
The Semantics of Future

Cormac Flanagan
Matthias Felleisen

Rice COMP TR������

October ����

Department of Computer Science
Rice University
P�O� Box ����
Houston� TX ����������

Copyright c����	 by

Cormac Flanagan and Matthias Felleisen

The Semantics of Future

Cormac Flanagan� Matthias Felleisen�

Department of Computer Science�
Rice University�

Houston� TX ����������

Abstract

The future annotation introduced by MultiLisp provides a simple method for tam�
ing the implicit parallelism of functional programs� Prior research on futures has
concentrated on implementation and design issues� and has largely ignored the devel�
opment of a semantic characterization of futures� This paper presents four operational
semantics for an idealized functional language with futures with varying degrees of
intensionality� The �rst semantics de�nes future to be a semantically�transparent an�
notation� The second semantics interprets a future expression as a potentially parallel
task� The third semantics explicates the coordination of parallel tasks and the need
for touch operations on placeholder�strict arguments to certain primitive operations by
introducing placeholder objects� The fourth and last semantics is a low�level re�nement
of the third semantics� which explicates just enough information to permit the smooth
derivation of program analyses� The paper includes proofs showing the equivalence of
these semantics�

�Supported in part by NSF grant CCR �������� and a sabbatical at Carnegie Mellon University�

Contents

� Futures for Parallel Computation �

� A Functional Language with Futures �
��� Syntax �
��� De
nitional Semantics � 	

� Parallel Operational Semantics �
��� Speci
cation of the P �C�machine �

State Space �
Transition Rules �
Indeterminism �
Evaluation �
Placeholder Transparency and Synchronization � � � � � � � � � � � � � �

��� Consistency of the P �C�Machine ��
��� Correctness of the P �C�Machine ��

� Placeholder Object Semantics ��

	�� Speci
cation of the P �Cph�machine ��
	�� Correctness of the P �Cph�machine ��

� The Low�Level Operational Semantics ��

��� Speci
cation of the P �CEK�machine �	
��� Correctness of the P �CEK�machine ��

� Related Work ��

� Applications of the Semantics ��

A Correctness Proof for the P �CEK�Machine �	

The Semantics of Future �

� Futures for Parallel Computation

Programs in functional languages o�er numerous opportunities for executing program com�
ponents in parallel� In a call�by�value language� for example� the evaluation of every function
application could spawn a parallel thread for each argument expression� However� if such a
strategy were applied indiscriminately� the execution of a program would generate far too
many parallel threads� The overhead of managing these threads would clearly outweigh any
bene
ts from parallel execution�

The future annotations of MultiLisp ��� ��� and its Scheme successors provide a simple
method for taming the implicit parallelism of functional programs� If a programmer believes
that the parallel evaluation of some expression outweighs the overhead of creating a separate
task� he may annotate the expression with the keyword future� An annotated functional
program has the same observable behavior as the original program� but the run�time system
may choose to evaluate the future expression in parallel to the rest of the program�

While past research on futures has concentrated on implementation and design is�
sues �	� ��� ��� ��� ��� ��� ���� this technical report focuses on the semantics of futures�
Speci
cally� it presents a series of semantics with varying degrees of intensionality� The
rst
semantics equates the value and behavior of �future e as that of e� which is the simplest
way to interpret future as an annotation� The second semantics interprets an annotated
expression as a potentially parallel task� The third semantics explicates the coordination of
parallel tasks with the introduction of explicit placeholder objects� Since all of these seman�
tics are formulated as program rewriting systems� the equivalence proofs rely on standard
techniques like bisimulation and a diamond lemma� The fourth and last semantics is a low�
level re
nement of the third semantics� which explicates just enough information to permit
the smooth derivation of program analyses�

A companion paper describes the use of our semantics in program optimization ���� It
focuses on the derivation of a provably correct program analysis algorithm from the last
semantics� The paper also describes a optimization algorithm for lowering the overhead of
task coordination in a language with futures� and the e�ects of implementing this opti�
mization for the Gambit compiler �	��

The presentation of our semantics for future proceeds as follows� The second section
introduces the language we consider and its de
nitional semantics� which interprets futures
as annotations� The third section presents a parallel program rewriting semantics of fu�
tures� and the fourth section introduces placeholder objects and touch operations� The

fth section contains the low�level re
nement� The sixth section compares our approach to
related work concerning the semantics of parallel functional languages� and the last section
discusses some applications for the our semantics� Appendix A contains the correctness
proof for the low�level semantics�

Notation We use f � A �� B to denote that f is a total function from A to B� and
similarly use f � A ��f B to mean that f is a
nite map from A to B�

� C� Flanagan� M� Felleisen

� A Functional Language with Futures

��� Syntax

Our motivation in developing a semantics for future is to provide a sound basis for the
compilation of programs with futures� Compilers typically convert source programs into
a simple intermediate representation� and then proceed to compile and optimize the inter�
mediate representation of the program� Therefore� we formulate the semantics of futures
for an intermediate representation of an idealized functional language� Speci
cally� we use
the subset of A�normal forms ��� of a ��calculus�like language with a let construct� a fu�
ture construct� a conditional and an explicit apply primitive� see Figure �� The language
also includes the primitives cons� car� and cdr for list manipulation� which will serve to
illustrate the treatment of primitive operations� and an unspeci
ed set of basic primitive
constants that includes at least numbers and the empty list nil�

The key property of terms in A�normal form is that each intermediate value is explicitly
named and where the order of execution follows the lexical nesting of let�expressions� The
use of A�normal forms facilitates the compile�time analysis of programs since every inter�
mediate value is named ����� and it simpli
es the de
nition of abstract machines ���� a fact
that we exploit in the development of abstract machines below�

M � �a ��� x �Terms�
j �let �x V � M �
j �let �x �futureM �� M �
j �let �x �car y�� M �
j �let �x �cdr y�� M �
j �let �x �if y M M �� M �
j �let �x �apply y z�� M �

V � Value ��� c j x j ��x�M � j �cons x y� �Values�

x � Vars � fx� y� z� � � �g �Variables�

c � Const � fnil� 	�
� � � �g �Constants�

Figure �� The A�normalized Language �a

A variable occurrence is free if it is not bound by an enclosing ��expression or let�
expression� A term is closed if it contains no free variables� We identify terms that di�er
only by consistent renaming of bound variables� The operation M �x � V � denotes the
capture�free substitution of V for all free occurrences of x within M � We use X� to denote
the set of closed terms of type X �terms� values�

The Semantics of Future �

Evaluator�

eval c � ��
a �� Answers � ferror��g

eval c�P � �

����
���

unload c�V � if P ����

c V

error if P ����

c error

� if �i �N �Mi � Statec such that
P �M� and Mi ���c Mi��

Data Speci�cations�

S � Statec ��� M j error �States�
M � �c ��� V �Run�time Language�

j �let �x V � M �
j �let �x �futureM �� M �
j �let �x �car V �� M �
j �let �x �cdr V �� M �
j �let �x �if V M M �� M �
j �let �x �apply V V �� M �
j �let �x M � M �

V � Valuec ��� c j x j ��x�M � j �cons V V � �Run�time Values�
F � FinalStatec ��� V j error �Final States�
A � Answers ��� c j procedure j �cons A A� �Answers�
E � EvalCtxt ��� � � �Evaluation Contexts�

j �let �x E� M �
j �let �x �future E�� M �

Unload Function�

unload c � Value
�
c �� Answers

unload c�c� � c

unload c���x�M �� � procedure

unload c��cons V� V��� � �cons unload c�V�� unload c�V���

Transition Function�

E � �let �x V � M � � ���c E � M �x� V � � �bind �
E � �let �x �future V �� M � � ���c E � M �x� V � � �future�id�

E � �let �x �car V �� M � � ���c

�
E � M �x� V�� � if V � �cons V� V��
error if V 	� �cons V� V��

�car �

E � �let �x �cdr V �� M � � ���c

�
E � M �x� V�� � if V � �cons V� V��
error if V 	� �cons V� V��

�cdr �

E � �let �x �if V M� M��� M � � ���c

�
E � �let �x M�� M � � if V 	� nil

E � �let �x M�� M � � if V � nil
�if �

E � �let �x �apply V� V��� M � � ���c

�
E � �let �x N �y � V��� M � � if V� � ��y�N �
error if V� 	� ��y�N �

�apply �

Figure �� The sequential C�machine

	 C� Flanagan� M� Felleisen

��� De�nitional Semantics

The semantics of the A�normalized language is a function from ��
a to results� A result is ei�

ther an answer� which is a closed value with all ��expression replaced by the tag procedure��

or error� indicating that some program operation was misapplied� or �� if the program di�
verges� We specify the de
nitional semantics for ��

a using a sequential abstract machine
called the C�machine �see Figure �� whose states are either closed terms in the run�time
language �c or the special state error� and whose deterministic transition rules are the
typical leftmost�outermost reductions of the lambda calculus ���� Each transition rule also
speci
es the error semantics of a particular class of expressions� For example� the transition
rule for car de
nes that if the argument to car is a pair� then the transition rule extracts
the
rst element of the pair� If the argument is not a pair� then the transition rule produces
the state error�

The only unusual transition rule is the one for future expressions� This rule pretends
that future is the identity operation� It demands that the body of a future expression is

rst reduced to a value� and then replaces the name for the future expression with this
value�

The de
nition of the transition function relies on the notion of evaluation contexts� An
evaluation context E is a term with a hole � � in place of the next sub�term to be evaluated�
e�g�� in the term �let �x M� M�� the next sub�term to be evaluated is M�� and thus the
de
nition of evaluation contexts includes �let �x E M�

A machine state is a �nal state if it is either a value or the special state error� No
transitions are possible from a
nal state� and for any state that is not a
nal state� there
is a unique transition step from that state to its successor state�

Lemma �
� �Uniform Evaluation Theorem� Let M � Statec�

�� If M �� FinalStatec� there exists a unique term M � such that M ���c M
��

�� If M � FinalStatec� there is no term M � such that M ���c M
��

Proof We use structural induction on Statec to prove that any term that is
not a
nal state matches the lefthand side of exactly one of the clauses for ���c�
Since each of these clauses de
nes a function on �c� the relation ���c relates
each term that is not a
nal state to a unique successor term� The proof that a

nal state has no successor is straightforward�

The Unique Evaluation Theorem implies that the relation evalc is a well�de
ned total func�
tion� Either the transition sequence for a program P terminates in a
nal state� in which
case evalc�P is an answer or error� or else the transition sequence is in
nite� in which case
evalc�P � ��

Theorem �
� The evaluator eval c is a total function�

Since the evaluator eval c of the C�machine obviously agrees with the sequential seman�
tics of the underlying functional language� future is clearly nothing but an annotation�

�We remove ��expressions from answers so that the observable behavior of programs does not depend on
the terms themselves� but only on their meaning�

The Semantics of Future �

� Parallel Operational Semantics

The sequential C�machine de
nes future as an annotation� and ignores the intension of
future as an advisory instruction concerning parallel evaluations� To understand this in�
tensional aspect of future annotations� we need a semantics of future that models the
concurrent evaluation of future expressions� For this purpose� we reformulate the C ma�
chine to account for parallelism� The result is the P �C�machine�

Evaluator�

evalpc � �
�
a �� Answers � ferror��g

evalpc�P � �

����
���

unloadpc�V � if P ����

pc V

error if P ����

pc error

� if �i �N �Si � Statepc� ni�mi �N such that
mi � 	� P � S� and Si ���ni�mi

pc Si��

Data Speci�cations�

S � Statepc ��� M j error j �f�let �p S� S� �States�
M � �pc ��� V j �let �x V � M � j � � � �As for �c�
V � Valuepc ��� PValuepc j p �Run�time Values�

PValuepc ��� c j x j ��x�M � j �cons V V � �Proper Values�
p � Ph�Vars ��� fp�� p�� p�� � � �g �Placeholder Variables�

Ph�Vars
Vars � �
F � FinalStatepc ��� V j error �Final States�

Unload Function�
unloadpc � Value

�
pc �� Answers

unloadpc�W � � unload c�W �

Placeholder Substitution S�p� V ��

M �p� V � � M with all free occurrences of p replaced by V

error�p� V � � error

�f�let �p� S�� S���p� V � �

�
�f�let �p� S��p� V �� S�� if p � p�

�f�let �p� S��p� V �� S��p� V �� if p 	� p�

Free Placeholder Function FP �

FP � Statepc �� P �Ph�Vars�
FP �M � � fp j p occurs in Mg

FP �error� � �
FP ��f�let �p S�� S��� � FP �S�� � �FP �S�� n fpg�

Figure �� The parallel P �C�machine� Evaluator and Data Speci
cations

��� Speci�cation of the P �C	�machine

State Space The state space of the P �C�machine is de
ned in Figure �� The set of
P �C values includes the values of the sequential C�machine �constants� variables� closures

� C� Flanagan� M� Felleisen

Transition Rules�

E � �let �x V � M � � ������
pc E � M �x� V � � �bind �

E � �let �x �future V �� M � � ������
pc E � M �x� V � � �future�id�

E � �let �x �car V �� M � � ������
pc�

E � M �x� V�� � if V � �cons V� V��
error if V 	� �cons V� V��� V 	� p

�car�

E � �let �x �cdr V �� M � � ������
pc�

E � M �x� V�� � if V � �cons V� V��
error if V 	� �cons V� V��� V 	� p

�cdr�

E � �let �x �if V M� M��� M � � ������
pc�

E � �let �x M�� M � � if V 	� nil� V 	� p

E � �let �x M�� M � � if V � nil
�if �

E � �let �x �apply V� V��� M � � ������
pc�

E � �let �x N �y � V��� M � � if V� � ��y�N �
error if V� 	� ��y�N �� V� 	� p

�apply�

E � �let �x �future N �� M � � ������
pc �f�let �p N � E � M �x� p� �� �fork�

p 	� FP�E� � FP�M �

�f�let �p V � S� ������
pc S�p� V � �join�

�f�let �p error� S� ������
pc error �join�error�

�f�let �p� �f�let �p� S�� S��� S�� ������
pc �f�let �p� S�� �f�let �p� S�� S��� �lift�

p� 	� FP �S��

�f�let �p S�� S�� ���a�c�b
pc �f�let �p S�

�� S
�

�� �parallel�
if S� ���a�b

pc S
�

�� S� ���
c�d
pc S

�

�

S ������
pc S �re�exive�

S ���a�c�b�d
pc S�� �transitive�

if S ���a�b
pc S�� S� ���c�d

pc S
�� and a� c � 	

Figure 	� The parallel P �C�machine� Transition Rules

and pairs� which we refer to as proper values� To model the implementation of futures� the
P �C�machine also includes a new class of values called placeholder variables � A placeholder
variable p represents the result of a computation that is in progress� Once the computation
terminates� all occurrences of the placeholder are replaced by the value returned by the
computation�

The Semantics of Future �

Each state of the C�machine represents a single thread of control or task � To model the
concurrent evaluation of future expressions by parallel threads� the P �C�machine includes
additional states of the form �f�let �p S� S�� The primary sub�state S� is initially the body
of the future expression� and the secondary sub�state S� is initially the context surrounding
the future expression� The placeholder p represents the result of S� in S�� The usual
conventions for binding constructs like � and let apply to f�let� We use S�p � V � and
E �p � W � to denote the capture�free substitution of V for all free occurrences of p within
a state S and an evaluation context E respectively� A state is closed if it contains no free
variables or free placeholders� The evaluation of S� is considered mandatory � since it is
guaranteed to contribute to the completion of the computation� The evaluation of S� is
speculative� since such work may not be required for the termination of the program� In
particular� if S� raises an error signal� then the evaluator discards the state S�� and any
e�ort invested in the evaluation of S� is wasted� The distinction between mandatory and
speculative steps is crucial for ensuring a sound de
nition of an evaluator and is incorporated
into the de
nition of the transition relation�

Transition Rules The transition relation of the P �C�machine is speci
ed as a quadruple�
see Figure 	� If S ���n�m

pc S � holds� then the index n is the number of steps involved in
the transition from S to S�� and the index m � n is the number of these steps that are
mandatory �

The transition relation is formulated as a collection of transition rules� The rules �bind�
�future�id� �car� �cdr� �if and �apply are simply the transition rules of the C�machine�
appropriately modi
ed to allow for undetermined placeholders� An application of one of
these rules counts as a mandatory step�

The transition rule �fork initiates parallel evaluation� This rule may be applied when�
ever the current term includes a future expression within an evaluation context� i�e��

E � �let �x �future N M �

The future annotation allows the expressionN to be evaluated in parallel with the enclosing
context E � �let �x � �M �� The machine creates a new placeholder p to represent the result
of N � and initiates parallel evaluation of N and E � �let �x p M ��

The transition rule �parallel permits concurrent evaluation of both sub�states of a
parallel state �f�let �p S� S��

The transition rules �join and �join�error merge distinct threads of evaluation� When
the primary sub�state S� of a parallel state �f�let �p S� S� returns a value V � then the rule
�join replaces all occurrences of the placeholder p within S� by that value� If the primary
sub�state S� evaluates to error� then the rule �join�error discards the secondary sub�state
S� and returns error as the result of the parallel state�

The transition rule �lift restructures nested parallel states� and thus exposes additional
parallelism in certain cases� Consider the state �f�let �p� �f�let �p� S� V S�� The
rule �lift allows the value V to be returned to the sub�state S� �via a subsequent �join
transition� without having to wait on the termination of S��

�

�The addition of this optimization rule is the result of proving the soundness of the semantics via the
standard diamond lemma� Without this rule� the machine does not possess the diamond property �but is
probably still consistent	�

� C� Flanagan� M� Felleisen

The rules �re�exive and �transitive close the relation under re�exivity and transitivity�
We write S ����

pc S
� if S ���n�m

pc S� for some n�m � N� A state S is in normal form if
there is no state S� such that S ���n�m

pc S� with n � �� A state is a �nal state if it is either a
value� or the state error� and a state is blocked if it is in normal form but not a
nal state�

Indeterminism Unlike the functional C�machine� which maps each state to a unique
successor state� the transition relation of the P �C�machine has an important degree of
freedom� The de
nition of the P �C�machine does not specify when the transition rule
�fork applies� For example� consider the state E � �let �x �future N M �� Since the
context surrounding N is an evaluation context� an implementation of the machine may
proceed either by evaluating N � or by creating a new task via a �fork transition� The choice
of whether or not to apply the transition rule �fork is entirely up to the implementation
of the machine� An implementation may immediately apply this rule whenever a future
expression is encountered� realizing a task creation strategy called eager task creation ����
��� ���� Alternatively� an implementation may never invoke the rule �fork� resulting in
a purely sequential evaluation� In between these two extremes lie a range of strategies
where new tasks are created according to some implementation�dependent and possibly
load�dependent algorithm� A particularly e�cient strategy is lazy task creation �	� ����
where new tasks are created via fork transitions only when the additional parallelism can
exploit idle computing resources�

A second source of indeterminism in the speci
cation of the P �C�machine is the tran�
sition rule �parallel� This rule does not specify the number of steps that parallel sub�states
must perform before they synchronize� An implementation of the machine can use almost
any scheduling strategy for allocating processors to tasks� The only constraint� as speci
ed
in the de
nition of evalpc� is that the implementation must perform mandatory computation
steps on a regular basis�

Evaluation In general� the evaluation of a program can proceed via many di�erent tran�
sition sequences� Some of these transition sequences may be in
nite� even if the program
terminates according to the sequential semantics� Consider�

P � �let �x �future E �

where E is a term that raises a run�time error� and � is some diverging sequential term such
that � ������

pc �� ���
���
pc �� ���

���
pc 	 	 	� The sequential evaluator never executes � because P �s

result is error� In contrast� P admits the following in
nite parallel transition sequence�

P ������
pc �f�let �p E � via �fork

������
pc �f�let �p E �� since � ������

pc ��

������
pc �f�let �p E �� since �� ������

pc ��

������
pc 	 	 	

This �evaluation� diverges because it exclusively consists of speculative transition steps and
does not include any mandatory transition steps that contribute to the sequential evaluation
of the program�

The Semantics of Future �

The evaluator for the P �C�machine excludes these excessively speculative transition se�
quences� and only admits transition sequences that regularly includes mandatory transition
steps�� For a terminating transition sequence� the number of speculative steps performed is
implicitly bounded� For non�terminating sequences� the de
nition of the evaluator explicitly
requires that mandatory transition steps are performed on a regular basis� This constraint
implies that an implementation of the machine must keep track of the mandatory thread
and must ensure that this mandatory thread is regularly executed�

In summary� the P �C�machine arbitrarily chooses any transition sequence that regu�
larly performs mandatory computation� and reports on the behavior of that sequence� If
the chosen transition sequence produces either a value V or error� then evalpc returns
unloadpc�V � or error respectively� If the chosen transition sequence does not terminate�
then evalpc returns �� As we will prove below� the evaluator relation evalpc is a total
function and agrees with the sequential evaluator evalc�

Placeholder Transparency and Synchronization We say that a program operation
is placeholder�strict in a position if it needs speci
c information about the value of the
corresponding argument� For example� the operations car and cdr are placeholder�strict�
and if and apply are placeholder�strict in their
rst position� Whenever an undetermined
placeholder appears in a placeholder�strict argument position of one of these operations�
then that operation must block until the placeholder is determined and speci
c information
about the value of the argument is known� We model this behavior in the P �C�machine
via side�conditions associated with the transition rules �car� �cdr� �if and �apply� These
side�conditions ensure that if a placeholder�strict argument is an undetermined placeholder�
then the transition rule cannot
re�

For a brief illustration of this idea� consider the following transition sequence for the
following program P �

P � �let �y �future �let �x � �cons x x
�let �z �car y z

��

������
pc �f�let �p �let �x � �cons x x

�let �z �car p z

��

������
pc �f�let �p �cons � �

�let �z �car p z

��

������
pc �let �z �car �cons � � z �	

������
pc � ��

The
rst transition in this sequence creates a new task for the evaluation of the future
expression via a �fork transition� After task creation �line �� no transition steps are
possible from the secondary sub�state �let �z �car p z� The transition rule �car cannot

re since the argument to the operation �car is a placeholder variable� Evaluation of the
primary substate �highlighted with a box proceeds unhindered� Once the primary substate
produces a value �line �� the transition rule �join synchronizes the separate threads of
computation by replacing all occurrences of p by that value� After synchronization �line 	�

�The concept of a mandatory step is closely related to the notion of legitimacy introduced by Katz and
Weise
����

�� C� Flanagan� M� Felleisen

the operation car applies to the new argument �cons � �� and execution continues with the
program returning the answer �� Since program operations block whenever an argument in
a placeholder�strict position is undetermined� the P �C�machine never performs a transition
before a placeholder is determined that it would perform di�erently after the placeholder is
determined� Hence the transition relation of the machine exhibits a substitutivity property�
the transition relation commutes with substitution of values for placeholders� The proof of
this property relies on a Substitution Lemma for placeholders�

Lemma �
� �Substitution Lemma for 	 � 	 � 	 �� If M � �pc and V�W � Valuepc�
then

�M �p�W ��x� V �p�W �� � �M �x� V ��p�W ��

Proof� The proof proceeds by induction on the structure of M �

Lemma �
� �Substitutivity� Placeholder Transparency� If S� ���
n�m
pc S�� then for

any placeholder p and any W � Valuepc� S��p�W � ���n�m
pc S��p�W ��

Proof The proof is by lexicographic induction induction on n and on the size of
S�� and proceeds by case analysis on the last step in the transition S� ���

n�m
pc S��

 Suppose S� ���
���
pc S� via the rule �car with S� � E � �let �x �car V M ��

Let E � � E �p � W �� V � � V �p � W � and M � � M �p � W �� We consider
three possibilities for V �

� Suppose V � �cons V� V�� Then S� � E � M �x� V�� �� Let V �

� �
V��p�W � and V �

� � V��p�W ��

S��p�W � � E �� �let �x �car �cons V �

� V
�

� M
� �

������
pc E �� M ��x� V �

�� �

� S��p�W � by Lemma ���

� Suppose V is neither a pair nor a placeholder� Then S� � error� and
since V � is neither a pair nor a placeholder�

S��p�W � � E �� �let �x �car V � M � �

������
pc error

� S��p�W �

� The case where V is a placeholder is impossible� since no transitions
are possible from such a state�

 The reasoning for the transition rules �bind� �future�id� �cdr� �if � �ap�
ply� �fork� �join� �join�error� �lift� �re�exive and �transitive is similar�

 We consider the case where S� ���n�m
pc S� via the rule �parallel in order to

justify our use of lexicographic induction� For this case�

S� � �f�let �p� S�

� S
��

�
S� � �f�let �p� S�

� S
��

�
S�

� ���a�m
pc S�

�

S��

� ���c�d
pc S��

�

The Semantics of Future ��

and n � a � c� Since S�

� and S��

� are substates of S�� by the inductive
hypothesis we have�

S�

��p�W � ���a�m
pc S�

��p�W �

S��

� �p�W � ���c�d
pc S��

� �p�W �

Hence�

S��p�W � � �f�let �p� S�

��p�W � S��

� �p�W �

���n�m
pc �f�let �p� S�

��p�W � S��

� �p�W � via �parallel

� S��p�W �

The Substitutivity Lemma shows that undetermined placeholders represent results of
parallel computations in a transparent manner� This property is crucial in proving the
correctness of the machine�

��� Consistency of the P �C	�Machine

The observable behavior of the P �C�machine on a given program is deterministic� despite
its indeterminate internal behavior� We prove this consistency in the traditional manner�
using a modi
ed form of the Diamond Lemma� The proof of the Diamond Lemma relies on
the following two obvious properties of the relation ���pc�

Lemma �
� ��� If S ���n�m
pc S�� then n � m� ��� If S ������

pc S
�� then S � S��

Proof� By induction of n� and case analysis of S ���n�m
pc S��

The Modi
ed Diamond Lemma states that if we reduce an initial state S� by two
alternative transitions� producing respectively states S� and S�� then there is some state
S� that is reachable from both S� and S�� Furthermore� the number of mandatory steps
on the transition from S� to S� via S� is bounded by twice the total number of steps on
the transition from S� to S� via S�� and vice�versa� This bound implies that all transition
sequences for a given program exhibit the same termination behavior�

Lemma �
� �Modi�ed Diamond Lemma� Let S�� S�� S� � Statepc� If S� ���
n��m�

pc S�
and S� ���n� �m�

pc S�� then there exists S� � Statepc and n�� m�� n�� m� � N such that
S� ���

n��m�

pc S� and S� ���
n��m�

pc S�� Furthermore m� � m� � ��n� � n� and m� � m� �
��n� � n��

Proof The proof is by lexicographic induction on n�� n� and the size of S��
We de
ne the transition relation �seq to be the union of the transition rela�
tions �bind� �car� �cdr� �if and �apply� Then the transition relation of the
P �C�machine is the union of the eight relations �seq� �future�id � �fork� �join�
�join�error� �lift� �parallel� �re�exive and �transitive� The proof proceeds by
case analysis of the pair of transition rules used for S� ���

n�
pc S� and S� ���

n�
pc S��

�� C� Flanagan� M� Felleisen

The following table enumerates the possible combinations after symmetry con�
siderations� and annotates each case with a reference to the argument used to
prove that case�

�seq �f�id �fork �join �join�error �lift �parallel �re�� �trans�

�seq � � � �
�future�id � 	 � �
�fork � � �
join � � � �

�join�error � � � �
�lift � � � �

�parallel � � �
�re�exive � �
�transitive �

The following arguments show that the lemma holds in each of the above cases�

� The cases marked by the symbol are impossible� since the domains of
the respective relations are disjoint�

�� The cases marked by the symbol � hold� since the relation in question is a
partial function� and hence S� � S��

�� For the case where S� ���
���
pc S� via the rule re�exive� take S� � S��

�� For the case where S� ���n��m�

pc S� via the rule transitive� we have that

S� ���a��b�
pc S� ���a��b�

pc S�� The following diagram outlines our proof technique
for this case�

S� ���a��b�
pc S� ���a��b�

pc S���yn��m�

���a��b�
���n��m�

S� 	 	 	a��b� S� 	 	 	a��b� S�

Since a� � n�� by the inductive hypothesis there exists S� � Statepc and
a�� b�� a�� b� � N such that

S� ���a��b�
pc S�

S� ���a��b�
pc S�

b� � b� � ��n� � a�
m� � b� � ��a� � a�

Since S� ���
a��b�
pc S�� S� ���

a��b�
pc S� and a� � n�� by the inductive hypothesis

there exists S� � Statepc and n�� m�� a�� b� � N such that

S� ���n��m�

pc S�
S� ���a��b�

pc S�

b� �m� � ��a� � a�
b� � b� � ��a� � n�

The Semantics of Future ��

Let n� � a� � a� and m� � b� � b�� and we have that S� ���n��m�

pc S� and
S� ���

n��m�

pc S�� Furthermore�

m� �m� � b� � b� �m�

� �b� � b� � �b� �m�� b�

� ��n� � a� � ��a� � a�� b� �I�H�

� � n� � ��a� � a� � �� a� � b�

� ��n� � n�

Similarly� m� �m� � ��n� � n��

�� Suppose S� ���
���
pc S� via the rule �seq� and S� ���

���
pc S� via the rule �fork�

Then n� � m� � n� � �� m� � � and

S� � E � �let �x �future E �� N � M �

S� � �f�let �p E �� N � E � M �x� p� �

We consider two cases for S� ���
���
pc S� separately�

� Suppose E ��N � ������
pc E

��N � �� and S� � �let �x �future E
�� N � � M�

Set S� � �f�let �p E �� N � � E � M �x � p� �� Clearly S� ������
pc S� via

�fork� S� ���
���
pc S� via �seq� and the indices satisfy the inequalities�

� Alternatively� suppose S� � error� Then let S� � error� Observe
that

S� ������
pc �f�let �p error E � M �x� p� � via �parallel and �seq

������
pc error via �join�error

Also n� � m� � � and m� � m� � �� Hence m� � m� � � and
n� � n� � �� This case is the reason for the potential factor of two
di�erence between m� �m� and n� � n��

�	 Suppose S� ������
pc S� via the rule �future�id� and S� ���

���
pc S� via the rule

�fork� There are two sub�cases to consider� Suppose the two transitions
operate on the same future expression� Then�

S� � E � �let �x �future V M �

S� � E � M �x� V � �

S� � �f�let �p V E � M �x� p� �

For this case� choose S� � S��

S� ������
pc S�

S� ������
pc �E � M �x� p� ��p� V �

� E � M �x� V � � � S�

since p �� FP �E � FP �M

The indices clearly satisfy the inequalities�

�	 C� Flanagan� M� Felleisen

Alternatively� suppose that the transitions operate on di�erent future ex�
pressions� Then

S� � E � �let �x �future E �� �let �y �future V N � M �

S� � E � �let �x �future E �� N �y � V � � M �

S� � �f�let �p E �� �let �y �future V N �
E � M �x� p� �

where p �� FP �E � FP �M

Let

S� � �f�let �p E �� N �y � V � � E � M �x� p� �

and we have

S� ������
pc S� via �fork

Also� since E �� �let �y �future V N � ������
pc E

��N �y � V � � via �future�id�
we have �by using the rule �parallel for compatible closure

S� ������
pc S� via �parallel

The indices clearly satisfy the inequalities�

�� Suppose S� ���
���
pc S� via the rule �fork� and S� ���

���
pc S� by the rule �fork�

If the two transition operate on the same future expression� then S� � S��
Otherwise�

S� � E � �let �x �future E �� �let �y �future N � N � M �

S� ���
���
pc S� � �f�let �p� E

�� �let �y �future N � N �
E � M �x� p�� �

S� ���
���
pc S� � �f�let �p� N

�
E � �let �x �future E �� N �y� p�� � M �

where p� �� FP �E�FP �M and p� �� FP �E�FP �E ��FP �N�FP �M�
Let

S� � �f�let �p� N
�

�f�let �p� E �� N �y � p�� � E � M �x� p�� �

Then

S� ������
pc �f�let �p� �f�let �p� N � E �� N �y � p�� �

E �� M �x� p�� �
via �fork

������
pc S� via �lift

S� ������
pc S� via �fork

and the indices clearly satisfy the inequalities�

The Semantics of Future ��

�� For the case where S� ������
pc S� via the rule �join� and S� ���

n��
pc S� by the

rule �parallel� we have

S� � �f�let �p V S

S� � S�p� V �

S� � �f�let �p V S� where S ���n�m
pc S�

Pick S� � S��p � V �� and S� ���
n�m
pc S� by the Placeholder Transparency

Lemma ����� S� ������
pc S� via the rule �join� and the indices clearly satisfy

the inequalities�

�� Suppose S� ���
���
pc S� via the rule �join�error� and S� ���

n��
pc S� by the rule

�parallel� Then

S� � �f�let �p error S

S� � error

S� � �f�let �p error S� where S ���n�m
pc S�

Pick S� � error� Then S� ���
���
pc S�� S� ���

���
pc S� by the rule �join�error�

and the indices clearly satisfy the inequalities�

�� Suppose both the transitions S� ���n��m�

pc S� and S� ���n��m�

pc S� are via the
rule �parallel� Then

S� � �f�let �p S �

� S
��

�

S� � �f�let �p S �

� S
��

�

where S�

� ���
a��m�

pc S�

�� S
��

� ���
c��d�
pc S��

� and n� � a� � c�

S� � �f�let �p S �

� S
��

�

where S�

� ���
a��m�

pc S�

�� S
��

� ���
c��d�
pc S��

� and n� � a� � c�

Since a� � n�� a� � n� and S
�

� is strictly smaller than S�� by the inductive
hypothesis there exists S�

� such that

S�

� ���a��b�
pc S�

�

S�

� ���a��b�
pc S�

�

m� � b� � ��a� � a�
m� � b� � ��a� � a�

Similarly� there exists S��

� such that

S��

� ���c��d�
pc S��

�

S��

� ���c��d�
pc S��

�

d� � d� � ��c� � c�
d� � d� � ��c� � c�

Letting S� � �f�let �p S�

� S
��

�� we have

S� ���n��m�

pc S�

S� ���n��m�

pc S�

where n� � a� � c�� m� � b�� n� � a� � c�� m� � b�� Furthermore�

m� �m� � m� � b� � ��a� � a� � ��n� � n�

m� �m� � m� � b� � ��a� � a� � ��n� � n��

�� C� Flanagan� M� Felleisen

�� Suppose S� ������
pc S� via the rule �lift� and S� ���n��m�

pc S� by the rule
�parallel� Then

S� � �f�let �p� �f�let �p� Sa Sb Sc

S� ������
pc S� � �f�let �p� Sa �f�let �p� Sb Sc p� �� FV �Sc

S� ���n��m�

pc S� � �f�let �p� S
�

� S
��

�

where �f�let �p� Sa Sb ���a�m�

pc S�

�

and Sc ���
c�d
pc S

��

� � n� � a� c

We proceed by sub�case analysis of the last step in �f�let �p� Sa Sb ���a�m�

pc

S�

��

� There is no S�

� such that �f�let �p� Sa Sb ���
a�m�

pc S�

� via any of the
rules �bind� �future�id� �car� �cdr� �if � �apply or �fork�

� Suppose �f�let �p� Sa Sb ���a�m�

pc S �

� via �join� Then

S� � �f�let �p� �f�let �p� V Sb Sc

S� ������
pc S� � �f�let �p� V �f�let �p� Sb Sc p� �� FV �Sc

S� ���n���
pc S� � �f�let �p� Sb�p� � V � S��

� n� � � � c

Let S� � S��

S� ������
pc �f�let �p� Sb�p� � V � Sc via �join

���c�d
pc �f�let �p� Sb�p� � V � S��

� � S� via �parallel

The indices clearly satisfy the inequalities�

� Suppose �f�let �p� Sa Sb ���
a�m�

pc S �

� via �join�error� Then

S� � �f�let �p� �f�let �p� error Sb Sc

S� ������
pc S� � �f�let �p� error �f�let �p� Sb Sc p� �� FV �Sc

S� ���n���
pc S� � �f�let �p� error S��

� n� � � � c

Let S� � error�

S� ������
pc S�

S� ������
pc S�

The indices clearly satisfy the inequalities�

� The cases where �f�let �p� Sa Sb ���
a�m�

pc S �

� via the rules �re�exive�
�transitive or �parallel are straightforward�

The Modi
ed Diamond Lemma implies that all transition sequences exhibit the same ob�
servable behavior�

The Semantics of Future ��

Lemma �
� �Consistency of Transitions� Let P be a program� If P ����

pc S� where S
is in normal form� then

�� For all normal form S� such that P ����

pc S
�� S� � S�

�� It is impossible that for all i � N there exists Si � Statepc and ni� mi � N such that
mi � �� P � S� and Si ���ni�mi

pc Si���

Proof

�� Suppose P ����

pc S and P ����

pc S
�� where S� S� are in normal form� By the

Modi
ed Diamond Lemma ���	� there exists some S� such that S ����

pc S�
and S� ����

pcS�� But since S� S
� are in normal form� we have that S � S� �

S��

�� We prove part � by contradiction� Assume that P ���n�m
pc S where S is in

normal form� and that there exists some sequence of states Si � Statepc
and ni� mi � N such that mi � �� P � S� and Si ���ni�mi

pc Si���

Pick an integer k � �n� Then P ���a�b
pc Sk��� where a � �i�k

i��ni and

b � �i�k
i��mi� By the Modi
ed Diamond Lemma ���	� Sk�� ���c�d

pc S for

some c� d � N� with �n � b�d� But b�d � b � �i�k
i��mi � k�� � k� since

mi � �� producing the contradiction �n � k � �n�

Since all transition sequences for a given program exhibit the same observable behavior� the
evaluator evalpc for the P �C�machine is a well�de
ned function�

Theorem �
� �Consistency of evalpc� The relation evalpc is a function�

Proof� Follows from Lemma ����

��� Correctness of the P �C	�Machine

Since each sequential transition rule of the P �C�machine subsumes the corresponding tran�
sition rule of the C�machine� every transition of the C�machine is also a transition of the
P �C�machine�

Lemma �
� Suppose S ���c S
�� for S� S� � Statec� Then S ������

pc S��

The correspondence between transitions of the two machines implies that their respective
evaluators are equivalent�

Theorem �
� �Correctness of evalpc� evalc � evalpc�

Proof Let P be any program� We proceed by case analysis of the de
nition of
evalc�

�� C� Flanagan� M� Felleisen

 Suppose evalc�P � unload c�V � because

P � S� ���c S� ���c 	 	 	 ���c Sn � V

Then P ���n�n
pc V � and hence evalpc�P � unloadpc�V � � unload c�V ��

 Alternatively� suppose evalc�P � error because

P � S� ���c S� ���c 	 	 	 ���c Sn � error

Then P ���n�n
pc error� and hence evalpc�P � error�

 Finally� suppose evalc�P � � via the in
nite sequence

P � S� ���c S� ���c 	 	 	 ���c Sn ���c 	 	 	

Then we have that

P � S� ���
���
pc S� ���

���
pc 	 	 	 ���

���
pc Sn ���

���
pc 	 	 	

and hence evalpc�P � ��

Hence� for all programs P � eval c�P � evalpc�P �

The equivalence of the two evaluators implies that evalpc is de
ned for all programs�

Theorem �
	 �Completeness of evalpc� The relation evalpc is a total function�

In summary� the P �C�machine is a correct implementation of the C�machine in that
both de
ne the same semantics for the source language� Hence� the interpretation of future
as a task creation construct� with implicit task coordination� is entirely consistent with the
de
nitional semantics of future as an annotation�

� Placeholder Object Semantics

The P �C�machine speci
es the parallel execution behavior of programs with futures at a
fairly high level� It thus hides certain low�level operations that are required in the imple�
mentation of futures� In particular� implementations typically represent placeholders using
placeholder objects� and avoid the need for an expensive substitution operation on placehold�
ers �cmp� join by imperative updating these placeholder objects instead� This technique
requires touch operations within placeholder�strict primitives to dereference placeholder
objects whenever necessary� Since we plan to use the semantics of future to prove the cor�
rectness of an algorithm for removing redundant touches� we reformulate the P �C�machine
to expose these placeholder objects and the associated touch operations� The result is the
P �Cph�machine�

The Semantics of Future ��

Evaluator�

evalpc� � ��
a �� Answers � ferror��g

evalpc� �P � �

����
���

unloadpc� �V � if P ����

pc� V

error if P ����

pc� error

� if �i �N �Si � Statepc� � ni�mi �N such that
mi � 	� P � S� and Si ���

ni�mi

pc� Si��

Data Speci�cations�

S � Statepc� ��� M j error j �f�let �p S� S� �States�
M � �pc� ��� V j �let �x V � M � j � � � �As for �c�
V � Valuepc� ��� PValuepc� j hph p �i j hph p V i �Run�time Values�

PValuepc� ��� c j x j Clpc� j Pairpc� �Proper Values�
Clpc� ��� ��x�M � �Closures�
Pairpc� ��� �cons V V � �Pairs�

Auxiliary Functions�

unload pc� � Value
�
pc� �� Answers

unloadpc� �c� � c

unloadpc� ���x�M �� � procedure

unloadpc� ��cons V� V��� � �cons V �

� V
�

��
V �

i � unloadpc� �Vi�
unloadpc� �hph p V i� � unloadpc� �V �

touchpc� � Valuepc� �� PValuepc � f�g
touchpc� �hph p �i� � �
touchpc� �hph p V i� � touchpc� �V �

touchpc� �V � � V if V � PValuepc�

Placeholder Substitution S�p �� V ��

M �p �� V � � M with all free occurrences of hph p �i replaced by hph p V i

error�p �� V � � error

�f�let �p� S�� S���p �� V � �

�
�f�let �p� S��p �� V �� S�� if p � p�

�f�let �p� S��p �� V �� S��p �� V �� if p 	� p�

Figure �� The parallel P �Cph�machine� Evaluator and Data Speci
cations

��� Speci�cation of the P �Cph	�machine

The state space of the P �Cph�machine is a minor revision of that of the P �C�machine� see
Figure �� Instead of plain variables� placeholders are now tagged objects� An undetermined
placeholder object �written hph p �i is created to represent the result of each parallel task
�cmp� �fork� The symbol � indicates that the result of the computation is unknown� and
p is used to distinguish distinct placeholder objects� When the computation associated with
the placeholder object terminates� producing a value V � then the undetermined placeholder
object is replaced by the determined placeholder object hph p V i��

The correctness of this technique requires that a determined placeholder object hph p V i
representing the value V is observationally equivalent to the value V itself� To ensure

�The explicit replacement of undetermined placeholders by determined placeholders is still unrealistic�
but su�ces for our purposes�

�� C� Flanagan� M� Felleisen

Transition Rules�

E � �let �x V � M � � ������
pc� E � M �x� V � � �bind �

E � �let �x �future V �� M � � ������
pc� E � M �x� V � � �future�id�

E � �let �x �car V �� M � � ������
pc��

E � M �x� V�� � if touchpc� �V � � �cons V� V��
error if touchpc� �V � 	� Pairpc� � f�g

�car �

E � �let �x �cdr V �� M � � ������
pc��

E � M �x� V�� � if touchpc� �V � � �cons V� V��
error if touchpc� �V � 	� Pairpc� � f�g

�cdr �

E � �let �x �if V M� M��� M � � ������
pc��

E � �let �x M�� M � � if touchpc� �V � 	� fnil� �g
E � �let �x M�� M � � if touchpc� �V � � nil

�if �

E � �let �x �apply V� V��� M � � ������
pc��

E � �let �x N �y � V��� M � � if touchpc� �V�� � ��y�N �
error if touchpc� �V�� 	� Clpc� � f�g

�apply�

E � �let �x �future N �� M � � ������
pc� �f�let �p N � E � M �x� hph p �i� �� �fork�

p 	� FP�E� � FP�M �

�f�let �p V � S� ������
pc� S�p �� V � �join�

�f�let �p error� S� ������
pc� error �join�error�

�f�let �p� �f�let �p� S�� S��� S�� ������
pc� �f�let �p� S�� �f�let �p� S�� S��� �lift�

p� 	� FP �S��

�f�let �p S�� S�� ���a�c�b
pc� �f�let �p S�

�� S
�

�� �parallel�

if S� ���a�b
pc S

�

�� S� ���
c�d
pc S

�

�

S ������
pc� S �re�exive�

S ���a�c�b�d
pc� S�� �transitive�

if S ���a�b
pc S�� S� ���c�d

pc S
��� a� c � 	

Figure �� The parallel P �Cph�machine� Transition Rules

this behavior� the primitives car� cdr� if and apply perform touch operations on their
placeholder�strict arguments� A touch operation behaves as the identity operation on proper
values� but when applied to a placeholder object� the touch operation dereferences the
placeholder object to retrieve the value that it represents�

The Semantics of Future ��

An occurrence of an undetermined placeholder object hph p �i is free if p is not bound
by an enclosing �et expression� and a state S is closed if it does not contain any free
variables or free undetermined placeholder objects�

��� Correctness of the P �Cph	�machine

The state space of the P �Cph�machine is identical to that of the P �C�machine� apart
from the use of placeholder objects� Therefore� each P �Cph�machine state corresponds
directly to a P �C�machine state� The translation function � from P �Cph�states to P �C�
states simply replaces determined placeholder objects by the appropriate value� and replaces
undetermined placeholder objects by the corresponding placeholder variable�

De�nition �
�
 ���

� � Statepc� �� Statepc
���hph p �i�� � p

���hph p V i�� � ���V ��
���c�� � c

���x�� � x

�����x�M�� � ��x����M ��
	 	 	 � 	 	 	 similar clauses for other �pc� terms

���error�� � error

����f�let �p S� S��� � �f�let �p ���S��� ���S���

� extends in a natural manner to evaluation contexts� ��� � � �� � � �� � � �

The function � is a bisimulation relation� i�e�� every transition of the P �Cph�machine
corresponds to a transition of the P �C�machine� and vice versa� The proof of this property
relies on the following lemma concerning the translation ��

Lemma �
�

�� For all V � Valuepc�� if touchpc� �V � �� � then ���touchpc� �V ��� � ���V ���

�� For all V � Valuepc�� unloadpc� �V � � unloadpc����V ����

	� ���E �� ����M ��� � ���E � M ���

� ���M ���x� ���V ��� � ���M �x� V ���

Proof� The four facts follow from straightforward structural induction�

Theorem �
� �Bisimulation Theorem� Let S� � Statepc and S�

� � Statepc� such that
���S�

��� � S��

�� If S�

� ���
n�m

pc�
S�

�� then S� ���n�m
pc ���S�

����

�� If S� ���
n�m
pc S�� then there exists S�

� � Statepc� such that S�

� ���
n�m
pc� S

�

� and ���S
�

��� � S��

�� C� Flanagan� M� Felleisen

Proof

�� The proof of the
rst part proceeds by lexicographic induction on n and
on the size of S�

�� and by case analysis of the last step in S
�

� ���
n�m

pc� S
�

�� The
interesting cases concern the placeholder�strict operations� We examine
the case for the transition rule �car in detail�

Suppose S�

� ���
���
pc� S

�

� via the transition rule �car� Then

S�

� � E � �let �x �car V M �

S� � ���E �� � �let �x �car ���V �� ���M �� �

We consider three cases for V separately�

 Suppose touchpc� �V � � �cons V� V�� Then

S�

� � E � M �x� V�� �

���V �� � �cons ���V��� ���V���

S� ������
pc ���E �� � ���M ���x� ���V���� �

� ���E �� � ���M �x� V���� �

� ���E � M �x� V�� ���

� ���S�

���

 Suppose touchpc� �V � �� Pairpc� � f�g� i�e�� touchpc� �V � � Const �Vars�
Clpc� � Then

S�

� � error

���V �� � Const �Vars � f��x�Mg

S� ������
pc error

 The case where touchpc� �V � � � is impossible� since S�

� would not be a
�car�redex�

Thus the case for the transition rule �car holds� The analysis of the
transition rules �cdr� �if and �apply is similar� We consider in detail
the case for the �parallel rule� in order to justify our use of lexicographic
induction�

Suppose S�

� ���
n�m
pc S �

� via the rule �parallel� Then there exists some states
X �

�� Y
�

�� X
�

�� Y
�

� � Statepc� such that�

S�

� � �f�let �p� X �

� Y
�

�
S�

� � �f�let �p� X �

� Y
�

�
n

X �

� ���a�m

pc� X �

�

Y �

� ���c�d

pc�
Y �

�

where n � a � c� Since X �

� and Y
�

� are substates of S
�

�� by the inductive
hypothesis� we have�

���X �

��� ���
a�m
pc ���X �

���

���Y �

� �� ���
c�d
pc ���Y �

� ��

The Semantics of Future ��

Hence�

S� � �f�let �p� ���X �

��� ���Y
�

� ��

���n�m
pc �f�let �p� ���X �

��� ���Y
�

� �� via �parallel

� ���S �

���

The proofs for the remaining cases are straightforward�

�� We prove the second part by lexicographic induction on n and on the size
of S�� and by case analysis of the last step in the transition S� ���

n�m
pc S��

Again� the interesting cases concern placeholder�strict operations� and we
consider the transition rule �car in detail�

Suppose S� ������
pc S� via the transition rule �car� Then

S� � E � �let �x �car V M �

An examination of the de
nition of � shows that S�

� must be

E �� �let �x �car V � M � �

where ���E ��� � E ����V ��� � V and ���M ��� �M � We consider three cases for
V �

 Suppose V � �cons V� V�� It follows that S� � E � M �x � V�� �
and V � � �cons V �

� V �

�� where ���V
�

i �� � Vi for i � �� �� Choosing
S�

� � E �� M ��x� V �

� � �� we have that S
�

� ���
���
pc� S

�

� and ���S
�

��� � S��

 Suppose V is neither a pair nor a placeholder� Then V � Const �
Vars�f��x�Mg� and hence V � � Const�Vars�f��x�Mg� Therefore
S� � S�

� � error� and the conclusion holds for case� too�

 The case where V is a placeholder is impossible� since S� would not be
a �car�redex�

Thus the theorem holds if S� ���n�m
pc S� via the transition rule �car� The

analysis of the transition rules �cdr� �if and �apply is similar� We also
examine in detail the case for the �parallel rule� in order to show why we
choose to use lexicographic induction�

Suppose S� ���
n�m
pc S� via the rule �parallel� Then there exists some states

X�� Y�� X�� Y� � Statepc such that�

S� � �f�let �p X� Y�
S� � �f�let �p X� Y�

X� ���a�m
pc X�

Y� ���c�d
pc Y�

with n � a� c� Examining the de
nition of � shows that S�

� must be�

�f�let �p X �

� Y
�

�

for someX �

�� Y
�

� � Statepc� such that ���X
�

��� � X� and ���Y
�

� �� � Y�� Since X�

and Y� are substates of S�� by induction there exists statesX �

�� Y
�

� � Statepc�

with�
X �

� ���a�m
pc X �

�

Y �

� ���c�d
pc Y �

�

���X �

��� � X�

���Y �

� �� � Y�

�	 C� Flanagan� M� Felleisen

Taking S�

� � �f�let �p X
�

� Y
�

�� we have that ���S
�

��� � S� and that�

S�

� � �f�let �p X �

� Y
�

�

���n�m
pc �f�let �p X �

� Y
�

�

� S�

�

The proofs for the remaining cases are straightforward�

The Bisimulation Theorem implies the equivalence of the P �Cph�machine and the P �C�
machine�

Theorem �
� �Correctness of evalpc�� evalpc� � evalpc�

Proof� Both directions of the theorem are straightforward consequences of the Bisimulation
Theorem�

Since the P �C�machine is consistent and complete �from Theorems ��� and ���� the
equivalence of machines implies that the P �Cph�machine is also consistent and complete�

Theorem �
� �Consistency and Completeness of evalpc�� The relation evalpc� is a to�
tal function�

In summary� the P �Cph�machine is a correct implementation of the P �C�machine in
that both de
ne the same semantics for the source language� Hence the use of placeholder
objects� combined with touch operations for placeholder�strict primitives� is a valid tech�
nique for coordinating parallel tasks�

� The Low�Level Operational Semantics

Since optimizations heavily rely on static information about the values that variables can
assume� the P �Cph�machine is ill�suited for correctness proofs of appropriate analysis
algorithms�� The states of the P �Cph�machine contain no binding information relating pro�
gram variables and values� Instead� the machine relies on substitution for making progress�
To address this problem� we re
ne the P �Cph�machine to the P �CEK�machine �see Fig�
ures � and � using standard techniques ��� ���

	�� Speci�cation of the P �CEK	�machine

The substitution operation is replaced by an environment in the usual manner� An envi�
ronment E is a
nite mapping from variables to run�time values� The empty environment is
denoted by �� and the operation E�x� V � extends the environment E to map the variable
x to the value V � Using function notation� we write E�x to denote the value bound to x

�The machine is also far too abstract for the derivation of an implementation� This problem is also
addressed by the following development�

The Semantics of Future ��

Evaluator�

evalpcek � ��
a �� Answers � ferror��g

evalpcek�P � �

����
���

unloadpcek�E�x�� if hP� �� �i ����

pcek hx�E� �i
error if hP� �� �i ����

pcek error

� if �i � N �Si � Statepcek� ni�mi � N such that
mi � 	� S� � hP� �� �i and Si ���

ni�mi

pcek Si��

Data Speci�cations�

S � Statepcek ��� hM�E�Ki j error j �f�let �p S� S� �States�
M � �a �A�nf Language�
E � Envpcek ��� Vars ��f Valuepcek �Environments�
V � Valuepcek ��� PValuepcek j Ph�Obj pcek �Run�Time Values�

PValuepcek ��� c j x j Clpcek j Pairpcek �Proper Values�
Clpcek ��� h��x�M �� Ei �Closures�
Pairpcek ��� �cons V V � �Pairs�
Ph�Obj pcek ��� hph p �i j hph p V i �Placeholder Values�

K � Contpcek ��� � j har x�M�Ei�K j hary x�M�Ei�K �Continuations�
F � FinalStatepcek ��� hx�E� �i j error �Final States�

Auxiliary Functions�

unloadpcek � Value
�
pcek �� Answers

unloadpcek�c� � c

unloadpcek�h��x�M �� Ei� � procedure

unloadpcek��cons V� V��� � �cons V �

� V
�

��
where V �

i � unloadpcek�Vi�
unloadpcek�hph p V i� � unloadpcek�V �

touchpcek � Valuepcek �� PValuepcek � f�g
touchpcek�hph p �i� � �
touchpcek�hph p V i� � touchpcek�V �

touchpcek�V � � V if V � PValuepcek

Placeholder Substitution S�p �� V �� E�p �� V �� K�p �� V ��

�f�let �p� S�� S���p �� V � �

�
�f�let �p� S��p �� V �� S�� if p � p�

�f�let �p� S��p �� V �� S��p �� V �� if p 	� p�

hM�E�Ki�p �� V � � hM�E�p �� V ��K�p �� V �i

error�p �� V � � error

E�p �� V � � E� such that E��x� �

�
hph p V i if E�x� � hph p �i
E�x� otherwise

��p �� V � � �

�har x�M�Ei�K��p �� V � � har x�M�E�p �� V �i�K�p �� V �

�hary x�M�Ei�K��p �� V � � hary x�M�E�p �� V �i�K�p �� V �

Figure �� The P �CEK�machine� Evaluator and Data Speci
cations

in E� dom�E to denote the domain of E� and EjFV 	
�x�M�� to denote the restriction of E
to the free variables of ��x�M�

An evaluation context� which represents the control stack� is now represented by a
continuation� A continuation consists of a sequence of activation records� which are similar

�� C� Flanagan� M� Felleisen

Transition Rules�

h�let �x c� M �� E�Ki ������
pcek hM�E�x� c��Ki �bind�const�

h�let �x y� M �� E�Ki ������
pcek hM�E�x� E�y���Ki �bind�var�

h�let �x ��y�N �� M �� E�Ki ������
pcek hM�E�x� h��y�N �� E�i��Ki �bind�lam�

where E� � EjFV ���y�N��

h�let �x �cons y z�� M �� E�Ki ������
pcek hM�E�x� �cons E�y� E�z����Ki �bind�cons�

hx�E� har y�M�E�i�Ki ������
pcek hM�E��y � E�x���Ki �return�

h�let �x �car y�� M �� E�Ki ������
pcek�

hM�E�x� V���Ki if touchpcek�E�y�� � �cons V� V��
error if touchpcek�E�y�� 	� Pairpcek � f�g

�car�

h�let �x �cdr y�� M �� E�Ki ������
pcek analogous to car �cdr�

h�let �x �if y M� M��� M �� E�Ki ������
pcek�

hM�� E� har x�M�Ei�Ki if touchpcek�E�y�� 	� fnil� �g
hM�� E� har x�M�Ei�Ki if touchpcek�E�y�� � nil

�if �

h�let �x �apply y z�� M �� E�Ki ������
pcek�

hN�E��x� � E�z��� har x�M�Ei�Ki if touchpcek�E�y�� � h��x�� N �� E�i
error if touchpcek�E�y�� 	� Clpcek � f�g

�apply�

h�let �x �futureN �� M �� E�Ki ������
pcek hN�E� hary x�M�Ei�Ki �future�

hx�E� hary y�M�E�i�Ki ������
pcek hM�E��y � E�x���Ki �future�id�

hM�E�K��hary x�N�E�i�K�i ������
pcek

�f�let �p hM�E�K�i� hN�E��x� hph p �i��K�i� p 	� FP �E�� � FP �K�� �fork�

�f�let �p hx�E� �i� S� ������
pcek S�p �� E�x�� �join�

�f�let �p error� S� ������
pcek error �join�error�

�f�let �p� �f�let �p� S�� S��� S�� ������
pcek �f�let �p� S�� �f�let �p� S�� S��� �lift�

p� 	� FP �S��

�f�let �p S�� S�� ���a�c�b
pcek �f�let �p S�

�� S
�

�� �parallel�

if S� ���
a�b
pcek S

�

� ���
c�d
pcek S

�

�

S ������
pcek S �re�exive�

S ���a�c�b�d
pcek S�� �transitive�

if S ���a�b
pcek S

�� S� ���c�d
pcek S

��� a� c � 	

Figure �� The P �CEK�machine� Transition Rules

to closures� Evaluation of an apply expression produces an activation record of the form
har x�M�Ei to record the calling context� Evaluation of a future expression produces a
tagged activation record of the form hary x�M�Ei� A tagged activation record represents

The Semantics of Future ��

a point where the continuation can be split into separate tasks �cmp� �fork�
The transition relation ���pcek of the P �CEK�machine is a reformulation of the relation

���pc� that takes into account the change of state representation� We write S ����

pcek S
�

if S ���n�m

pcek
S� for some n�m � N� A state S � Statepcek is in normal�form if there is no

non�trivial transition from S� States of the form hx�E� �i or error are called �nal states�
and a state blocked if it is in normal form but not a
nal state�

	�� Correctness of the P �CEK	�machine

The proof of correctness of the P �CEK�machine uses standard proof techniques from ����
appropriately modi
ed to account for parallel evaluation�

Theorem �
� �Correctness of evalpcek� evalpcek � evalpc�

Proof� The proof of this theorem is included in appendix A�

The equivalence of machines implies that the P �CEK�machine is also consistent and
complete� since the P �Cph�machine is consistent and complete�

Corollary �
� �Consistency and Completeness of evalpcek� The relation evalpcek is a
total function�

The four evaluators we present� eval c� evalpc� evalpc� and evalpcek � corresponding to the
four abstract machines� are provably equivalent� The parallel execution behavior of pro�
grams on the P �CEK�machine is indistinguishable from their behavior on the C�machine�
showing that the P �CEK�machine is a correct implementation of futures according to
the de
nitional semantics of evalc�

� Related Work

The literature on programming languages contains a number of descriptions of the semantics
of parallel Scheme�like languages� The only one that directly deals with parallelism based on
transparent annotations is Moreau�s Ph�D� thesis ����� Moreau studies the functional core of
Scheme extended with pcall �a construct for evaluating function and argument expressions
of an application in parallel and
rst�class continuations� His primary goal is to design a
semantics for the language that treats pcall as a pure annotation� and to derive a reasonably
e�cient implementation� The semantics is an extension of Felleisen and Friedman�s control
calculus ���� the implementation is a parallel version of the CESK machine ��� that imple�
ments placeholders as globally accessible reference cells� The equivalence proof establishes
that both evaluators de
ne the same observational equivalence relation via the construction
of a number of intermediate calculi and machines� It is far more complicated than our
diamond and bisimulation techniques� possibly due to the inclusion of continuations�

Independently� Reppy ���� and Leroy ���� de
ne a formal operational semantics for an
ML�like language with
rst�class synchronization operations� Reppy�s language� Concurrent
ML� can provide the future mechanism as an abstraction over the given primitives� The
semantics is a two�level rewriting system� The
rst level� also a program rewriting system

�� C� Flanagan� M� Felleisen

in the tradition of Felleisen and Friedman ��� ��� accounts for the sequential behavior� the
second�level speci
es the behavior of sets of parallel tasks and the task communication
mechanisms� Reppy uses the semantics to prove a type soundness theorem for the extended
semantics� he does not construct a low�level semantics that can serve as the basis of an
implementation or a program analysis tool� Leroy formulates a semantics for a subset of
CML in the traditional �natural� semantics framework� He also uses his semantics to prove
the type soundness of the complete language� No attempt is made to exploit the semantics
for the derivation of an analysis algorithm or a compiler optimization�

Jaganathan and Weeks ��	� de
ne an operational semantics for a simple function lan�
guage extended with the spawn construct� They also show how the future annotation
can be implemented using spawn� Since their primary goal is the derivation of a seman�
tically well�founded abstract interpretation �in the spirit of Cousot and Cousot ���� they
extend Deutsch�s transition semantics ��� to their language� The transition semantics re�
quires the assignments of a unique label to each sub�expression of a program and expresses
computation as the movement of a token from label to label� An auxiliary label on each
sub�expression is used to collect information about the values of the expression� The se�
mantics is well�suited for deriving traditional abstract interpretations� but is inappropriate
for specifying a user�level semantics�

Finally� Wand ��	� recently extended his work on correctness proofs for sequential com�
pilers to parallel languages� In his prior work on the correctness of sequential compilers� he
derived compilers from the semantic mappings that translate syntax into ��calculus expres�
sions� Such a derivation consists of a staging process that separates the run�time portion
of the semantic mapping from the compile�time portion� To prove the correctness of the
compiler� it su�ces to prove that the �composition� of the two functions yields the semantic
mapping� The extension of this work to parallel compilers starts from a semantic mapping
that translates a Scheme�like language with process creation and communication constructs
into a higher�order calculus of communication and computation� After separating the com�
piler from the �machine�� the correctness proof is a combination of �a stronger version of
the sequential correctness proof and a correctness proof for the parallel portion of the lan�
guage� The proof techniques are related to the ones we used to prove the equivalence of the
P�CEK�machine and the P�C�machine�

� Applications of the Semantics

We believe that the low�level semantics of the P �CEK�machine is a sound basis for further
research into the optimization and implementation of futures� We have used the seman�
tics to derive a provably�correct program optimization algorithm that removes redundant
touch operations from programs ��� ��� Experiments with the Gambit compiler �	� show
that this optimization substantially reduces program execution times on a standard set of
benchmarks�

Another important application of the low�level semantics is as a basis from which to
derive a parallel and distributed implementation of Scheme with futures� We plan to
reformulate the low�level semantics in a message�passing framework and to implement it in
the near future�

The Semantics of Future ��

A Correctness Proof for the P �CEK��Machine

Each P �CEK�machine state corresponds to a P �Cph�machine state according to the trans�
lation s� see Figure �� For example� the P �Cph�machine state hC�E�Ki corresponds to
the P �Cph�machine state E �M �� where E � k��K�� is the evaluation context represented by
the continuation K� and the term M � m�C�E� is the result of applying the substitutions
recorded in E to the term C�

The transition relation of the P �CEK�machine is simply a reformulation of the tran�
sition relation of the P �Cph�machine� Therefore� each transition of the P �CEK�machine
corresponds to a transition of the P �Cph�machine� although the number of steps involved
in corresponding transitions is not identical� In particular� the P �Cph�machine assumes an
automatic division of each sequential term into an evaluation context and a redex� Since
evaluation contexts may include future contexts of the form �let �x �future � � M�
the P �Cph�machine can immediately initiate evaluation inside a future context� In con�
trast� the lower�level P �CEK�machine must
rst convert all enclosing future contexts
into tagged activation records via the transition rule �future� Thus� certain mandatory
transitions on the P �CEK�machine correspond to an indentity transition on the P �Cph�
machine� The following theorem formalizes this correspondence� and furthermore proves
that there is no in
nite sequence of mandatory P �CEK�machine transitions that corre�
sponds to an identity transition on the P �Cph�machine�

m � �a Envpcek �� �pc�

m�M� fx� � V�� � � � � xn � Vng� � M �x� � v�V��� � � � �xn � v�Vn��

v � Valuepcek �� Valuepc�

v�c� � c

v�h��x�M �� Ei� � m���x�M �� E�
v��cons V� V��� � �cons v�V�� v�V���

v�hph p �i� � hph p �i
v�hph p V i� � hph p v�V �i

k � Contpcek �� EvalCtxt

k����� � � �
k��har x�M�Ei�K�� � k��K�� ��let �x � �� m�M�E���

k��hary x�M�Ei�K�� � k��K�� ��let �x �future � ��� m�M�E���

s � Statepcek �� Statepc�

s�hM�E�Ki� � k��K�� �m�M�E��
s�error� � error

s��f�let �p S�� S��� � �f�let �p s�S��� s�S���

Figure �� The Functions m� v� k and s�

Lemma A
� �Weak Bisimulation Theorem� Let S� � Statepcek and S�

� � Statepc� such
that s�S�� � S�

��

�� C� Flanagan� M� Felleisen

�� If S�

� ���
n� �m�

pc�
S�

� then there exists S� � Statepcek such that S� ���
n�m
pcek S�� s�S�� � S�

�

and m � m��

�� If S� ���
n�m
pcek S� then S�

� ���
n��m�

pc� s�S���

	� In part �� for each S� there exists m� � N such that m � m� implies m� � ��

Proof

�� The proof of the
rst part is by case analysis of the last step in S�

� ���
n��m�

pc� S�

��
based on a similar proof in ��� for sequential programs�

�� We prove the second part by case analysis of the last step in the transition
S� ���

n�m
pcek S��

 Suppose S� ���
���
pcek S� via the rule �bind�const� Then

S� � h�let �x c M� E�Ki

S� � hM�E�x� c�� Ki

 s�S�� � E � m��let �x c M� E� � where E � k��K��

� E � �let �x c m�M�E� � renaming so x �� dom�E

������
pc� E � m�M�E��x� c� �

� E � m�M�E�x� c�� � by de
nition of m

� s�S��

 The analysis for the rules �bind�var� �bind�lam and �bind�cons is
similar�

 Suppose S� ���
���
pcek S� via the rule �future� Then

S� � h�let �x �future N M� E�Ki

S� � hN�E� hary x�M�Ei�Ki

 s�S�� � k��K�� � m��let �x �future N M� E� �

� k��K�� � �let �x �future m�N�E� � m�M�E� �

renaming so x �� dom�E

� k��hary x�M�Ei�K�� � m�N�E� �

� s�S��

 Suppose S� ���
���
pcek S� via the rule �return� Then

S� � hx�E� har y�M�E�i�Ki

S� � hM�E��y � E�x�� Ki

 s�S�� � k��K�� � �let �y E�x m�M�E�� �

������
pc� k��K�� � m�M�E���y � E�x� �

� k��K�� � m�M�E��y � E�x�� �

� s�S��

The Semantics of Future ��

 The analysis for the rule �future�id is similar�

 Suppose S� ���
���
pcek S� via the rule �car� We analyze the error and

non�error cases separately�

� Suppose S� �� error� Then

S� � h�let �x �car y M� E�Ki

S� � hM�E�x� V��� Ki

where touchpcek �E�y� � �cons V� V�

 s�S�� � k��K�� � �let �x �car �cons vV� vV� m�M�E� �

������
pc� k��K�� � m�M�E��x� vV�� �

� k��K�� � m�M�E�x� V��� �

� s�S��

� Suppose S� � error� Then

S� � h�let �x �car y M� E�Ki

S� � error

where touchpcek �E�y� �� Pair � f�g

 s�S�� � k ��K�� � �let �x �car V m�M�E� �

where V �� �cons V� V�� V �� p

������
pc� error

� s�S��

 The analysis for the rules �cdr� �if and �apply is similar�

 Suppose S� ���
���
pcek S� via the rule �fork� Then

S� � hM�E�K��hary x�N�E
�i�K�i

S� � �f�let �p hM�E�K�i hN�E
��x� hph p �i�� K�i

where p �� FP �E� � FP �K�

 s�S�� � k��K��� � �let �x �future k ��K���� m�M�E� � m�N�E
�� ��

������
pc�

�f�let �p k��K���� m�M�E� �
 k��K��� � m�N�E

���x� p ��

� s�S��

 Suppose S� ���
���
pcek S� via the rule �join� Then

S� � �f�let �p hx�E� �i S

S� � S�p �� E�x�

 s�S�� � �f�let �p v�E�x� s�S�

������
pc�

 s�S��p �� v�E�x��

� s�S�p �� E�x��

� s�S��

�� C� Flanagan� M� Felleisen

 The analysis of for the rule �join�error is similar�

 The cases for the rules �re�exive� �transitive and �parallel are straight�
forward�

�� Suppose that S� ���
n�m

pcek
S� with m � �� and s�S�� ���

n��m�

pc�
 s�S�� with

m� � �� From the proof of part �� we see that the only possibility for this
case is via the rule �future� or via the �transitive or �parallel closure of
the �future rule� The number of consecutive such transitions from S� is
bounded by ��S��� where � is the following function�

� � State �� N

��hM�E�Ki� �

���
��
� � ��hN�� E�Ki�

if M � �let �x �future N� N�
� otherwise

��error� � �

���f�let �p S� S�� � ��S��

If we pick m� � ��S�� and m � m�� it is impossible that s�S�� ���
n��m�

pc�

 s�S�� with m� � �� Hence m� � ��

The Correspondence Lemma implies the equivalence of the P �Cph�machine and the P �CEK�
machines�

Lemma A
� unloadpcek � unloadpc� � v�

Theorem �
� �Correctness of evalpcek� evalpcek � evalpc��

Proof The proof of the left�to�right direction proceeds by case analysis on the
de
nitions of evalpcek�

 Suppose evalpcek�P � unloadpcek �E�x� because hP� �� �i ���
�

pcek hx�E� �i�
By the Weak Bisimulation Theorem �A��� P ����

pc�V � where V � v�E�x��
Hence

evalpc��P � unloadpc� � v�E�x�� � unloadpcek �E�x� � evalpcek�P �

 The case where evalpcek�P � error is similar�

 Suppose evalpcek�P � � because there exists Si � Statepcek and ni� mi �
N such that mi � �� S� � hP� �� �i and Si ���

ni�mi

pcek Si��� By the Weak
Bisimulation Theorem �A��� there exists S�

i � Statepc� and n�

i� m
�

i � N

such that m�

i � �� P � S� and S�

i ���
n�

i
�m�

i

pc�
S�

i��� Hence evalpc��P � ��

We prove right�to�left direction by case analysis of the de
nition of evalpc� �

The Semantics of Future ��

 Suppose evalpc��P � unloadpc� �V � via the reduction P ����

pc� V � By the
Weak Bisimulation Theorem �A��� hP� �� �i����

pcekhx�E� �i� where v�E�x� �
V � Hence

evalpcek�P � unloadpcek�E�x� � unloadpc� � v�E�x�� � unloadpc� �V �

� evalpc��P �

 The case where evalpc��P � error is similar�

 Suppose evalpc��P � � because there exists Si � Statepc� and ni� mi � N
such that mi � �� S� � P and Si ���

ni�mi

pc�
Si��� By the Weak Bisimulation

Theorem �A��� there exists S�

i � Statepcek and n
�

i� m
�

i � N such thatm�

i � ��

S� � hP� �� �i and S�

i ���
n�

i
�m�

i

pcek S�

i��� Hence evalpcek�P � ��

Hence� for all programs P � eval c�P � evalpc�P �

References

��� Baker� H�� and Hewitt� C� The incremental garbage collection of processes� In
Proceedings of the Symposium on Arti�cial Intelligence and Programming Languages
������ vol� ����� pp� ��!���

��� Cousot� P�� and Cousot� R� Abstract interpretation� A uni
ed lattice model for
static analyses of programs by consruction or approximation of
xpoints� In POPL
������ pp� ���!����

��� Deutsch� A� Mod�eles Op�erationnels de Language de Programmation et
Repr�esentations de Relations sue des Languages Rationnels avec Application a la
D�etermination Statique de Propri�etes de Partages Dynamiques de Donn�ees� PhD the�
sis� Universite Paris VI� �����

�	� Feeley� M� An Ecient and General Implementation of Futures on Large Scale
Shared�Memory Multiprocessors� PhD thesis� Department of Computer Science� Bran�
deis University� �����

��� Felleisen� M�� and Friedman� D� P� Control operators� the SECD�machine� and
the lambda�calculus� In 	rd Working Conference on the Formal Description of Pro�
gramming Concepts �Aug� ����� pp� ���!����

��� Felleisen� M�� and Friedman� D� P� A calculus for assignments in higher�order
languages� In Conference Record of the �
th Annual ACM Symposium on Principles
of Programming Languages �Munich� West Germany� Jan� ����� pp� ��	!�	��

��� Flanagan� C�� and Felleisen� M� Well�founded touch optimization for futures�
Rice University Computer Science TR�	�����

��� Flanagan� C�� and Felleisen� M� The semantics of future and its use in program
optimizations� In POPL �Jan� �����

�	 C� Flanagan� M� Felleisen

��� Flanagan� C�� Sabry� A�� Duba� B� F�� and Felleisen� M� The essence of
compiling with continuations� In PLDI ������ pp� ���!�	��

���� Gabriel� R�� and McCarthy� J� Qlisp� Parallel Computation and Computers for
Arti�cial Intelligence ������ ��!���

���� Halstead� R� Multilisp� A language for concurrent symbolic computataion� ACM
Transactions on Programming Languages and Systems �� 	 ������ ���!����

���� Ito� T�� and Halstead� R�� Eds� Parallel Lisp� Languages and Systems� Springer�
Verlag Lecture Notes in Computer Science ���� �����

���� Ito� T�� and Matsui� M� A parallel lisp language� Pailisp and its kernel speci
cation�
������!�����

��	� Jagannathan� S�� and Weeks� S� Analyzing stores and references in a parallel
symbolic language� In LFP ����	� pp� ��	!����

���� Katz� M�� and Weise� D� Continuing into the future� on the interaction of futures
and
rst�class continuations� In LFP ������

���� Kranz� D�� Halstead� R�� and Mohr� E� Mul�T� A high�performance parallel lisp�
In PLDI ������ pp� ��!���

���� Leroy� X� Typage polymorphe d�un langage algorithmique� PhD thesis� Universit"e
Paris �� �����

���� Miller� J� MultiScheme� A Parallel Processing System� PhD thesis� MIT� �����

���� Mohr� E�� Kranz� R�� and Halstead� R� Lazy task creation� A technique for
increasing the granularity of parallel programs� In LFP ������

���� Moreau� L� Sound Evaluation of Parallel Functional Programs with First�Class Con�
tinuations� PhD thesis� Universite de Liege� ���	�

���� Reppy� J�H� Higher�Order Concurrency� PhD thesis� Cornell University� Jan� �����

���� Sabry� A�� and Felleisen� M� Is continuation�passing useful for data �ow analysis�
In PLDI ����	� pp� �!���

���� Swanson� M�� Kessler� R�� and Lindstrom� G� An implementation of portable
standard lisp on the BBN butter�y� In LFP ������ pp� ���!�	��

��	� Wand� M� Compiler correctness for parallel languages� Unpublished manuscript� �����

