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Abstract

The future annotation introduced by MultiLisp provides a simple method for tam-
ing the implicit parallelism of functional programs. Prior research on futures has
concentrated on implementation and design issues, and has largely ignored the devel-
opment of a semantic characterization of futures. This paper presents four operational
semantics for an idealized functional language with futures with varying degrees of
intensionality. The first semantics defines future to be a semantically-transparent an-
notation. The second semantics interprets a future expression as a potentially parallel
task. The third semantics explicates the coordination of parallel tasks and the need
for touch operations on placeholder-strict arguments to certain primitive operations by
introducing placeholder objects. The fourth and last semantics is a low-level refinement
of the third semantics, which explicates just enough information to permit the smooth
derivation of program analyses. The paper includes proofs showing the equivalence of
these semantics.

*Supported in part by NSF grant CCR 91-22518 and a sabbatical at Carnegie Mellon University.
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The Semantics of Future 1
1 Futures for Parallel Computation

Programs in functional languages offer numerous opportunities for executing program com-
ponents in parallel. In a call-by-value language, for example, the evaluation of every function
application could spawn a parallel thread for each argument expression. However, if such a
strategy were applied indiscriminately, the execution of a program would generate far too
many parallel threads. The overhead of managing these threads would clearly outweigh any
benefits from parallel execution.

The future annotations of MultiLisp [1, 11] and its Scheme successors provide a simple
method for taming the implicit parallelism of functional programs. If a programmer believes
that the parallel evaluation of some expression outweighs the overhead of creating a separate
task, he may annotate the expression with the keyword future. An annotated functional
program has the same observable behavior as the original program, but the run-time system
may choose to evaluate the future expression in parallel to the rest of the program.

While past research on futures has concentrated on implementation and design is-
sues [4, 13, 20, 16, 18, 15, 19], this technical report focuses on the semantics of futures.
Specifically, it presents a series of semantics with varying degrees of intensionality. The first
semantics equates the value and behavior of (future €) as that of e, which is the simplest
way to interpret future as an annotation. The second semantics interprets an annotated
expression as a potentially parallel task. The third semantics explicates the coordination of
parallel tasks with the introduction of explicit placeholder objects. Since all of these seman-
tics are formulated as program rewriting systems, the equivalence proofs rely on standard
techniques like bisimulation and a diamond lemma. The fourth and last semantics is a low-
level refinement of the third semantics, which explicates just enough information to permit
the smooth derivation of program analyses.

A companion paper describes the use of our semantics in program optimization [7]. It
focuses on the derivation of a provably correct program analysis algorithm from the last
semantics. The paper also describes a optimization algorithm for lowering the overhead of
task coordination in a language with futures, and the effects of implementing this opti-
mization for the Gambit compiler [4].

The presentation of our semantics for future proceeds as follows. The second section
introduces the language we consider and its definitional semantics, which interprets futures
as annotations. The third section presents a parallel program rewriting semantics of fu-
tures, and the fourth section introduces placeholder objects and touch operations. The
fifth section contains the low-level refinement. The sixth section compares our approach to
related work concerning the semantics of parallel functional languages, and the last section
discusses some applications for the our semantics. Appendix A contains the correctness
proof for the low-level semantics.

Notation We use f: A — B to denote that f is a total function from A to B, and
similarly use f: A — B to mean that f is a finite map from A to B.
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2 A Functional Language with Futures

2.1 Syntax

Our motivation in developing a semantics for future is to provide a sound basis for the
compilation of programs with futures. Compilers typically convert source programs into
a simple intermediate representation, and then proceed to compile and optimize the inter-
mediate representation of the program. Therefore, we formulate the semantics of futures
for an intermediate representation of an idealized functional language. Specifically, we use
the subset of A-normal forms [9] of a A-calculus-like language with a let construct, a fu-
ture construct, a conditional and an explicit apply primitive: see Figure 1. The language
also includes the primitives cons, car, and cdr for list manipulation, which will serve to
illustrate the treatment of primitive operations, and an unspecified set of basic primitive
constants that includes at least numbers and the empty list nil.

The key property of terms in A-normal form is that each intermediate value is explicitly
named and where the order of execution follows the lexical nesting of let-expressions. The
use of A-normal forms facilitates the compile-time analysis of programs since every inter-
mediate value is named [22], and it simplifies the definition of abstract machines [9], a fact
that we exploit in the development of abstract machines below.

M e A, = x (Terms)
| (let (z V) M)
| (let (z (future M)) M
| (let (z (car y)) M)
| (let (z (cdr y)) M)
| let (= (it y M M)) M)
| (let (z (apply y 2)) M)
V e Value == cla| (Ae. M) | (cons x y) (Values)
x € Vars = {e,y,2,...} (Variables)
¢c € Const = {ni1,0,1,...} (Constants)

Ficure 1: The A-normalized Language A,

A variable occurrence is free if it is not bound by an enclosing A-expression or let-
expression. A term is closed if it contains no free variables. We identify terms that differ
only by consistent renaming of bound variables. The operation M[z < V] denotes the
capture-free substitution of V for all free occurrences of  within M. We use X° to denote
the set of closed terms of type X (terms, values).
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Evaluator:
eval, : A  —  Answers U {error, 1}
unload [V] if P—2V
(P _ error if P——7 error
cvale(P) - = L if Vi € N 3M; € State, such that

P = Mo and Mi —c Mi+1

Data Specifications:

S € State. = M | error (States)
M € A, = 14 (Run-time Language)
| (let (z V) M)
| (let (= (future M)) M)
| (let (z (car V) M)
| (let (z (cdr V) M)
| let (z if V M M)) M)
| (let (v (apply V V) M)
| (let (z# M) M
Ve Value, = cla| (Ax. M) | (cons V V) (Run-time Values)
F € FiwnalState, = V | error (Final States)
A € Answers = ¢ | procedure | (cons A A) (Answers)
£ € EvalCtst RES [] (Evaluation Contexts)
| (let (= &) M)
| (let (z (future&)) M)
Unload Function:
unload, : Value! —  Answers
unload.[c] = ¢
unload [(Ax. M)] = procedure
unload.[(cons V1 V2)] = (coms unload [Vi] unload.[V3])
Transition Function:
Elet (x V) M)] — E[ M[x—V]] (bind)
El (let (¢ (future V)) M) ] —— E[ Mx —V]] (future-id)
E[ Mz —V1]] if V= (cons V; V3)
£l (et (z (car V)) M) ] — { error if V# (cons V) Va) (car)
E[ Mz — V3] ] if V= (cons V; V3)
€l (let (z (edr V)) M) ] +—. error if V# (cons V) Va) (cdr)
. El(let (x My) M) ] if V #nil ,
E[ Qet (x (if V My M) M)] +—. £l (let (x My) M)] if V = ni1 (if)
El (let (¢ Ny — Vo]) M Vi =(Ay. N
E[ (let (2 (apply V1 Vo)) M)] +—. { eLEOI (2 Ny = 2]} M) ] " Vi #EAZ N; (apply)

FiGure 2: The sequential C'-machine
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2.2 Definitional Semantics

The semantics of the A-normalized language is a function from A? to results. A result is ei-
ther an answer, which is a closed value with all A\-expression replaced by the tag procedure,’
or error, indicating that some program operation was misapplied, or L, if the program di-
verges. We specify the definitional semantics for A? using a sequential abstract machine
called the C-machine (see Figure 2), whose states are either closed terms in the run-time
language A. or the special state error, and whose deterministic transition rules are the
typical leftmost-outermost reductions of the lambda calculus [5]. Each transition rule also
specifies the error semantics of a particular class of expressions. For example, the transition
rule for car defines that if the argument to car is a pair, then the transition rule extracts
the first element of the pair. If the argument is not a pair, then the transition rule produces
the state error.

The only unusual transition rule is the one for future expressions. This rule pretends
that future is the identity operation. It demands that the body of a future expression is
first reduced to a value, and then replaces the name for the future expression with this
value.

The definition of the transition function relies on the notion of evaluation contexts. An
evaluation context & is a term with a hole [ ] in place of the next sub-term to be evaluated;
e.g., in the term (let (z My) M;), the next sub-term to be evaluated is My, and thus the
definition of evaluation contexts includes (let (z &) M).

A machine state is a final state if it is either a value or the special state error. No
transitions are possible from a final state, and for any state that is not a final state, there
is a unique transition step from that state to its successor state.

Lemma 2.1 (Uniform Evaluation Theorem) Let M € State..
1. If M ¢ FinalState,, there exists a unique term M' such that M —, M'.

2. If M € FinalState,, there is no term M’ such that M ——. M’.

Proof: We use structural induction on State. to prove that any term that is
not a final state matches the lefthand side of exactly one of the clauses for —..
Since each of these clauses defines a function on A., the relation ——,. relates
each term that is not a final state to a unique successor term. The proof that a
final state has no successor is straightforward. =

The Unique Evaluation Theorem implies that the relation eval. is a well-defined total func-
tion: Either the transition sequence for a program P terminates in a final state, in which

case eval.(P)is an answer or error, or else the transition sequence is infinite, in which case
eval.(P) = L.

Theorem 2.2 The evaluator eval. is a total function.

Since the evaluator eval,. of the C'-machine obviously agrees with the sequential seman-
tics of the underlying functional language, future is clearly nothing but an annotation.

!We remove A-expressions from answers so that the observable behavior of programs does not depend on
the terms themselves, but only on their meaning.
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3 Parallel Operational Semantics

The sequential '-machine defines future as an annotation, and ignores the intension of
future as an advisory instruction concerning parallel evaluations. To understand this in-
tensional aspect of future annotations, we need a semantics of future that models the
concurrent evaluation of future expressions. For this purpose, we reformulate the ¢’ ma-
chine to account for parallelism. The result is the P(C')-machine.

Evaluator:

evaly. : A —  Answers U {error, 1}

unloadp [V] if Pr—} V

error if P b—>;c error

1L if Vi € N 35; € Statep., ni, m; € N such that
m; >0, P = Sy and S; b—>gg’m’ i+1

eval,.(P) =

Data Specifications:

S € Statep. m= M |error | (flet (p S) 5) (States)

M € A, = Vi(det(xV)M)]| ... (As for A.)

V€ Valuep. = PValue,. | p (Run-time Values)

PValue,, = c¢|z|(Qe.M)|(cons V V) (Proper Values)

p € Ph-Vars m= A{p1,p2,p3, .-} (Placeholder Variables)
Ph-Varsn Vars =

F € FinalState,. == V |error (Final States)

Unload Function:
unload,. : Valuegc —  Answers

unload,.[W] = unload . [W]
Placeholder Substitution S[p — V1:

M[p — V] = M with all free occurrences of p replaced by V
error[p — V] = error
f-let (p' Si[p — V) S2) if p=p'
f-let (p' S1) S —V] = ( .
( e (p 1) 2)[]) ] { (f-let (p/ Sl[pH V]) Sz[pH V]) lfpip’

Free Placeholder Function FP:
FP: State,, — P(Ph-Vars)

FP(M) = {p|poccursin M}
FP(error) = 0
FP((f-let (p 51) S2)) = FP(S1) U(FP(S2)\ {p})

Ficure 3: The parallel P(C')-machine: Evaluator and Data Specifications

3.1 Specification of the P(C)-machine

State Space The state space of the P(C')-machine is defined in Figure 3. The set of
P(C') values includes the values of the sequential C'-machine (constants, variables, closures
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Transition Rules:

El(let (z V) M) ] —pt E[ Mz — V]] (bind)
E[ (et (z (future V)) M)] ~— ! E[ Mz — V] ] (future-id)
&l (let (z (car V) M) ] ,_>11),cl
E[ Mz — V1] ] if V =(cons V; 13)
{ error if V#(cons Vi V2),V #p (car)
El (let (2 (edr V) M) ] ,_>11),cl
E[ Mz — V3] ] if V =(cons V; 13) J
{ error if V#(cons Vi V2),V #p (edr)
E[ (et (x (if V My My)) M)]
El(let (x M) M)] ifV #nil,V#p ,
{ €[ (let (x Ms) M)] if V =nil (if)
El (let (x (apply Vi Va)) M) ] ,_>11),cl
E[(let (x N[y — Vo)) M) ] if V1 =(Ay. N) (apply)
error iftVi £#Ay.N),Vi £p wrty
[ (let (x (future N)) M)] +—" (f-let (p N) E[ Mz — p] ]) (fork)
p g FP(E) U FP(M)
(f-let (p V) 5) »—>11;cl Slp — V] (join)
(f-let (p error) S) b—>11,’cl error (join-error)
(f-let (p2 (f-let (p1 Sl) 52)) 52) '—>Zl)’cl (f-let (p1 Sl) (f-let (p2 52) 53)) (llﬂ)
1 ¢ FP(Sg)
(f-let (p Sp) So) ——aFel (f-let (p S7) S%) (parallel)
if 51809, Sy —id S
S S (reflexive)
S —arebtd gy (transitive)

~ b d
if S35, 8" =08 S" and a,¢ > 0

FiGUuRE 4: The parallel P(C')-machine: Transition Rules

and pairs), which we refer to as proper values. To model the implementation of futures, the

P(C')-machine also includes a new class of values called placeholder variables. A placeholder

variable p represents the result of a computation that is in progress. Once the computation

terminates, all occurrences of the placeholder are replaced by the value returned by the

computation.
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Each state of the ('-machine represents a single thread of control or task. To model the
concurrent evaluation of future expressions by parallel threads, the P(C')-machine includes
additional states of the form (f-let (p S1) S2). The primary sub-state Sy is initially the body
of the future expression, and the secondary sub-state S5 is initially the context surrounding
the future expression. The placeholder p represents the result of 57 in 55. The usual
conventions for binding constructs like A and let apply to f-let. We use S[p — V] and
E[p — W] to denote the capture-free substitution of V for all free occurrences of p within
a state S and an evaluation context £ respectively. A state is closed if it contains no free
variables or free placeholders. The evaluation of 57 is considered mandatory, since it is
guaranteed to contribute to the completion of the computation. The evaluation of 55 is
speculative, since such work may not be required for the termination of the program. In
particular, if 57 raises an error signal, then the evaluator discards the state 53, and any
effort invested in the evaluation of 55 is wasted. The distinction between mandatory and
speculative steps is crucial for ensuring a sound definition of an evaluator and is incorporated
into the definition of the transition relation.

Transition Rules The transition relation of the P(C')-machine is specified as a quadruple:
see Figure 4. If § ——7" S’ holds, then the index n is the number of steps involved in
the transition from S to S’, and the index m < n is the number of these steps that are
mandatory.

The transition relation is formulated as a collection of transition rules. The rules (bind),
(future-id), (car), (cdr), (if ) and (apply) are simply the transition rules of the C-machine,
appropriately modified to allow for undetermined placeholders. An application of one of
these rules counts as a mandatory step.

The transition rule (fork) initiates parallel evaluation. This rule may be applied when-
ever the current term includes a future expression within an evaluation context, 7.e.,

&l (let (z (future N)) M) ]

The future annotation allows the expression N to be evaluated in parallel with the enclosing
context &[ (let (z []) M) ]. The machine creates a new placeholder p to represent the result
of N, and initiates parallel evaluation of N and &[ (let (z p) M) ].

The transition rule (parallel) permits concurrent evaluation of both sub-states of a
parallel state (f-let (p S1) S2).

The transition rules (join) and (join-error) merge distinct threads of evaluation. When
the primary sub-state S of a parallel state (f-let (p S1) 92) returns a value V', then the rule
(join) replaces all occurrences of the placeholder p within S by that value. If the primary
sub-state 57 evaluates to error, then the rule (join-error) discards the secondary sub-state
S5 and returns error as the result of the parallel state.

The transition rule (lift) restructures nested parallel states, and thus exposes additional
parallelism in certain cases. Consider the state (f-let (pe (f-let (p; S1) V)) S3). The
rule (lift) allows the value V to be returned to the sub-state S5 (via a subsequent (join)
transition), without having to wait on the termination of S;.2

?The addition of this optimization rule is the result of proving the soundness of the semantics via the
standard diamond lemma. Without this rule, the machine does not possess the diamond property (but is
probably still consistent).
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The rules (reflexive) and (transitive) close the relation under reflexivity and transitivity.
We write §'+——7. 5" if § ——7" S’ for some n,m € N. A state S is in normal form if
there is no state 5" such that 5 ——7." 5" with n > 0. A state is a final state if it is either a

value, or the state error, and a state is blocked if it is in normal form but not a final state.

Indeterminism Unlike the functional C-machine, which maps each state to a unique
successor state, the transition relation of the P(C')-machine has an important degree of
freedom. The definition of the P(C)-machine does not specify when the transition rule
(fork) applies. For example, consider the state &£ (let (2 (future N)) M) ]. Since the
context surrounding N is an evaluation context, an implementation of the machine may
proceed either by evaluating N, or by creating a new task via a (fork) transition. The choice
of whether or not to apply the transition rule (fork) is entirely up to the implementation
of the machine. An implementation may immediately apply this rule whenever a future
expression is encountered, realizing a task creation strategy called eager task creation [16,
23, 10]. Alternatively, an implementation may never invoke the rule (fork), resulting in
a purely sequential evaluation. In between these two extremes lie a range of strategies
where new tasks are created according to some implementation-dependent and possibly
load-dependent algorithm. A particularly efficient strategy is lazy task creation [4, 19],
where new tasks are created via fork transitions only when the additional parallelism can
exploit idle computing resources.

A second source of indeterminism in the specification of the P(C')-machine is the tran-
sition rule (parallel). This rule does not specify the number of steps that parallel sub-states
must perform before they synchronize. An implementation of the machine can use almost
any scheduling strategy for allocating processors to tasks. The only constraint, as specified
in the definition of eval,., is that the implementation must perform mandatory computation
steps on a regular basis.

Evaluation In general, the evaluation of a program can proceed via many different tran-
sition sequences. Some of these transition sequences may be infinite, even if the program
terminates according to the sequential semantics. Consider:

P = (let (z (future V)) Q)

where F is a term that raises a run-time error, and € is some diverging sequential term such

that Q@ — D Q1 Qy — D1 ... The sequential evaluator never executes {2 because P’s

result is error. In contrast, P admits the following infinite parallel transition sequence:

P L0 (flet (p E) Q) via (fork)

pc
0 (flet (p E) Q) since @ — L1 Oy

pe
L0 (f-let (p E) Qg) since )y '__>21),C1 Q,

pc
170 o« o

A

This “evaluation” diverges because it exclusively consists of speculative transition steps and
does not include any mandatory transition steps that contribute to the sequential evaluation
of the program.
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The evaluator for the P(C')-machine excludes these excessively speculative transition se-
quences, and only admits transition sequences that regularly includes mandatory transition
steps.® For a terminating transition sequence, the number of speculative steps performed is
implicitly bounded. For non-terminating sequences, the definition of the evaluator explicitly
requires that mandatory transition steps are performed on a regular basis. This constraint
implies that an implementation of the machine must keep track of the mandatory thread
and must ensure that this mandatory thread is regularly executed.

In summary, the P(C)-machine arbitrarily chooses any transition sequence that regu-
larly performs mandatory computation, and reports on the behavior of that sequence. If
the chosen transition sequence produces either a value V' or error, then eval,. returns
unload,.[V] or error respectively. If the chosen transition sequence does not terminate,
then eval,. returns L. As we will prove below, the evaluator relation eval,. is a total
function and agrees with the sequential evaluator eval..

Placeholder Transparency and Synchronization We say that a program operation
is placeholder-strict in a position if it needs specific information about the value of the
corresponding argument. For example, the operations car and edr are placeholder-strict,
and if and apply are placeholder-strict in their first position. Whenever an undetermined
placeholder appears in a placeholder-strict argument position of one of these operations,
then that operation must block until the placeholder is determined and specific information
about the value of the argument is known. We model this behavior in the P(C')-machine
via side-conditions associated with the transition rules (car), (edr), (if ) and (apply). These
side-conditions ensure that if a placeholder-strict argument is an undetermined placeholder,
then the transition rule cannot fire.

For a brief illustration of this idea, consider the following transition sequence for the
following program P:

P = (let (y (future (let (z 1) (cons z 2)))) (1)
(let (= (car 1)) )

10 (flet (p|(let (v 1) (cons z 2))|) (2)
(let (= (eax ) )

—t (f-let (p|(cons 1 1)|) (3)
(let (= (cax 7)) =)

' (let (z (car (cons 1 1))) z) (4)

—pe 1 (5)

The first transition in this sequence creates a new task for the evaluation of the future
expression via a (fork) transition. After task creation (line 2), no transition steps are
possible from the secondary sub-state (let (z (car p)) z). The transition rule (car) cannot
fire since the argument to the operation (car) is a placeholder variable. Evaluation of the
primary substate (highlighted with a box) proceeds unhindered. Once the primary substate
produces a value (line 3), the transition rule (join) synchronizes the separate threads of
computation by replacing all occurrences of p by that value. After synchronization (line 4),

?The concept of a mandatory step is closely related to the notion of legitimacy introduced by Katz and

Weise [15].
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the operation car applies to the new argument (cons 1 1), and execution continues with the
program returning the answer 1. Since program operations block whenever an argument in
a placeholder-strict position is undetermined, the P(C')-machine never performs a transition
before a placeholder is determined that it would perform differently after the placeholder is
determined. Hence the transition relation of the machine exhibits a substitutivity property:
the transition relation commutes with substitution of values for placeholders. The proof of
this property relies on a Substitution Lemma for placeholders.

Lemma 3.1 (Substitution Lemma for - [- — -]) If M € A,. and V,W € Value,,,
then
(Mp = W[z = VIp = W] = (M[z = V])[p = W],

Proof: The proof proceeds by induction on the structure of M. n

Lemma 3.2 (Substitutivity; Placeholder Transparency) If Sy —;." S, then for

any placeholder p and any W € Value,e, Si[p «— W] =7 Sa[p — W].

Proof: The proofis by lexicographic induction induction on n and on the size of

51, and proceeds by case analysis on the last step in the transition 51 ——7:™ 5.

o Suppose 51——' 55 via the rule (car) with 5y = £[ (let (2 (car V)) M) ].
Let & =&[p — W],V =Vip — W] and M' = M[p — W]. We consider
three possibilities for V:

— Suppose V = (cons Vi V3). Then Sy = [ Mz — V1] ]. Let V| =
Vilp < W] and Vj = Vy[p — W].

Silp — W] = &'l (let (z (car (cons V| V3))) M') ]
—pr &Mz — V] ]
= Solp — W] by Lemma 3.1

— Suppose V is neither a pair nor a placeholder. Then 55 = error, and
since V' is neither a pair nor a placeholder,

Silp — W] = &' (let (z (car V') M') ]
= Salp — W]

— The case where V is a placeholder is impossible, since no transitions
are possible from such a state.
e The reasoning for the transition rules (bind), (future-id), (cdr), (if ), (ap-
ply), (fork), (join), (join-error), (lift), (reflexive) and (transitive) is similar.
o We consider the case where 51 ——7"" S5 via the rule (parallel) in order to
justify our use of lexicographic induction. For this case:

S = (Elet (¢ 57) 5) Sp g 8
Sy = (Flet (¢ §}) 5Y) Sy st Sy
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and n = a4 ¢. Since 57 and 57 are substates of Sy, by the inductive
hypothesis we have:

Silp = W] —2" Solp — W]

S'lp — W] H—E’f S3[p — W]
Hence:
Silp = W] = (f-let (p' Silp — W) S{[p — W)
|——>;ém (f-let (p/ Sé[p — W]) Sél[p — W]) via (pamllel)
= Salp — W]

The Substitutivity Lemma shows that undetermined placeholders represent results of
parallel computations in a transparent manner. This property is crucial in proving the
correctness of the machine.

3.2 Consistency of the P(C')-Machine

The observable behavior of the P(C')-machine on a given program is deterministic, despite
its indeterminate internal behavior. We prove this consistency in the traditional manner,
using a modified form of the Diamond Lemma. The proof of the Diamond Lemma relies on
the following two obvious properties of the relation ——,..

Lemma 3.3 (1) If § 7" 5, then n > m. (2) If S —00 5", then § = 5.
Proof: By induction of n, and case analysis of 5 ——72™ S

The Modified Diamond Lemma states that if we reduce an initial state 57 by two
alternative transitions, producing respectively states S5 and S5, then there is some state
5S4 that is reachable from both S5 and S5. Furthermore, the number of mandatory steps
on the transition from 57 to 94 via 99 is bounded by twice the total number of steps on
the transition from 95 to 54 via 53, and vice-versa. This bound implies that all transition
sequences for a given program exhibit the same termination behavior.

Lemma 3.4 (Modified Diamond Lemma) Let 51,592,593 € State,.. If 51 ;0™ Sy
and S 021172 53, then there exists S4 € Statey,. and n3,ms,ng, my € N such that
Sg =22 Sy and Sz ——p4™t Sy, Furthermore my + m3 < 2(ng + ny) and my + my <
2(711 + n3).

Proof: The proof is by lexicographic induction on nq, ny and the size of 57.
We define the transition relation (seq) to be the union of the transition rela-
tions (bind), (car), (cdr), (if ) and (apply). Then the transition relation of the
P(C')-machine is the union of the eight relations (seq), (future-id), (fork), (join),
(join-error), (lift), (parallel), (reflexive) and (transitive). The proof proceeds by
case analysis of the pair of transition rules used for 51 e S9 and 57 ——p2 9.
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The following table enumerates the possible combinations after symmetry con-
siderations, and annotates each case with a reference to the argument used to
prove that case.

(seq | (f-id | (fork | (join | (join-error | (lift | (parallel | (refl. | (trans.

(seq) = X 3 X X X X 1 2
(future-id) = 4 X X X X 1 2
(fork) 5 X X X X 1 2
join = X X 6 1 2
(join-error) = X 7 1 2
(Lift) = 9 1 2
(parallel) 8 1 2
(reflexive) 1 1
(transitive ) 2

The following arguments show that the lemma holds in each of the above cases.

(x)

The cases marked by the symbol x are impossible, since the domains of
the respective relations are disjoint.

The cases marked by the symbol = hold, since the relation in question is a
partial function, and hence 55 = 95.

For the case where 5 l——>2’c0 S99 via the rule reflexive, take 54 = 9.

For the case where 5 o S99 via the rule transitive, we have that
S1 |——>;évbl S5 n——>;g’b2 S5. The following diagram outlines our proof technique
for this case.

S1 l——>;é’bl S l——>;g’b2 S

ln27m2 a3,ba ng,ms3

Sy b G Loasbs G

Since a; < ny, by the inductive hypothesis there exists S¢ € State,, and
as,bs,a4,bq € N such that

55 |—>;g’bg’ 56 bl + b3
53 |—>;é’b4 56 ma + b4

2(712 —|— 04)
2(@1 —|— 613)

Since S5 l——>;§’b2 SS9, 95 l——>;§’b3 S¢ and ay < nq, by the inductive hypothesis
there exists 54 € State,. and n3,ms,as,bs € N such that

S9 »——>Z§7m3 S4 by + ms
56 |—>;g’b5 S4 b3 + b5

2(@3 —|— 615)

<
< 2(az + n3)
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Let ny = a4 + a5 and my4 = by + b5, and we have that 99 g2 54 and
S =—pt™ 54, Furthermore,

by + by + m3

(b1 + b3) + (by + m3) — b3

< 2(ng + aq) + 2(as + as) — bs (I.H.)
= 2Xnz+2(as+as)+ (2 X ag — bs)

2(ng + n4)

my + ms3

IN

Similarly, mg + my < 2(nq 4 n3).
Suppose Sy — 1! S5 via the rule (seq), and Sy S5 via the rule (fork).
Then ny = mqy =ny =1, my = 0 and

51 & (let (z (future E'[ N ])) M) ]

S5 = (Elet (p € N )) & Ml — ] )

We consider two cases for 51— L1 G, separately.

— Suppose '[N |—L1E[ N ], and 53 = (let (z (future &'[ N’ ])) M).
Set Sy = (f-let (p E'[ N']) €[ M[z — p] ]). Clearly Sy —1° Sy via
(fork), Ss3 »—>21)’Cl Sy via (seq), and the indices satisfy the mequahtles.

— Alternatively, suppose Sy = error. Then let 54 = error. Observe
that

S3 |—> L (f-let (p error) &[ M[x «— p]]) via (parallel) and (seq)

1 1 P
b—,. error via (join-error)

Also n3 = ms = 0 and my = my = 2. Hence mo + my = 2 and
n1 + n3 = 1. This case is the reason for the potential factor of two
difference between mq + my4 and ny + ns.

Suppose Sy —— 11! 3 via the rule (future-id), and S 1 53 via the rule
(fork). There are two sub-cases to consider. Suppose the two transitions
operate on the same future expression. Then,

S1 = &[] (let (z (future V)) M) ]
S3 = (flet (p V) &[] M[z — p] ])

For this case, choose 54 = 95:

SQ '——>0 v 54

Sy =yt (E[ Mz — p] Dlp = V]
= E[ Mz — V]

]=25
since p g FP(E)U FP(M)

The indices clearly satisfy the inequalities.

13
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Alternatively, suppose that the transitions operate on different future ex-
pressions. Then

51 = &[ (let (z (future &' (let (y (future V)) N)])) M) |
So El (let (z (future &'[ N[y — V] ])) M) ]
Ss (f-let (p &' (let (y (future V)) N)])
E[ Mz —pl])
where p & FP(E)U FP(M)

Let
Sy = (flet (p E'[ N[y —V]]) E[ Mz — p] ])
and we have

S4 via (fork)

1,0
52 I——>p’c

Also, since &' (let (y (future V)) N) |11 E'[ N[y — V]] via (future-id),

we have (by using the rule (parallel) for compatible closure)

Sy — b Sy via (parallel)

The indices clearly satisfy the inequalities.

Suppose 51 »——>21)’Cl Sy via the rule (fork), and Sy |—>217’c0 S3 by the rule (fork).
If the two transition operate on the same future expression, then 55 = S5.
Otherwise,

51

Sl l——>;’c1 SQ

E[ (let (z (future &'[ (let (y (future N')) N)])) M) ]
(f-let (p1 &' (let (y (future N')) N)])
E[ Mz —p]])

(f-let (p2 N')
&l (let (z (future &'[ N[y — p2] |)) M) ])

Sl l——>;’c1 53

where py ¢ FP(E)UFP(M) and py, ¢ FP(E)UFP(E'YUFP(N)UFP(M).
Let
Sy = (f-let (py N')
(flet (p1 E[ N[y = po] ]) E[ Mz — ] ]))

Then

99 »——>21)’Cl (f-let (p1 (f-let (p2 N') &' N[y — p2] ])) via (fork)
Mz —p]])

0 Sy via (lift)
S5 »——>]1)’Cl 94 via (fork)

and the indices clearly satisfy the inequalities.
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(6) For the case where Sy —]
rule (parallel), we have

S1 = (Flet (p V) 9)
Sy = Sp—V]
53 = (f-let (p V) Sl) where S,__>gém S/

155 via the rule (join), and 54 i—>gé0 S3 by the

’
C

Pick 54 = §'[p — V], and 53 —7"* 54 by the Placeholder Transparency
Lemma (3.2), S3+—! S4 via the rule (join), and the indices clearly satisfy
the inequalities.

(7) Suppose S1 1" 55 via the rule (join-error), and Sy 7" S3 by the rule
(parallel). Then

S1 = (f-let (p error) 9)

S9 = error

S3 = (f-let (p error) S') where § —m 8/
Pick S4 = error. Then 5, l——>2’c0 S4, 53 »—>21)’Cl Sy by the rule (join-error),

and the indices clearly satisfy the inequalities.

(8) Suppose both the transitions 57 ——71""1 §5 and §7 ——72"""2 S are via the
rule (parallel). Then

§ = (Blet (p 5}) V)
S, = (Elet (p 53) 1)

where 5] ——o1m GG ——cdt §% and ny = ag + ¢
Sy = (Blet (p S5 S2)

where 5] ——22m2 §L GV ——c2d2 G and ny = az + ¢

Since a1 < ny, az < ng and 57 is strictly smaller than Sy, by the inductive
hypothesis there exists S such that

Sy —tats g my+b3 < 2(ag + ay)

Sé l——>;g’b4 Sﬁ/l mo + b4 S 2(@1 + 613)
Similarly, there exists 5% such that

Sé’ l——>;3é’d3 SZ d1 —|— d3 S 2(62 —|— 64)

Sé’ l——>;40’d4 SZ d2 + d4 S 2(61 + 63)

Letting 54 = (f-let (p S§) SY), we have
S5 »—>;g”m3 S4
S3 a5y

where n3 = as + ¢3, m3z = bz, ny = a4 + ¢4, mq = by. Furthermore,

my +m3 = my + bz < 2(az 4 ag) < 2(ng + ny)
my 4+ my = my + by <2(a1 4 az) < 2(ng + n3).
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(9) Suppose 51—, 106, via the rule (lift), and 54 ——72"2 S3 by the rule
(parallel). Then

S1 = (flet (p2 (f-let (p1 S,) Sb)) Se)
S |_>21?,CO Sy = (flet (p1 9,) (f-let (p2 Sp) Se)) p & FV(S,)
S1 2™ Sz = (Flet (p2 §3) §7)

where

~~

f-let (p1 S.) Sp) 32 5%

and 5. l——>CdS3,n2_a—|—c

We proceed by sub-case analysis of the last step in (f-let (p; 54) Sy )35
S5.
— There is no S5 such that (f-let (py S,) Sp) ——5."2 S5 via any of the
rules (bind), (future-id), (car), (cdr), (if), (apply) or (fork).
— Suppose (f-let (p1 S.) Sp) =272 53 via (join). Then

S1 = (flet (p; (f-let (p1 V) S3)) S¢)
Sl '——>1’0 SQ (f-let (pl V) (f-let (p2 Sb) Sc)) ” € FV(SC)

pc

Sy ——n2t S5 = (flet (py Sy[pr — V1) S%) my=1+c
Let 54 = 53:
92 '__>gla’c1 (f-let (py Sp[p1 — V) 5¢) via (join)

'_—>gcad (f-let (p2 Sp[p1 — V]) S%) = 54 via (parallel)

The indices clearly satisfy the inequalities.
— Suppose (f-let (p1 Sq) Sp) 3572 S5 via (join-error). Then

S1 = (flet (py (f-let (py error) 5)) S.)
Sy —10 g — (f-let (py error) (f-let (p2 Sp) S.)) p1 € F'V(S.)

pc
St '—>Z§’O S5 = (f-let (py error) S%) ny=1+4¢

Let §4 = error:

SQ l——>;c0 54

53 |__>;),CO 54

The indices clearly satisfy the inequalities.

— The cases where (f-let (p1 5,) Sy) —5."*2 S5 via the rules (reflexive),

(transitive) or (parallel) are stralghtforward

The Modified Diamond Lemma implies that all transition sequences exhibit the same ob-
servable behavior.
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Lemma 3.5 (Consistency of Transitions) Let P be a program. If P 7.5, where S
s in normal form, then

1. For all normal form S' such that P~} S, 5" = 5.

2. It is impossible that for all i € N there exists S; € Statey. and n;,m; € N such that
m; >0, P =5y and 5; T Sit1-

Proof:

1. Suppose P+——7.5 and P+——7, S’, where S, 97 are in normal form. By the
Modified Diamond Lemma (3.4), there exists some 54 such that 5 +——7..94
and §'+——7_54. But since 9, 5" are in normal form, we have that § = §; =
S’

2. We prove part 2 by contradiction. Assume that P ——7"" .5 where 5 is in

normal form, and that there exists some sequence of states 5; € State,,
and n;, m; € N such that m; > 0, P = 5 and 5 e Sit1-
Pick an integer & > 2n. Then P |——>;’Cb Sk41, Where a = Ejzgni and
b = Yi=km;. By the Modified Diamond Lemma (3.4), Siqq ——5¢ S for
some ¢,d € N, with 2n > b+d. But b+d > b= Ejigmi > k41> k, since
m; > 0, producing the contradiction 2n > k > 2n.

Since all transition sequences for a given program exhibit the same observable behavior, the
evaluator eval,. for the P(C)-machine is a well-defined function.

Theorem 3.6 (Consistency of eval,.) The relation eval,. is a function.

Proof: Follows from Lemma 3.5. «

3.3 Correctness of the P(C')-Machine

Since each sequential transition rule of the P(C')-machine subsumes the corresponding tran-
sition rule of the C-machine, every transition of the ('-machine is also a transition of the

P(C')-machine.
Lemma 3.7 Suppose S —. 5, for 5,5 € State.. Then S —1 5",

The correspondence between transitions of the two machines implies that their respective
evaluators are equivalent.

Theorem 3.8 (Correctness of eval,.) eval. = evaly,.

Proof: Let P be any program. We proceed by case analysis of the definition of
eval .:
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o Suppose eval.(P) = unload.[V] because
P=5Sg—. 81 r—¢ - —.5,=V

Then P +——7." V', and hence eval,.(P) = unload,.[V] = unload.[V].

o Alternatively, suppose eval.(P) = error because
P=5S+r—.5+—. .5, = error

Then P ——7." error, and hence eval,.(P) = error.

¢ Dinally, suppose eval.(P) = L via the infinite sequence
P=5Sgr— 81— —,. 8, —0¢---

Then we have that

171---

P =5 »——>21)’cl S n——>}1)’cl ce »——>21)’cl S —

and hence eval,.(P) = L.

Hence, for all programs P, eval (P) = eval,.(P). n

The equivalence of the two evaluators implies that eval,. is defined for all programs.
Theorem 3.9 (Completeness of eval,.) The relation eval,. is a total function.

In summary, the P(C)-machine is a correct implementation of the C-machine in that
both define the same semantics for the source language. Hence, the interpretation of future
as a task creation construct, with implicit task coordination, is entirely consistent with the
definitional semantics of future as an annotation.

4 Placeholder Object Semantics

The P(C')-machine specifies the parallel execution behavior of programs with futures at a
fairly high level. It thus hides certain low-level operations that are required in the imple-
mentation of futures. In particular, implementations typically represent placeholders using
placeholder objects, and avoid the need for an expensive substitution operation on placehold-
ers (cmp. join) by imperative updating these placeholder objects instead. This technique
requires touch operations within placeholder-strict primitives to dereference placeholder
objects whenever necessary. Since we plan to use the semantics of future to prove the cor-
rectness of an algorithm for removing redundant touches, we reformulate the P(C')-machine
to expose these placeholder objects and the associated touch operations. The result is the
P(Cpp,)-machine.
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Evaluator:

evalper Al

o — Answers U {error, L}

unloadp [V] if Pr—7 .,V

(P _ error if P——7 . error
evalp (P) = 4 if Vi € N 35; € Statep.r, n;, m; € N such that
m; >0, P = Sy and S; '—>;c’}m’ Sit1
Data Specifications:

S € Statey n= M | error | (f-let (p S) 5) (States)

M € Ay = V](det (zV)M)| ... (As for A.)

Ve Valuey = PValuey. | (phpo) | (php V) (Run-time Values)

PValuep,y = c| x| Clpo | Pairpy (Proper Values)

Clyer = (Ae. M) (Closures)

Pairpq 2= (cons VV) (Pairs)

Auxiliary Functions:

unload . : Valuegc, —  Answers touch,. : Value,er —  PValuey, U {o}
unload,o[c) = ¢ touch,[(phpo)] = o
unload, [(Az. M)] = procedure touch,o [(Php V)] = touchp.[V]
unload,.[(cons V4 Va)] = (cons V{ Vi) touch,[V] = ViV € PValuey.
V! = unload, . [V;]
unload, [{(php V)] = unload,[V]

Placeholder Substitution S[p := V]:

Mlp:=V] = M with all free occurrences of {ph p o) replaced by (ph p V)
error[p:= V] = error

/ f-let / Sl = V SZ lf =9
(Flet (" 51) S)lp = V] = { (Flet ( Silp = VD) Selo = V1) it 7y

Ficure 5: The parallel P(C))-machine: Evaluator and Data Specifications

4.1 Specification of the P(C,;)-machine

The state space of the P(C),)-machine is a minor revision of that of the P(C')-machine: see
Figure 5. Instead of plain variables, placeholders are now tagged objects. An undetermined
placeholder object (written (ph p o)) is created to represent the result of each parallel task
(cmp. (fork)). The symbol o indicates that the result of the computation is unknown, and
p is used to distinguish distinct placeholder objects. When the computation associated with
the placeholder object terminates, producing a value V', then the undetermined placeholder
object is replaced by the determined placeholder object (ph p V').4

The correctness of this technique requires that a determined placeholder object (ph p V')
representing the value V is observationally equivalent to the value V itself. To ensure

*The explicit replacement of undetermined placeholders by determined placeholders is still unrealistic,
but suffices for our purposes.
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Transition Rules:

ElQet (z V) M)] +— [ Mz —V]] (bind)
&l (let (x (future V7)) M) ] b—>11)’cl, E[ Mz — V] ] (future-id)

&l (et (z (car V)) M)] 2

E[ Mz — V1] ] if touch,[V] = (cons V1 V3) (car)
error if touchp.[V] & Pairy. U {o} car

&l (et (z (edr V) M)] —11)

!

E[ Mz — V5] ] if touch,[V] = (cons V1 V3) J
error if touchp.[V] & Pairy. U {o} (cdr)
£l (et (z (if V My M) M)] )
E[ Qet (x M) M) ] if touch,[V] € {nil o} ,
€[ (let (¢ Mz) M)] if touchyo[V] = nil (if)
El (let (x (apply Vi Va)) M) ] »—>11)’cll
E[ Qet (x N[y — Va]) M) ] if touchp [Vi] = (Ay. N) ;
error if touchp [Vi] € Clyor U {0} (apply)
&l (let (z (fature N)) M)] — ) (f-let (p N) E[ M[z — (ph p o)] ]) (fork)
p & FP(€)U FP(M)
(flet (p V) S) — . Slp :=V] (join)
(f-let (p error) S) b—>11)’cl, error (join-error)
(f-let (p (f-let (p1 S1) S2)) S2) 0 (f-let (p1 S1) (f-let (p2 So) S3)) (lift)
1 ¢ FP(Sg)
(flet (p S1) S2) ™" (flet (p S7) S) (parallel)
if 51809, Sy —id S
S '—>2’09 S (reflexive)
S |—>;;c’b+d S (transitive)

ifS'—>;’cb S'S! '—>;’Cd S a,e>0

Ficure 6: The parallel P(C)pj)-machine: Transition Rules

this behavior, the primitives car, cdr, if and apply perform touch operations on their
placeholder-strict arguments. A touch operation behaves as the identity operation on proper
values, but when applied to a placeholder object, the touch operation dereferences the
placeholder object to retrieve the value that it represents.
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An occurrence of an undetermined placeholder object (ph p o) is free if p is not bound
by an enclosing flet expression, and a state S is closed if it does not contain any free
variables or free undetermined placeholder objects.

4.2 Correctness of the P(C,;)-machine

The state space of the P(C);)-machine is identical to that of the P(C')-machine, apart
from the use of placeholder objects. Therefore, each P(C,;)-machine state corresponds
directly to a P(C')-machine state. The translation function © from P(C,)-states to P(C')-
states simply replaces determined placeholder objects by the appropriate value, and replaces
undetermined placeholder objects by the corresponding placeholder variable.

Definition 4.1. (O)

O : State,o ——  State,.

Of(phpo)] = »p

Of(php V)] = ©[V]
O] = ¢
Ofz] = =

Of(Az. M)] = (M. O[M])
e = similar clauses for other A, terms
Oferror] = error
Ol(Flet (p 51) S = (Flet (p O[51]) OIS:])
O extends in a natural manner to evaluation contexts: O[ [] ] =1[],...n

The function © is a bisimulation relation, i.e., every transition of the P(C),)-machine
corresponds to a transition of the P(C')-machine, and vice versa. The proof of this property
relies on the following lemma concerning the translation ©.

Lemma 4.2
1. For all V € Value,y, if touch,s[V] # o then O[touch,.[V]] = O[V].
2. For all V € Value,y, unload,.[V] = unload,[O[V]].
3. O[] [e[M]] = o[¢[ M ]
4. O[M][z — O[V]] = O[M[z — V]]

Proof: The four facts follow from straightforward structural induction. =

Theorem 4.3 (Bisimulation Theorem) Let S7 € State,. and S| € State,» such that
o[s51] = 5.
1 If S =700 85, then Sy =7 O[55].

pc!

2. If S10—p" Sy, then there exists S5 € Stateyer such that S7——]7" 5% and O[53] = 9>.
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Proof:

1. The proof of the first part proceeds by lexicographic induction on n and
on the size of ], and by case analysis of the last step in ] l——>zgln SY. The
interesting cases concern the placeholder-strict operations. We examine

the case for the transition rule (car) in detail.
1

Suppose 57 »—>21)c, 5% via the transition rule (car). Then

51 = &[ (let (2 (car V) M) ]
51 = O[] [(let (z (car O[V])) O[M]) ]

We consider three cases for V' separately:

e Suppose touch,[V] = (cons V; V3). Then

Sh o= E[ Mz — V4] ]
ofVv] = (cons O[V;] O[Vz2])
S1 i O[] [ O[M][x — O[Vi]] ]

= ofe] [o[M[z — Wil ]
= Ofe] Mz — Wi ]

= o[53]
e Suppose touch,.[V] & Pair,s U{o}, i.e., touch,[V] € ConstU VarsU
Cl,o. Then
Sy = error
ofV] € Const U VarsU {(Az. M)}
S »—>21)’Cl error

o The case where touch,.[V] = o is impossible, since 51 would not be a
(car)-redex.

Thus the case for the transition rule (car) holds. The analysis of the
transition rules (edr), (if) and (apply) is similar. We consider in detail
the case for the (parallel) rule, in order to justify our use of lexicographic
induction.

Suppose 57 7.7 S5 via the rule (parallel). Then there exists some states
X1,Y), X}, Y] € State,s such that:

S| = (Flet (4 XDV X X
Sy o= (flet (pf X4)Y)) Y »—>;’C, Yy

where n = a + ¢. Since X and Y] are substates of 57, by the inductive
hypothesis, we have:
O[X1] —" O[Xy]

o[Y{] — e[y

pc
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Hence:
Si= (Elet (¢ O[X{]) O]
(et (' O[X1]) O[¥]) via (parallel)
= 053]

The proofs for the remaining cases are straightforward.

. We prove the second part by lexicographic induction on n and on the size
of 51, and by case analysis of the last step in the transition §1 ——72." 95.
Again, the interesting cases concern placeholder-strict operations, and we
consider the transition rule (car) in detail.

Suppose 57 »—>21)’Cl Sy via the transition rule (car). Then
S1 = &l (let (z (car V)) M) ]
An examination of the definition of © shows that 5] must be
&' (let (z (car V') M) ]

where Q[E'] = £,0[V'] =V and O[M'] = M. We consider three cases for
V:
e Suppose V = (cons Vi V3). It follows that S; = & M[z — Vi] |
and V' = (cons V| VJ), where O[V/] = V; for ¢ = 1,2. Choosing
S5 = &' M'[x — V{] ], we have that 57 '—>217’01, S5 and O[S5] = 9.
e Suppose V is neither a pair nor a placeholder. Then V € Const U
VarsU{(Az. M)}, and hence V' € ConstU VarsU{(Az. M)}. Therefore
Sy = 5% = error, and the conclusion holds for case, too.
e The case where V is a placeholder is impossible, since 57 would not be
a (car)-redex.

Thus the theorem holds if 57 ——7."" Sy via the transition rule (car). The
analysis of the transition rules (edr), (if) and (apply) is similar. We also
examine in detail the case for the (parallel) rule, in order to show why we
choose to use lexicographic induction.

Suppose 51 72" Sy via the rule (parallel). Then there exists some states
X1,Y1,X0,Y, € Statey,. such that:

Sl = (f-let (p Xl) Yl) Xl l——>;’cm X2
SQ = (f-let (p X2) YQ) Yl l——>;’cd Y2

with n = a + ¢. Examining the definition of ©® shows that S| must be:
(f-let (p X{) Yll)

for some X{,Y] € State, such that O[X{] = X; and O[Y{] = Y7. Since X;
and Y are substates of 51, by induction there exists states X3, Y, € State,.
with:

A= Xy O[X;] = X;
v, —od oy;] = Y

23
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Taking 5 = (f-let (p X}) Y]), we have that O[5)] = 52 and that:

Sy = (f-let (p X7) YY)
|——>;ém (f-let (p Xé) YQ/)
_ S/
- 2

The proofs for the remaining cases are straightforward.

The Bisimulation Theorem implies the equivalence of the P(C),)-machine and the P(C')-
machine.

Theorem 4.4 (Correctness of eval,./) eval,. = eval,..

Proof: Both directions of the theorem are straightforward consequences of the Bisimulation
Theorem.

Since the P(C')-machine is consistent and complete (from Theorems 3.6 and 3.9), the
equivalence of machines implies that the P(C)py)-machine is also consistent and complete.

Theorem 4.5 (Consistency and Completeness of cval,) The relation eval,. is a to-
tal function.

In summary, the P(C,p)-machine is a correct implementation of the P(C')-machine in
that both define the same semantics for the source language. Hence the use of placeholder
objects, combined with touch operations for placeholder-strict primitives, is a valid tech-
nique for coordinating parallel tasks.

5 The Low-Level Operational Semantics

Since optimizations heavily rely on static information about the values that variables can
assume, the P(C,)-machine is ill-suited for correctness proofs of appropriate analysis
algorithms.> The states of the P(C),)-machine contain no binding information relating pro-
gram variables and values. Instead, the machine relies on substitution for making progress.
To address this problem, we refine the P(C))-machine to the P(C' K )-machine (see Fig-
ures 7 and 8) using standard techniques [5, 9].

5.1 Specification of the P(C EFK)-machine

The substitution operation is replaced by an environment in the usual manner. An envi-
ronment F is a finite mapping from variables to run-time values. The empty environment is
denoted by 0, and the operation E[z < V] extends the environment E to map the variable
z to the value V. Using function notation, we write I(2) to denote the value bound to z

®The machine is also far too abstract for the derivation of an implementation. This problem is also
addressed by the following development.
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Evaluator:

evalpeer : A —  Answers U {error, L}
unloadypeer[E(x)] if (P, 0, ¢) 5 ;. (z, E,€)

B error if (P, 0, ¢) —..p error
evalpeek (P) = L it Vi € N 35; € Statepeer, ni, m; € N such that
m; > 0,5y = (P,0,¢) and S; b—>zc’(’$’ Si+1
Data Specifications:
S € Statepcer w= (M, E K) | error | (f-let (p S) 5) (States)
M € A, (A-nf Language)
E € Envpeer n= Vars —; Valuepcer (Environments)
Ve Valuepeer = PValueycer | Ph-0bj ... (Run-Time Values)
PValuepcer = c|a| Clpoer | Pairpees (Proper Values)
Clyce = {(Axe. M), E) (Closures)
Pairpcer = (cons V' V) (Pairs)
Ph-0bj .1, 2= (phpo)|{(phpV) (Placeholder Values)
K € Conlpeer = e¢|{ar e, M, E).K | {ar] «, M, E).K (Continuations)
F € FinalStatepcer = {(z,E,€)| error (Final States)
Auxiliary Functions:
unloadpeer Valuegcek —  Answers touchpeer, : Valueyeery —  PValueyocp U {o}
unloadyeerc] = ¢ touchpecp[(phpo)] = o
unloadpeer[{(Ax. M), E)] = procedure touchyccx[(Php V)] = touchper[V]
unloadpeer[(cons Vi Vo)l = (coms V{ Vi) touchper [Vl = ViV e PValuepeer
where V' = unload .. [V;]
unloadpeex[(Ph p V)] = unloadp.cx[V]
Placeholder Substitution S[p := V], E[p :=V], K[p:=V]:
f-let (p' Si[p:=V]) S2) ifp=yp
f-let (p' S1) S =V] = ( .
(Elet (" 51) S)lp = V] { (flet (p Si[p:=V]) Salp:=V]) ifp#p

(M, E,K)[p:=V] (M,Elp:=V],K[p:=V])

error[p:= V] = error

Elp:=V] = E’such that F'(z) = { (Ep(};)p V) i)ftli(r@is:e {(ph p o)
ep:=V] = ¢
({ar z, M, E).K)[p := V] (ar &, M, E[p = V)).K[p:=V]

({art o, M, E).K)[p:=V] = (ari &, M, Elp:=V]).K[p:=V]

FiGgure 7: The P(CE K )-machine: Evaluator and Data Specifications

in I, dom(FE) to denote the domain of F, and E|py\,.a) to denote the restriction of F
to the free variables of (Az. M).

An evaluation context, which represents the control stack, is now represented by a
continuation. A continuation consists of a sequence of activation records, which are similar
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Transition Rules:

((let (xz ¢) M), E, K)

((let (x y) M), E, K)

{(let (z (Ay.N)) M), F, K)

((let (z (cons y z)) M), E, K)

(z, E,{ar y, M, E'} . K)

((let (z (car y)) M), E, K)
{ (M, Elx — W], K)

((let (x
((let (x

(edr y)) M), E, K)

(if y My My)) M), E, K)

(My, E,{ar x, M, E).
(Ma, E, {ar x, M, E).

{((let (x (apply y 2)) M), E, K)

{ (N, E'[x' — E(2)],{(ar x, M, E).K)

error

((let (z (future N)) M), F, K)

(z, E,{ar{ y, M, E").K)

(M, E, K, (art z, N, E').K5)

(f-let (p (M, E, K1)) (N, E'[x — (ph p o}], K2))

(f-let (p (x, E,¢)) S)

P
if touchpcer[E(y)] =
if touchpeer[E(y)] € Pairpeer U {o}

— L (M Ele — o, )

—peer (M, Elz — E(y)], K)
—peer (M, Elz — ((Ay. N), )], K)
where E/ = E|FV[()\y.N)]

bl <M’ Elz « (cons E(y) E(Z))], A])
S (M, E'ly — E(x)], K)

(cons V; Va)

1,1

’ analogous to car

peek

1,1
—

peek
() if touchpeer[E(y)] € {nil, o}
() if touchpeer[E(y)] = nil

)

peek

if touchpeer[E(y)] = (A2’ . N), E)
if touchpeer[E(y)] € Clycer U {0}
— ek (N E, {art x, M, E).K)

H;gek (M, E'ly — E(x)], K)

1,0
peek

p& FP(E')UFP(K,)

e Sl = E(@)]

(f-let (p error) S) ;fek error
(f-let (pa (f-let (p1 S1) S2)) Sa) i, (Flet (py S1) (f-let (pa S5) Ss))
p1 & FP(Ss)
(f-let (p S1) So) ot (Flet (p S’) S4)
if‘gl F__%péek SV ;;ik‘gé
S 2221@ S
S ._>;;I;Ck,b+d S

if St S, S — cd

1
peek pcek S y @y ¢ > 0

FiGure 8: The P(CE K )-machine: Transition Rules

(bind-const)
(bind-var)
(bind-lam)

(bind-cons)

(return)

(car)

(cdr)

(¢f)

(apply)

(future)
(future-id)

(fork)
(join)
(join-error)
(hft)
(parallel)
(reflexive)

(transitive)

to closures.

Evaluation of an apply expression produces an activation record of the form

(ar x, M, F) to record the calling context. Evaluation of a future expression produces a
tagged activation record of the form (ari x, M, F). A tagged activation record represents
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a point where the continuation can be split into separate tasks (cmp. (fork)).

The transition relation ——p. of the P(C' E' K )-machine is a reformulation of the relation
——pc that takes into account the change of state representation. We write 5 +—7 ., S’
if § b——>2£2 S" for some n,m € N. A state S € Stateyeck is in normal-form if there is no
non-trivial transition from S. States of the form (z, I/, €) or error are called final states,

and a state blocked if it is in normal form but not a final state.

5.2 Correctness of the P(C'EK)-machine

The proof of correctness of the P(C'E K )-machine uses standard proof techniques from [5],
appropriately modified to account for parallel evaluation.

Theorem 5.1 (Correctness of evalpecr) evalyeer, = evalyy

Proof: The proof of this theorem is included in appendix A.

The equivalence of machines implies that the P(C' E K )-machine is also consistent and
complete, since the P(C),)-machine is consistent and complete.

Corollary 5.2 (Consistency and Completeness of eval,..;) The relation eval,e.y is a
total function.

The four evaluators we present, eval., eval,., eval,. and eval,.k, corresponding to the
four abstract machines, are provably equivalent. The parallel execution behavior of pro-
grams on the P(C'E'K)-machine is indistinguishable from their behavior on the C'-machine,
showing that the P(C'E K )-machine is a correct implementation of futures according to
the definitional semantics of eval..

6 Related Work

The literature on programming languages contains a number of descriptions of the semantics
of parallel Scheme-like languages. The only one that directly deals with parallelism based on
transparent annotations is Moreau’s Ph.D. thesis [20]. Moreau studies the functional core of
Scheme extended with pcall (a construct for evaluating function and argument expressions
of an application in parallel) and first-class continuations. His primary goal is to design a
semantics for the language that treats pcall as a pure annotation, and to derive a reasonably
efficient implementation. The semantics is an extension of Felleisen and Friedman’s control
calculus [5]; the implementation is a parallel version of the CESK machine [6] that imple-
ments placeholders as globally accessible reference cells. The equivalence proof establishes
that both evaluators define the same observational equivalence relation via the construction
of a number of intermediate calculi and machines. It is far more complicated than our
diamond and bisimulation techniques, possibly due to the inclusion of continuations.
Independently, Reppy [21] and Leroy [17] define a formal operational semantics for an
MTL-like language with first-class synchronization operations. Reppy’s language, Concurrent
ML, can provide the future mechanism as an abstraction over the given primitives. The
semantics is a two-level rewriting system. The first level, also a program rewriting system
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in the tradition of Felleisen and Friedman [5, 6], accounts for the sequential behavior; the
second-level specifies the behavior of sets of parallel tasks and the task communication
mechanisms. Reppy uses the semantics to prove a type soundness theorem for the extended
semantics; he does not construct a low-level semantics that can serve as the basis of an
implementation or a program analysis tool. Leroy formulates a semantics for a subset of
CML in the traditional “natural” semantics framework. He also uses his semantics to prove
the type soundness of the complete language. No attempt is made to exploit the semantics
for the derivation of an analysis algorithm or a compiler optimization.

Jaganathan and Weeks [14] define an operational semantics for a simple function lan-
guage extended with the spawn construct. They also show how the future annotation
can be implemented using spawn. Since their primary goal is the derivation of a seman-
tically well-founded abstract interpretation (in the spirit of Cousot and Cousot [2]), they
extend Deutsch’s transition semantics [3] to their language. The transition semantics re-
quires the assignments of a unique label to each sub-expression of a program and expresses
computation as the movement of a token from label to label. An auxiliary label on each
sub-expression is used to collect information about the values of the expression. The se-
mantics is well-suited for deriving traditional abstract interpretations, but is inappropriate
for specifying a user-level semantics.

Finally, Wand [24] recently extended his work on correctness proofs for sequential com-
pilers to parallel languages. In his prior work on the correctness of sequential compilers, he
derived compilers from the semantic mappings that translate syntax into A-calculus expres-
sions. Such a derivation consists of a staging process that separates the run-time portion
of the semantic mapping from the compile-time portion. To prove the correctness of the
compiler, it suffices to prove that the “composition” of the two functions yields the semantic
mapping. The extension of this work to parallel compilers starts from a semantic mapping
that translates a Scheme-like language with process creation and communication constructs
into a higher-order calculus of communication and computation. After separating the com-
piler from the “machine”, the correctness proof is a combination of (a stronger version of)
the sequential correctness proof and a correctness proof for the parallel portion of the lan-
guage. The proof techniques are related to the ones we used to prove the equivalence of the

P(CEK)-machine and the P(C)-machine.

7 Applications of the Semantics

We believe that the low-level semantics of the P(C' K )-machine is a sound basis for further
research into the optimization and implementation of futures. We have used the seman-
tics to derive a provably-correct program optimization algorithm that removes redundant
touch operations from programs [7, 8]. Experiments with the Gambit compiler [4] show
that this optimization substantially reduces program execution times on a standard set of
benchmarks.

Another important application of the low-level semantics is as a basis from which to
derive a parallel and distributed implementation of Scheme with futures. We plan to
reformulate the low-level semantics in a message-passing framework and to implement it in
the near future.
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A Correctness Proof for the P(CEL )-Machine

Fach P(CEK )-machine state corresponds to a P(C,},)-machine state according to the trans-
lation ®;: see Figure 9. For example, the P(C);)-machine state (C, I/, K') corresponds to
the P(Cp)-machine state [ M |, where & = @[ K] is the evaluation context represented by
the continuation K, and the term M = &,,[C, E]is the result of applying the substitutions
recorded in F to the term C'.

The transition relation of the P(CE K )-machine is simply a reformulation of the tran-
sition relation of the P(C),)-machine. Therefore, each transition of the P(C' K )-machine
corresponds to a transition of the P(C)y)-machine, although the number of steps involved
in corresponding transitions is not identical. In particular, the P(C})-machine assumes an
automatic division of each sequential term into an evaluation context and a redex. Since
(future [ ])) M),

the P(C)p)-machine can immediately initiate evaluation inside a future context. In con-

evaluation contexts may include future contexts of the form (let (x

trast, the lower-level P(C'EK )-machine must first convert all enclosing future contexts
into tagged activation records via the transition rule (future). Thus, certain mandatory
transitions on the P(C'E K )-machine correspond to an indentity transition on the P(C)pp)-
machine. The following theorem formalizes this correspondence, and furthermore proves
that there is no infinite sequence of mandatory P(C LK )-machine transitions that corre-

sponds to an identity transition on the P(C})-machine.

Dy 1 Ay X Envpeer — Ape
G, [M, {1 —Vi,...,2n — Vo] = Mz, — ®,[Vi]].. . [xn — D, [VL]]
Q, : Valuepcer —  Valuey
O[] = ¢
[0 M), E)] = ®pl(h. M), E]
D, [(cons V1 Va)] = (coms &,[V1] &,[Va])
@, [(phpo)] = (phpo)
@, [(php V)] = (php®,[V])
g Contpeep, —  PvalCtat
Prle] =[]
Orf{ar 2, M, E). K] = O3[K] [(let (x []) DM, E))]
Or[{art o, M, E).K] = ®,[K] [(let (z (future[])) &[M, E])]
O, : Statepcer —  Statepe
@s[(M,[E,I()% =  O,[K] [®.[M, E]
b, lerror = error

<I>s[(f-let (p Sl) Sz)]

(f-let (p ®,[S1]) D5[S2])

Ficure 9: The Functions ®,,, ®,, ®; and ®,.

Lemma A.1 (Weak Bisimulation Theorem) Let Sy € Statep.., and S7 € State,.r such

that ®4[51] = 57.
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L If 5 »——>nc,m S5 then there exists Sy € Statepcer such that Sy ——77 Sz, ®[95] = 5}
and m > m'.

Sy then S —" ™ &,[95].

pc!

L If S T

pcek

. In part 2, for each Sy there exists mg € N such that m > mg implies m’ > 0.

Proof:

1. The proof of the first part is by case analysis of the last step in 9 »—>pc} Sé,

based on a similar proof in [5] for sequential programs.

2. We prove the second part by case analysis of the last step in the transition
S Gy,

peek
e Suppose Sy '—>p7cek Sq via the rule (bind-const). Then
S = ((let (z ¢) M), E, K)
Sy = (M, Elx — ], K)
d,[51] = E[ ®.n[(let (z ¢) M), F]] where & = ¢, [ K]
= &l (let (z ¢) ®,,[M, E])] renaming so @ ¢ dom(FE)
L [ @, (M, Bl — o] ]
= E[ @, [M, Ele — ¢]] ] by definition of ¢,
= ®,[52]

e The analysis for the rules (bind-var), (bind-lam) and (bind-cons) is
similar.

e Suppose Sy '—>p7cek Sy via the rule (future). Then

S1 = {((let (z (future N)) M), I/, K)
Sy = (N, E, (ar} z, M, F).K)
O,[51] = ®k[K] [ ®n](let (2 (future N)) M), F]]
= O,[K] [ (let (z (future ®,,[N, E,)]) ¢,.[M, E]) ]
renaming so & ¢ dom(FE)

= &,[(art ©, M, E).K] [ ®,[N, E]]

= 4)5[5;2]
e Suppose Sy '—>p7cek Sq via the rule (return). Then
Sy = (v, FE,{ar y, M, E').K)
Sy = <M7El[yHE($)]7]{>
@[] = [K] [ (et (y E(x)) ®pn[M, ET]) ]

o O[] [ @ [M, Ely — E(x)] ]
= OL[K] [ @M, E'ly — E(x)]] ]
= [55]
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e The analysis for the rule (future-id) is similar.
e Suppose 59 l——>}1)’clek Sy via the rule (car). We analyze the error and

non-error cases separately.

— Suppose Sy # error. Then

Sy = {(let (2 (car y)) M), F, K)
Sy = (M, E[lx — V4], K)
where touchy..;[E(y)] = (cons V; V3)
d,[51] = OL[K] [ (let (z (car (cons ¢,V; &,V3))) ¢,,[M, E]) ]

— 0 Q[K] [ @M, Ellz — @,V1] ]

- OL[K] [ @, [M, E[x — V1] ]
= ,[55]

— Suppose Sy = error. Then

S1 o= ((let (2 (car y)) M), £, K)
S = error
where touchpecr[E(y)] ¢ Pair U {o}
o9 = OL[K] [ (let (z (car V)) ¢,,,[M, E]) |
where V # (cons Vi V2),V #£p
= " q)s[SQ]

e The analysis for the rules (edr), (if) and (apply) is similar.

e Suppose Sy l—>}1)’clek Sy via the rule (fork). Then

Sy = (M,E,Ky.(art o, N, E').K)
S, (f-let (p (M, E,Ky)) (N, E'lx — (ph p o)], K3))
where p &€ FP(E')U FP(K3)
®,[5] = ®.[K2] [ (let (z (future @ [K1][ ®,.[M, F]])) ®.,[N, E',)]]
1 (flet (p Ox[EA][ ,,[M, E]])
Q[ Ko] [ @m[N, E[x — p]])
= ,[5]

1
p

1,1

e Suppose 59 ek

Sy via the rule (join). Then
51 = (f'let (p <$7E7€>) S)

Sy = Slp = E(z)]
q)s[sl] = (
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o The analysis of for the rule (join-error) is similar.

o The cases for the rules (reflexive ), (transitive) and (parallel) are straight-
forward.

3. Suppose that S; b——>2£2 Sy with m > 0, and ®,[5] »—>Z;}m/ ®,[53] with
m’ = 0. From the proof of part 2, we see that the only possibility for this
case is via the rule (future), or via the (transitive) or (parallel) closure of
the (future) rule. The number of consecutive such transitions from 5y is

bounded by 0[51], where 8 is the following function:

6 : State — N
14+ 6[(Ny, F, K)]

(M, E,K)] = if M = (let (z (future N1)) Ny)
0 otherwise
flerror] = 0
Ol(f-let (p 51) 52)] = 0[91]

/7m/

If we pick mg = 6[51] and m > my, it is impossible that ®[5] '——>ZC/
,[52] with m’ = 0. Hence m’ > 0.

The Correspondence Lemma implies the equivalence of the P(C)-machine and the P(C'E K )-
machines.

Lemma A.2 unloadp..; = unload,. o ®,.
Theorem 5.1 (Correctness of eval,.c;) evalpecr = eval,q.

Proof: The proof of the left-to-right direction proceeds by case analysis on the
definitions of eval,ccy.

o Suppose evaly..;(P) = unload,..;[E(x)] because (P,{,¢€) ek (z, F,€).
By the Weak Bisimulation Theorem (A.1), P>V, where V = O, [E(z)].
Hence

eval, (P) = unload ) [®,[E(x)]] = unload,ccp [ ()] = evalyecr(P).

o The case where eval,..;(P) = error is similar.

o Suppose evalp.r(P) = L because there exists 5; € Statey.cr and n;,m; €

N such that m; > 0, So = (P,0,¢) and S; —]10" S;y;. By the Weak
Bisimulation Theorem (A.1l), there exists S! € State,s and n),m; € N

n/

such that m} > 0, P = Sy and 5 l——>pé,’mi 5!, Hence eval,(P) = L.

We prove right-to-left direction by case analysis of the definition of eval,..
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o Suppose eval,(P) = unload,.[V] via the reduction P > V. By the
Weak Bisimulation Theorem (A.1), (P, 0, e)—> _,(z, E,€), where ®,[E(x)] =
V. Hence

evalpeer(P) = unloadpecr[E(2)] = unload,.[®,[E(x)]] = unload ,.[V]
= eval,(P).

o The case where eval,(P) = error is similar.

o Suppose eval,s(P) = L because there exists S; € State,. and n;, m; € N
such that m; > 0, S = P and 5, l——>;é,’mi Si+1. By the Weak Bisimulation
Theorem (A.1), there exists 5! € Statey..; and n;, m; € N such that m} > 0,

So = (P,0,¢€) and 5! l——>Zi$§ Styq. Hence evalyeer(P) = L.

Hence, for all programs P, eval (P) = eval,.(P). n
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