� Vars

ResultVar �hM�E� �i� � FinalVar�M �
ResultVar �hM�E�K�har� x�N�E�ii� � FinalVar�N �

ResultVar ��f�let �p S�� S��� � ResultVar �S��

� Finally� to allow for error transitions� the relation must hold for the error state error�

The complete relation relation� which asserts all of the above properties� is de�ned by induction
on the structure of states�

Denition ���� �S j�P E�

�f�let �p S�� S�� j�P E 

�
S� j�P E � S� j�P E
and �V � E�ResultVar�S���� S��p �� V � j�P E

hM�E�Ki j�P E 

��������������
�������������

M � P�E �P E
and K � har� x��M�� E�i� � � � �har� xn�Mn� Eni
and xi � P�Mi � P�Ei �P E for � � i � n

and E��nal�var�Mi�� � E�xi��� for � � i � n

and E��nal�var�M�� � E�x�� if n � �
and if K � K��hary x�M�Ei�K� then

�p � Ph�Vars� hph p �i � E�x� and
�V � E�ResultVar�hM�E�K�i��� hph p V i � E�x�

error j�P E

The invariant relation is a stronger relation than the validates relation� i�e�� if a states satis�es
the invariant relation for a set environment with respect to a given program� then that state
obviously validates the set environment�

Lemma ��� S j�P E implies S j� E

Our chosen invariant relation supports the proof of the induction hypothesis� if the invariant
holds for a given state S� then the invariant also holds for the successors of S�

Lemma ��
 Suppose E satis�es CP
� � � � � � C

P
��� Then S j�P E and S ���n�m

pcek S
� implies S � j�P E�

Proof� By induction on n and by case analysis of the last transition rule for S ���n�m
pcekS

��
We present the cases for the transition rules �car�� �apply� and �return� in detail�

� Suppose S ������
pcek S

� via the transition rule �bind�const�� Then�

S � h�let �x c� M�� E�Ki

S� � hM�E�x	 c�� Ki

Since S j�P E � we know that �let �x c� M� � P � E �P E and the conditions on
K in the de�nition of the invariant are satis�ed� Because E satis�es CP

� � we have
that c � E�x�� Also� by de�nition� c�P E � Therefore E�x	 c��P E � which implies
that S� j�P E �



November ��� ���� � �� � �� DRAFT �	

� Suppose S ������
pcek S

� via the transition rule �apply�� Then�

S � h�let �x �apply y z�� M�� E�Ki

Since the analysis of the error case is trivial� we only consider the case where y is
bound� either directly or via a placeholder object� to a closure h��x�� N�� E�i� In
this case�

touchpcek �E�y�� � h��x�� N�� E�i

S � � hN�E��x� 	 E�z��� har x�M�Ei�Ki

It is easy to see that N � P � To show that the new environment E��x� 	 E�z�� is
compatible with P and E � we proceed as follows�

From the relation S j�P E we know thatE�P E � But E�P E implies thatE�y��P E �
which in turn implies E� �P E � Also� from E �P E we have that E�z� � E�z��
which� since E satis�es CP

� � implies that E�z� � E�x��� Finally� E �P E implies
that E�z��P E � Combining the facts E� �P E � E�z� � E�x�� and E�z��P E � we
have that E ��x� 	 E�z���P E � i�e�� the new environment is compatible with P and
E �

Finally� we must show that the appropriate conditions on the new continuation
har x�M�Ei�K hold� That E�FinalVar�N �� � E�x� follows from CP

� � and the
remaining conditions on the continuation are implied by the relation S j�P E �
Therefore� the invariant holds for S��

� The �nal case we consider is for the transition rule �return�� For this case�

S � hx�E�� har y�M�Ei�Ki

S� � hM�E�y	 E��x��� Ki

ThatM � P follows from the relation S j�P E � To show that the new environment
E�y	 E��x�� is compatible with P and E we proceed as follows�

From the relation S j�P E we know that E� �P E � and hence E��x� �P E � The
invariant also implies that E�x� � E�y�� which in turn implies that E��x� � E�y��
Finally� the invariant implies that E �P E � Putting together the facts E��x� �P

E � E��x� � E�y� and E �P E � we have that E�y 	 E��x�� �P E � i�e�� the new
environment is compatible with P and E �

The required conditions on K follow from the relation S j�P E � Therefore� the
invariant holds for S��

The remaining cases have similar proofs�

Since the invariant trivially holds for the initial state hP� �� �i� it follows that the set constraints are
sound � i�e�� if E satis�es the set constraints relative to P � then E is a valid set environment for P �

Theorem ��	 �Soundness of Constraints� If E satis�es CP
� � � � � � C

P
��� then P j� E�

Proof� Suppose E satis�es CP
� � � � � � C

P
��� Let S be a state such that hP� �� �i ���n�m

pcek S�
By the de�nition of the invariant relation� hP� �� �i j�P E � Therefore Lemma 	�� implies
that S j�P E � and hence by Lemma 	��� S j� E � The latter is true for any state derivable
from the initial state hP� �� �i� hence P j� E �

In summary� any set environment satisfying the set constraints with respect to a program P is
a conservative approximation to the set of bindings created during the execution of P �



November ��� ���� � �� � �� DRAFT ��

��� From Set Constraints to Set�Based Analysis

The class of set environments for a given program P � denoted SetEnvP � forms a complete lattice
under the natural pointwise partial ordering v de�ned by�

E� v E� if and only if �x � VarsP � E��x� � E��x�

Smaller set environments correspond to more accurate approximations� since they include fewer
extraneous potential values per variable� Therefore� we de�ne set�based analysis as a function that
returns the least set environment satisfying the set constraints�

Denition ���� �sba�

sba � �a �� SetEnvP

sba�P � � ufE j E satis�es CP
� � � � � � C

P
��g

The function sba is well�de�ned� Since the set constraints are monotonic� it follows that sba�P �
is a valid set environment for P � Furthermore� a value V is in sba�P ��x� if and only if from the
assumption that a set environment E satis�es CP

� � � � � � C
P
�� we can prove that V � E�x�� All that

remains is to produce an algorithm for calculating sba�P ��

��� Solving the Set Constraints

Since sba�P � typically maps variables to in�nite sets of possible values� we need a �nite represen�
tation for these in�nite sets� A systematic inspection of the set constraints suggests that the set of
closures for a ��expression can be represented by the ��expression itself� that the set of closed pairs
for a cons�expression can be represented by the cons�expression� etc� The actual sets of run�time
values can easily be reconstructed from the representative terms and the set environment� In short�
we can take the set of abstract values for a program P to be�

V � AbsValueP ��� cP j ��x�M�P j �cons x y�P j hph xP i j hph �i

where the constant cP � the ��expression ��x�M�P � the pair �cons x y�P and the variable xP are
all the respective subterms of P � The size of AbsValueP is O�jP j�� where jP j is the length of P �

Abstract values provide a �nite representation for the in�nite set environments encountered in
set�based analysis� Speci�cally� an abstract set environment E is a mapping from variables in P

to �nite sets of abstract values� Each abstract value V in E�x� represents a set of run�time values
V �depending on E� according to the relation V in

E
V � and in a similar manner each set E�x� of

abstract values represents a set of machine values according to the relation V in
E
x�

c in
E
cp

h��x�M�� Ei in
E
��x�M�P  �x � dom�E�� E�x� in

E
x

�cons V� V�� inE
�cons y� y��  Vi inE

yi
hph p V i in

E
hph yP i  V in

E
y

hph p �i in
E
hph �i

V in
E
x  �V � E�x� with V in

E
V



November ��� ���� � �� � �� DRAFT ��

�let �x c� M � � P

cP � E�x�
�CP

�
�

�let �x y� M � � P V � E�y�

V � E�x�
�CP

� �

�let �x ��y�N �� M � � P

��y�N �P � E�x�
�CP

� �

�let �x �cons y� y��� M � � P E�y�� 
� � E�y�� 
� �

�cons y� y��P � E�x�
�CP

� �

�let �x �car y�� M � � P V y � E�y� �cons z� z��P � touch
�
E � V y

�
V � E�z��

V � E�x�
�CP

� �

�let �x �cdr y�� M � � P V y � E�y� �cons z� z��P � touch
�
E � V y

�
V � E�z��

V � E�x�
�CP

� �

�let �x �apply y z�� M � � P V y � E�y�
��x�� N �P � touch

�
E � V y

�
V � E�z�

V � E�x��
�CP

� �

�let �x �apply y z�� M � � P V y � E�y�
��x�� N �P � touch

�
E� V y

�
V � E�FinalVar 
N ��

V � E�x�
�CP

	 �

�let �x �if y M� M��� M � � P V � E�FinalVar 
M��� � E�FinalVar 
M���

V � E�x�
�CP


 �

�let �x �future N �� M � � P V V � E�FinalVar 
N ��

V V � E�x� hph FinalVar 
N �P i � E�x�
�CP

���

�let �x �futureN �� M � � P

hph 	i � E�x�
�CP

���

Auxiliary Function�

touch � AbsEnvP AbsValueP �� P�AbsValueP �

touch
�
E � V

�
�

�
fV g if V � cP or V � ��x�M �P or V � �cons x y�P
fW j U � E�y� and W � touch

�
E � U

�
g if V � hph yP i

Figure 	 Abstract Constraints on E with respect to P �

The class of all abstract set environments for P given program is denoted AbsEnvP � Each abstract
set environment E is a �nite representation of a potentially in�nite set environment� according to
the following function�

F � AbsEnvP �� SetEnvP

F
�
E
	
�x� � fV j V in

E
xg

Reformulating the set constraints from Figure � for abstract set environments produces the
abstract constraints CP

� � � � � � C
P
�� on E with respect to P � see Figure �� We de�ne sba�P � to be the

least abstract set environment satisfying the abstract constraints with respect to P �



November ��� ���� � �� � �� DRAFT ��

Denition ���� �sba�

sba � �a �� AbsEnvP

sba�P � � ufE j E satis�es CP
� � � � � � C

P
��g

Since each of the abstract constraints in monotonic� sba�P � satis�es CP
� � � � � � C

P
��� Furthermore

V � sba�P ��x� if and only if we can prove� based on the assumption that an abstract set environment

E satis�es CP
� � � � � � C

P
��� that V � E�x��

The correspondence between set constraints and abstract constraints implies that sba�P � is a
�nite representation for sba�P ��

Theorem ���� �Correctness of Abstraction� sba�P � � F�sba�P ��

Proof� See Appendix A�

The class of abstract set environments forms a complete lattice of size O�jP j�� under the natural
pointwise partial order� Therefore we can calculate sba�P � in an iterative manner� starting from
the empty abstract set environment E�x� � �� and repeatedly extending E with additional bindings
as required by the set constraints� until E contains all the required bindings� Since we can extend
E at most O�jP j�� times� this algorithm terminates� Furthermore� each time we extend E with a
new binding� calculating the additional bindings implied by that new binding takes at most O�jP j�
time� Hence� the entire algorithm runs in O�jP j�� time� We include an implementation of this
algorithm in Appendix B�

Optimization algorithms can interpret the abstract set environment sba�P � in a straightforward
manner� For example� the query on sba�P � from the touch optimization algorithm�

sba�P ��y� � PValuepcek

is equivalent to the following query on sba�P ��

sba�P ��y� � fcP � ��x�M�P � �cons x y�P g

In a similar manner other queries on sba�P � can easily be reformulated in terms of sba�P ��

� Experimental Results

We extended the Gambit compiler ��� ��� which makes no attempt to remove touch operations
from programs� with a preprocessor that implements the set�based analysis algorithm and the
touch optimization algorithm� The analysis and the optimization algorithm are as described in
the previous sections extended to a su�ciently large subset of functional Scheme�� We used the
extended Gambit compiler to test the eectiveness of touch optimization on the suite of benchmarks
contained in Feeley�s Ph�D� thesis ��� on a GP���� shared�memory multiprocessor ���� Figure �
describes these benchmarks�

Each benchmark was tested on the original compiler �standard� and on the modi�ed compiler
�touch optimized�� The results of the test runs are documented in Figure �� The �rst two columns

�Five of the benchmarks include a small number 	one or two per benchmark
 of explicit touch operations for coordi�
nating side�e�ects� They do not a�ect the validity of the analysis and touch optimization algorithms�



November ��� ���� � �� � �� DRAFT ��

Program Description

fib Computes the �th �bonacci number using a doubly�recursive algorithm�
queens Computes the number of solutions to the n�queens problem� for n � 	��
rantree Traverses a binary tree with ���� nodes�
mm Multiplies two �� by �� matrices of integers�
scan Computes the parallel pre�x sum of a vector of ���� integers�
sum Uses a divide�and�conquer algorithm to sum a vector of ���� integers�
tridiag Solves a tridiagonal system of ���� equations�
allpairs Parallel Floyd�s algorithm� computes shortest path between all pairs in a 		� node graph�
abisort Sorts 	���� integers using the adaptive bitonic sort algorithm�
mst Computes the minimum spanning tree of a 	��� node graph�
qsort Uses a parallel Quicksort algorithm to sort 	��� integers�
poly Computes the square of a �� term polynomial� and evaluates the resulting polynomial�

Figure � Description of the Benchmark Programs

standard touch optimized

Benchmark touches �n � 	� touches �n � 	� speedup over standard ���
count�K� overhead��� count�K� overhead��� n � 	 n � � n � 	�

fib 		� ���� 	 	�� ���� ���� ����
queens 		� �	� �� 	�� ��	 ���� ��	
rantree �� ���� 	� �� ���� ��� ���
mm 	�� 		�� � �	 ���� ���	 ���
scan 	�� 	��� �� ��	 ���	 ���� 	���
sum �� 	���� �� ��	 ���� ���� ���
tridiag �		 		��� � �	 ��	 ��� ���
allpairs ���� 	���� 	� �	 ���� ���� �	
abisort ���	 	���� � �	 �	�� �	�	 ���
mst �� �	�� ��� ��� ���� 	�� �	
qsort �� ���� �� 	��� 	��� �	 �	
poly �� ���� 		 	�� ��� 	�� �	

Figure � Benchmark Results

present the number of touch operations performed during the execution of a benchmark using the
standard compiler �column ��� and the sequential execution overhead of these touch operations
�column ��� To determine the absolute overhead of touch� we also ran the programs on a single
processor after removing all touch operations� The next two columns contain the corresponding
measurements for the touch optimizing compiler� The touch optimization algorithm reduces the
number of touch operations to a small fraction of the original number �column 
�� thus reducing
the average overhead of touch operations from approximately ��� to less than ��� �column 	��

The last three columns show the relative speedup of each benchmark for one� four� and ��



November ��� ���� � �� � �� DRAFT ��

processor con�gurations� respectively� The number compares the running time of the benchmarks
using the standard compiler with the optimizing compiler� As expected� the relative speedup
decreases as the number of processors increases � because the execution time is then dominated
by other factors� such as memory contention and communication costs� For most benchmarks�
the bene�t of our touch optimization is still substantial� producing an average speedup over the
standard compiler of 
�� on four processors� and of ��� on �� processors� The exceptions are
the last three benchmarks� mst� qsort� and poly� However� even Feeley ��� described these as
�poorly parallel� programs� in which the eects of memory contention and communication costs
are especially visible� It is therefore not surprising that our optimizing compiler does not improve
the running time in these cases�

� Related Work

Kranz et al� ��
� ��� brie�y describe a simplistic algorithm for touch optimization based on a �rst�
order type analysis� The algorithm lowers the touch overhead to ��� from ���� in standard
benchmarks� that is� it is signi�cantly less eective than our touch optimization� The paper does
not address the semantics of future or the well�foundedness of the optimizations� Knopp ����
reports the existence of a touch optimization algorithm based on abstract interpretation� His paper
presents neither a semantics nor the abstract interpretation� He only reports the reduction of static
counts of touch operations for an implementation of Common Lisp with future� Neither paper
gives an indication concerning the expense of the analysis algorithms�	

At LFP ��	� Jaganathan and Weeks ���� described an analysis for explicitly parallel symbolic
programs� which they intend to use in a forthcoming compiler� They remark that the analysis could
be used for touch optimizations� Their semantics and their derivation of the analysis signi�cantly
dier from ours so that we have not been able to compare the two analyses in detail� They do not
have an implementation of their algorithm for a full language like functional Scheme� and they do
not have optimization algorithms that exploit the results of their analysis�

Much work has been done on the static analysis of sequential programs� including abstract
interpretation �
� and �CFA ��	�� Our analysis is most closely follows Heintze�s work on set�based
analysis for the sequential language ML ����� but the extension of this technique to parallel languages
requires a substantial reformulation of the derivation and correctness proof� Speci�cally� Heintze
uses the �natural� semantics framework to de�ne a set�based �natural� semantics� from which he
reads o �safeness� conditions on set environments� He then presents set constraints whose solution
is the minimal safe set environment� We start from an parallel abstract machine and avoid these
intermediate steps by deriving our set constraints and proving their correctness directly from the
abstract machine semantics�

Other techniques for static analysis of sequential programs include abstract interpretation �
�
	� and Shivers� �CFA ��	�� The relationship between abstract interpretation and set�based analysis
was covered by Heintze �����

Sequential optimization techniques such as tagging optimization ���� and soft�typing ���� are
similar in character to touch optimization� Both techniques remove the type�dispatches required
for dynamic type�checking wherever possible� without changing the behavior of programs� in the
same fashion as we remove touch operations� However� the analyses relies on conventional type
inference techniques�

�Ito�s group Ito� personal communication� April ��� ����� reports an attempt at touch optimization based on abstract
interpretation� His group abandoned the e�ort due to the exponential cost of the abstract interpretation algorithm�



November ��� ���� � �� � �� DRAFT ��

	 Conclusion

The development of a semantics for futures directly leads to the derivation of a powerful program
analysis� The analysis is computationally inexpensive but yields enough information to eliminate
numerous implicit touch operations� We believe that the construction of this simple touch opti�
mization algorithm clearly illustrates how semantics can contribute to the development of advanced
compilers� We intend to use our semantic characterization for the derivation of other program op�
timizations in Gambit and for the design of truly transparent future annotations for languages
with imperative constructs�

Acknowledgments We thank Marc Feeley for discussions concerning touch optimizations and
for his assistance in testing the eectiveness of our algorithm� and Nevin Heintze for discussions on
set�based analysis and for access to his implementation of set based analysis for ML�

A Correctness Proof for Abstract Representation

We use inP as shorthand for in
sba�P �

�

Theorem ���� �Correctness of Abstraction� F
�
sba�P �

	
� sba�P �

Proof� We show the equivalence of sba�P � and F
�
sba�P �

	
by proving the set inclusion

in both directions� Let x be a variable in VarsP � Then�

V � F
�
sba�P �

	
�x�

� V inP x by de�nition of F

� V � sba�P ��x� by Lemma A��

Also�

V � sba�P ��x�

� �V � sba�P ��x� with V inP V by Lemma A�


� V inP x

� V � F
�
sba�P �

	
�x� by de�nition of F

Hence F
�
sba�P �

	
� sba�P ��

Lemma A�� �sba includes sba� V inP x implies V � sba�P ��x��

Proof� Assume that V inP x� Then there exists V � sba�P ��x� with V inP V � Hence
there must be a proof� based on the assumption that sba�P � satis�es the abstract
constraints� that proves V � sba�P ��x�� We proceed by lexicographic induction on the
size of V and on the length of this proof� and by case analysis on the last abstract
constraint used in the proof�

CP
� Suppose V � sba�P ��x� via constraint CP

� � Then V � cP � V � c and �let �x c�M�
occurs in P � and hence by CP

� we have that V � sba�P ��x��



November ��� ���� � �� � �� DRAFT ��

CP
� Suppose V � sba�P ��x� via constraint CP

� � Then �let �x y� M� occurs in P � Also�
V � sba�P ��y� via a shorter proof� so by induction we have V � sba�P ��y�� Using
constraint CP

� gives us V � sba�P ��x��

CP
� Suppose V � sba�P ��x� via constraint CP

� � Then �let �x ��y�N��M� occurs in P �
V � ��y�M�P and V � h��y�N��Ei where for each z � dom�E�� E�z� inP z� Each
E�z� is smaller than V � therefore by induction we have that for each z � dom�E��
E�z� � sba�P ��z�� Using constraint CP

� then shows that V � sba�P ��x��

CP
	 Suppose V � sba�P ��x� via constraint CP

	 � Then �let �x �cons y� y��� M� occurs
in P � V � �cons y� y��P and V � �cons V� V�� where Vi inP yi� Each Vi is smaller
than V � therefore by induction we have that Vi � sba�P ��yi�� Using constraint C

P
	

then shows that V � sba�P ��x��

CP

 Suppose V � sba�P ��x� via constraint CP


 � Then �let �x �car y�� M� occurs in
P � We �rst with the case where V y is not an abstract placeholder� In this case
V y � �cons z� z��P and V y � sba�P ��y� via a shorter proof� By Lemma A��� there
exists V � inP �cons z� z��P � therefore there exists V� inP z�� Since V inP V and V �
sba�z��� �cons V V�� inP �cons z� z��� By induction we have that �cons V V�� �
sba�P ��y�� and �nally CP


 implies that V � sba�P ��x��

The case where V y is an abstract placeholder follows by a similar argument�

CP
� The analysis for the constraint CP

� is similar to the previous case�

CP
� Suppose V � sba�P ��x�� via constraint CP

� � Again� we �rst with the case where
V y is not an abstract placeholder� In this case ��x�� N�P � sba�P ��y� and V �
sba�P ��z� via shorter proofs� Since h��x�� N�� �i inP ��x�� N�P � by induction we
have that h��x�� N�� �i � sba�P ��y�� and that V � sba�P ��z�� An application of
CP
� proves that V � sba�P ��x���

The case where V y is an abstract placeholder follows by a similar argument�

CP
� The analysis for the constraint CP

� is similar to the previous case�

CP
� � C

P
�� The analysis for the constraint CP

� and the left implication of CP
�� is similar to the

analysis for CP
� �

CP
�� Suppose V � sba�P ��x� via the right implication of constraint CP

��� where V �
hph FinalVar�N �i and V inP hph FinalVar �N �i� Then V � hph p VN iwhere VN inP FinalVar�N ��
By induction� VN � sba�P ��FinalVar �N ��� Hence the constraint CP

�� implies that
V � sba�P ��x��

CP
�� The analysis for the constraint CP

�� is trivial�

Lemma A�� �Non�emptiness of abstract values� V � sba�P ��x� implies there exists V inP V �

Proof� The proof is by induction on the length of the proof that V � sba�P ��x�� We
proceed by case analysis on the last constraint used in the proof�

CP
� Suppose V � sba�P ��x� via constraint CP

� � Then V � cP � and c inP V �

CP
� Suppose V � sba�P ��x� via constraint CP

� � Then V � sba�P ��y� via a shorter
proof� and the lemma holds by induction�



November ��� ���� � �� � �� DRAFT ��

CP
� Suppose V � sba�P ��x� via constraint CP

� � Then V � ��y�M�P and hence
h��y�M�� �i inP V �

CP
	 Suppose V � sba�P ��x� via constraint CP

	 � Then V � �cons y� y��P � and V i �
sba�P ��yi�� for some Vi� i � �� �� via shorter proofs� Therefore by induction� there
exists Vi inP V i� and hence �cons V� V�� inP V �

� The analysis of the constraints CP

 � C

P
� � C

P
� � C

P
� � C

P
� and the left implication of

CP
�� is similar to the analysis for CP

� �

CP
�� Suppose hph FinalVar�N �i � sba�P ��x� via constraint CP

��� Then we have V N �
sba�P ��FinalVar�N �� via a shorter proof� so by induction there exists V inP V N �
Hence we have that hph p V i in

E
hph FinalVar�N �i�

Lemma A�� �sba includes sba� V � sba�P ��x� implies there exists V � sba�P ��x� with V inP V �

Proof� Assume that V � sba�P ��x�� Then there exists a proof� based on the assumption
that sba�P � satis�es the set constraints� that proves that V � sba�P ��x�� We proceed
by induction on the length of this proof� and by case analysis on the last step in the
proof�

CP
� We take V � cP � and the lemma holds�

CP
� For this case V � sba�P ��y� via a shorter proof� so by induction there exists

V � sba�P ��y� with V inP V � Then CP
� implies that V � sba�P ��x��

CP
� In this case� V � h��y�N�� Ei� and for each zi � dom�E�� E�zi� � sba�P ��zi�

via shorter proofs� Therefore� there exist V i such that V i � sba�P ��zi� and

E�zi� inP V i� Now take V � ��y�N�P � then by CP
� we have V � sba�P ��x��

and h��y�N��EiinP V �

CP
	 In this case� V � �cons V� V��� and Vi � sba�P ��yi� via shorter proofs� Therefore�

there exist V i � sba�P ��yi� with Vi inP V i� Now take V � �cons y� y��� then by

CP
	 we have that V � sba�P ��x��

CP

 Suppose V� � sba�P ��x� via constraint CP


 � For simplicity� we consider only the
case where Vy is not a placeholder� since the case involving placeholder is similar
but more complicated�

Thus Vy � �cons V� V�� � sba�P ��y� via a shorter proof� By induction there
exists V y such that V y � sba�P ��y� and Vy inP V y � Hence V y � �cons z� z��P �

V � � sba�P ��z�� and V� inP V �� From CP

 we can prove V � � sba�P ��x�� and the

lemma holds for this case�

CP
� This case is analogous to the previous case�

CP
� Suppose V � sba�P ��x�� via constraint CP

� � For simplicity� we consider only the
case where Vy is not a placeholder� since the case involving placeholder is similar
but more complicated�

Thus Vy � h��x�� N�� Ei � sba�P ��y� via a shorter proof� By induction there
exists V y such that V y � sba�P ��y� and Vy inP V y � Hence V � ��x�� N�P � Also�
V � sba�P ��z� via a shorter proof� so by induction there exists V such that V �

sba�P ��y� and V inP V � Hence� by CP
� we have V � sba�P ��x���



November ��� ���� � �� � �� DRAFT �


CP
� Again� we consider only the case where V is not a placeholder�

Thus Vy � h��x�� N�� Ei� and Vy � sba�P ��y� via a shorter proof� By induction
there exists V y such that V y � sba�P ��y� and Vy inP V y � Hence V y � ��x�� N�P �
Also� V � sba�P ��FinalVar�N �� via a shorter proof� so by induction there exists

V such that V � sba�P ��FinalVar�N �� and V inP V � Hence� by CP
� we have V �

sba�P ��x��

CP
� � C

P
�� The analysis for the constraint CP

� and the left implication of CP
�� is similar to the

analysis for CP
� �

CP
�� Suppose hph p VNi � sba�P ��x� via the right implication of CP

��� Then we have
VN � sba�P ��FinalVar�N �� via a shorter proof� so by induction there exists V N �

sba�P ��FinalVar�N �� with VN inP V N � By C
P
�� we have that hph FinalVar �N �i �

sba�P ��x�� and hph p VNi inP hph FinalVar �N �i�

CP
�� This case is trivial�

B Set Based Analysis Algorithm

A complete O�jP j�� set�based analysis algorithm for the intermediate language �a is included in
Figure ��
� The algorithm is written in Scheme extended with a special form match for pattern
matching�

The algorithm relies on a group of auxiliary functions that maintain� for each program variable�
an associated set of abstract values and an associated set of constraints� both of which are initially
empty� The function add�absvalue� extends the abstract value set of a variable� the predicate
in�absvalue�set� tests for membership in that set� and the iterator function �foreach�absvalue var

fn� calls fn on each abstract value associated with the variable var � The functions add�aconstraint� �
in�constraint�set� and foreach�constraint behave in a similar manner on constraint sets� We assume
that the functions add�absvalue� � add�aconstraint� � in�absvalue�set� and in�constraint�set� operate
in constant time� and that the functions foreach�absvalue and foreach�constraint operate in time
linear in the number of elements in the appropriate set�

The function SBA traverses an expression to ensure that the expression satis�es the abstract
constraints� and returns the �nal variable of that expression� Certain constraints cannot be satis�ed
immediately� For example� the constraint CP

� requires that all abstract values in E�y� must be in
E�x�� but during the analysis of a program we may not yet know all the abstract values that may
be added to E�y�� Therefore� we associate a constraint ��propogate�to �x� with the variable y� This
constraint ensures that whenever an abstract value is added to E�y�� then that abstract value is
also propogated to E�x�� The function interpret�constraint is called for constraint and abstract
value associated with a given variable� and ensures that the constraint is satis�ed� by creating new
abstract values or new constraints as necessary�

The O�jP j�� time bound can be veri�ed as follows� Each call of the functions new�absvalue� and
new�constraint� takes constant time� excluding the time spent in the body of the respective unless
expressions� The number of variables� the number of abstract values� and the number of constraints
are all O�jP j�� Therefore the test conditions of the two unless expressions succeed at most O�jP j��

�For simplicity� the algorithm implements simpler versions of the abstract constraints CP

�
and CP

��
that do not include

that non�emptyness conditions E	yi
 �� � and E	FinalVarN
 �� �� We believe the extra degree of approximation
introduced by this simpli�cation is negligible in practice�



November ��� ���� � �� � �� DRAFT �	

times each� Hence the body of each unless expression is executed at most O�jP j�� times� and
function interpret�constraint is called at most O�jP j�� times� Each call of interpret�constraint
terminates in constant time� Therefore� the entire algorithm takes O�jP j�� time�

References

��� Baker� H�� and Hewitt� C� The incremental garbage collection of processes� In Proceedings

of the Symposium on Arti�cial Intelligence and Programming Languages ������� vol� ������
pp� ������

��� BBN Advanced Computers� Inc�� Cambridge� MA� Inside the GP����� �����

�
� Cousot� P�� and Cousot� R� Abstract interpretation� A uni�ed lattice model for static
analyses of programs by consruction or approximation of �xpoints� In POPL ������� pp� �
��
����

�	� Cousot� P�� and Cousot� R� Higer order abstract interpretation �and application to com�
portment analysis generalizing strictness� termination� projection and per analysis of functional
languages� ICCL ����	�� �������

��� Feeley� M� An E	cient and General Implementation of Futures on Large Scale Shared�

Memory Multiprocessors� PhD thesis� Department of Computer Science� Brandeis University�
���
�

��� Feeley� M�� and Miller� J� S� A parallel virtual machine for e�cient scheme compilation�
In LFP �������

��� Flanagan� C�� and Felleisen� M� The semantics of Future� Rice University Comp� Sci�
TR�	��
��

��� Flanagan� C�� Sabry� A�� Duba� B� F�� and Felleisen� M� The essence of compiling
with continuations� In PLDI ����
�� pp� �
���	��

��� Halstead� R� Multilisp� A language for concurrent symbolic computataion� ACM Transac�

tions on Programming Languages and Systems 
� 	 ������� �����
��

���� Heintze� N� Set Based Program Analysis� PhD thesis� Carnegie Mellon University� �����

���� Heintze� N� Set�based analysis of ML programs� In LFP ����	�� pp� 
���
���

���� Henglein� F� Global tagging optimization by type inference� In LFP ������� pp� ��������

��
� Ito� T�� and Halstead� R�� Eds� Parallel Lisp� Languages and Systems� Springer�Verlag
Lecture Notes in Computer Science ���� �����

��	� Ito� T�� and Matsui� M� A parallel lisp language� Pailisp and its kernel speci�cation�
������������

���� Jagannathan� S�� and Weeks� S� Analyzing stores and references in a parallel symbolic
language� In LFP ����	�� pp� ��	�
���

���� Katz� M�� and Weise� D� Continuing into the future� on the interaction of futures and
�rst�class continuations� In LFP �������



November ��� ���� � �� � �� DRAFT ��

�de�ne SBA

�lambda �expression�
�match expression


�� variable� x � x �

��let ��x �exp� �body�
�match exp


�� constant� c� �new�absvalue� x c��

�� variable� y� �new�constraint� y ��propogate�to �x ���

��cons �y� �y� � �new�absvalue� x ��cons �y� �y� ���

��lambda �y �N �
�let �
�nalvar�N �SBA N ���
�new�absvalue� x ��lambda �y �N ��nalvar�N ����


��future �N �
�let �
�nalvar�N �SBA N ���
�new�constraint� �nalvar�N ��propogate�to �x ��
�new�absvalue� x ��ph ��nalvar�N ��
�new�absvalue� x ��ph�circ����


��car �y� �new�constraint� y ��propogate�car�to �x ���

��cdr �y� �new�constraint� y ��propogate�cdr�to �x ���

��if �y �M� �M� �
�let �
�nalvar�M� �SBA M� ��
�nalvar�M� �SBA M� ���
�new�constraint� �nalvar�M� ��propogate�to �x ��
�new�constraint� �nalvar�M� ��propogate�to �x ����


��apply �y �z � �new�constraint� y ��application �x �z ����
�SBA body�����

�de�ne new�absvalue�

�lambda �var absvalue�
�unless �in�absvalue�set� var absvalue�

�add�absvalue� var absvalue�
�foreach�constraint var �lambda �constraint� �interpret�constraint constraint absvalue������

�de�ne new�constraint�

�lambda �var constraint�
�unless �in�constraint�set� var constraint�

�add�constraint� var constraint�
�foreach�absvalue var �lambda �absvalue� �interpret�constraint constraint absvalue������

�de�ne interpret�constraint

�lambda �constraint absvalue�
�match �cons constraint absvalue�


���propogate�to �x � � �v� �new�absvalue� x v��

���propogate�car�to �x � � �cons �y� �y� �� �new�constraint� y� ��propogate�to �x ���

���propogate�cdr�to �x � � �cons �y� �y� �� �new�constraint� y� ��propogate�to �x ���

���application �result �arg� � �lambda �para � ��nalvar��
�new�constraint� �nalvar ��propogate�to �result��
�new�constraint� arg ��propogate�to �para���

 �void�����

Figure �� The Set�Based Analysis Algorithm�



November ��� ���� � �� � �� DRAFT ��

���� Kessler� R�R�� and R� Swanson� Concurrent scheme� ���������
	��

���� Knopp� J� Improving the performance of parallel lisp by compile time analysis� �������������

���� Kranz� D�� Halstead� R�� and Mohr� E�Mul�T� A high�performance parallel lisp� ����
���

����

���� Kranz� D�� Halstead� R�� and Mohr� E� Mul�T� A high�performance parallel lisp� In
PLDI ������� pp� ������

���� Miller� J� MultiScheme� A Parallel Processing System� PhD thesis� MIT� �����

���� Mohr� E�� Kranz� R�� and Halstead� R� Lazy task creation� A technique for increasing
the granularity of parallel programs� In LFP �������

��
� Moreau� L� Sound Evaluation of Parallel Functional Programs with First�Class Continua�

tions� PhD thesis� Universite de Liege� ���	�

��	� Shivers� O� Control��ow Analysis of Higher�Order Languages or Taming Lambda� PhD
thesis� Carnegie�Mellon University� �����

���� Swanson� M�� Kessler� R�� and Lindstrom� G� An implementation of portable standard
lisp on the BBN butter�y� In LFP ������� pp� �
���	��

���� Wright� A� and R� Cartwright� A practical soft type system for scheme� In LFP ����	��
pp� ��������


