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Set�based analysis �SBA� produces good predictions about the behavior of functional and object�
oriented programs� The analysis proceeds by inferring constraints that characterize the data �ow
relationships of the analyzed program� Experiences with MrSpidey� a static debugger based on
SBA� indicate that SBA can adequately deal with programs of up to a couple of thousand lines of
code� SBA fails� however� to cope with larger programs because it generates systems of constraints
that are at least linear� and possibly quadratic� in the size of the analyzed program�

This article presents theoretical and practical results concerning methods for reducing the size
of constraint systems� The theoretical results include a proof�theoretic characterization of the
observable behavior of constraint systems for program components� and a complete algorithm
for deciding the observable equivalence of constraint systems� In the course of this development
we establish a close connection between the observable equivalence of constraint systems and
the equivalence of regular�tree grammars� We then exploit this connection to adapt a variety of
algorithms for simplifying grammars to the problem of simplifying constraint systems�

Based on the resulting algorithms� we have developed componential set�based analysis� a modu�
lar and polymorphic variant of SBA� Experimental results verify the e�ectiveness of the simpli�ca�
tion algorithms and the componential analysis� The simpli�ed constraint systems are typically an
order of magnitude smaller than the original systems� These reductions in size produce signi�cant
gains in the speed of the analysis�
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� � C� Flanagan and M� Felleisen

�� THE EFFECTIVENESS OF SET�BASED ANALYSIS

Rice�s Scheme program development environment provides a static debugger� Mr�
Spidey� which statically analyzes a program and� using the results of this analysis�
checks the soundness of all primitive operations �Flanagan et al� ������ If an op�
eration may fault due to a violation of its precondition� MrSpidey highlights the
program operation so that the programmer can investigate the potential fault site
before running the program�
MrSpidey�s underlying program analysis is a constraint�based system similar to

Heintze�s set�based analysis of ML programs �Heintze ���	�� The analysis consists of
two co�mingled phases
 a derivation phase� which derives constraints describing the
data �ow relationships of the analyzed program� and a solution phase� which solves
these constraints� The solution conservatively approximates the set of possible
values for each program expression�
In practice� MrSpidey has proven highly e�ective for pedagogic programming�

which includes programs of several hundreds to 
���� lines of code� It also works
reasonably well on some programs of up to several thousand lines in length� How�
ever� it becomes less useful for debugging large programs� for two reasons


�Set�based analysis has an O�n�� worst�case time bound� The constant on the
cubic element in the polynomial is small� but it becomes noticeable for programs
of several thousand lines�

�Large programming projects tend to reuse functions in a polymorphic fashion� To
avoid merging information between unrelated calls to such functions� the analysis
must duplicate the function�s constraint system at each corresponding call site�
This duplication is expensive because of the size of the constraint system�

A closer look at these two obstacles suggests that the major limitation of set�
based analysis is the size of the constraint system that it generates� If we could
reduce the size of a constraint system without a�ecting the solution space that it
denotes� we could simplify constraint systems for program components at interme�
diate stages during the analysis and thus reduce the analysis time� By simplifying
the constraint system for each module� we could signi�cantly reduce the cost of
solving the combined set of constraints for a modularized program� similarly� by
simplifying the constraint system for a polymorphic function de�nition� we could
reduce the cost of duplicating that constraint system at each polymorphic reference�
The simpli�cation of constraint systems raises both interesting theoretical and

practical questions� On the theoretical side� we need to ensure that simpli�cation
preserves the solution space� or observable behavior � of a constraint system� In
this article� we provide a proof�theoretic characterization of observable behavior
and establish a close connection between the observable equivalence of constraint
systems and the equivalence of regular tree grammars �RTGs��� Exploiting this
connection� we develop algorithms for deciding the observable equivalence of con�
straint systems� and for �nding a minimal constraint system observably equivalent

�A number of researchers� including Reynolds ������� Jones and Muchnick ����	�� Heintze �������
Aiken ������� and Cousot and Cousot ����
�� previously exploited the relationship between RTGs
and the least solution of a constraint system� We present a di�erent result� namely a connection
between RTGs and the observable behavior �i�e�� the entire solution space� of constraint systems�
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to a given system� Unfortunately� both of these problems are PSPACE�hard�
Since a minimal constraint system is only optimal but not necessary for prac�

tical purposes� the practical question concerns �nding approximate algorithms for
simplifying constraint systems that would make MrSpidey more useful on large
programs� To answer this question� we exploit the correspondence between RTGs
and constraint systems to adapt a variety of algorithms for simplifying RTG to the
problem of simplifying constraint systems� Based on these simpli�cation algorithms�
we develop a componential �� or componentwise� variant of set�based analysis� Ex�
perimental results verify the e�ectiveness of the simpli�cation algorithms and the
componential analysis� The simpli�ed constraint systems are typically an order
of magnitude smaller than the original systems� These reductions in size produce
signi�cant gains in the speed of the analysis�
The presentation of our results proceeds as follows� Section 
 introduces an ide�

alized source language� and Section � reviews the traditional set�based analysis of
that language� Section 	 formalizes the notion of constraint system equivalence�
based on the denotational semantics of constraints� Section � describes a logic for
constraint system equivalence� and Section � uses this logic to develop a connection
between RTGs and the constraint systems� Section � exploits this connection to
derive a number of practical constraint simpli�cation algorithms� Sections � and �
discuss how these algorithms perform in a realistic program analysis system� Sec�
tion �� discusses related work� Section �� describes directions for future research�
Appendix A outlines how the analysis extends to additional language features such
as data�structures� assignments� and nonlocal control operators� Appendix B con�
tains proofs of various theorems and lemmas� Appendix C presents the algorithm
for deciding constraint system equivalence� Appendix D contains an index of nota�
tions used in the article�

Notation� We use A ��� B to denote the set of partial maps from A to B�
P to denote the power�set constructor� and Pfin to denote the �nite power�set
constructor�

�� THE SOURCE LANGUAGE

For simplicity� we present our results for a ��calculus�like language with constants
and labeled expressions� It is straightforward to extend the analysis to a realistic
language with assignments� recursive data structures� objects� and nonlocal control
operators along the lines outlined in Appendix A and described in more detail in
the �rst author�s dissertation �Flanagan ������

��� Syntax

Expressions in our language are either variables� values� function applications� la�
beled expressions� or let�expressions
 see Figure �� Values include basic constants
and functions� Functions have identifying tags so that MrSpidey can reconstruct
a call�graph from the results of the analysis� We use let�expressions to intro�
duce polymorphic bindings� and hence restrict these bindings to syntactic val�
ues �Wright ������ We use labels to identify those program expressions whose
values we wish to predict� We work with the usual conventions and terminology of

�componential a� of or pertaining to components�
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� � C� Flanagan and M� Felleisen

Syntax�

M � � � x j V j �M M� j �let �x V � M� j M l �Expressions�
V � Value � b j ��tx�M� �Values�
x � Vars � fx� y� z� � � �g �Variables�
b � BasicConst �Basic Constants�
t � Tag �Function Tags�
l � Label �Expression Labels�

Fig� �� The source language ��

the �v�calculus �Plotkin ����� when discussing syntactic issues� In particular� the
substitution operationM �x� V � replaces all free occurrences of x withinM by V �
and �� denotes the set of closed terms� also called programs�

��� Semantics

We specify the meaning of programs based on three notions of reduction


���tx�M � V � �� M �x �� V � ��v�
�let �x V � M � �� M �x �� V � ��let �

V l �� V �unlabel�

The �v and �let rules are the conventional rules for the ��calculus� The unlabel
rule simply removes the label from an expression once its value is needed�
An evaluation context E is an expression containing a hole � � in place of the next

subterm to be evaluated


E � � � j �E M � j �V E� j �let �x E� M � j E l�

For example� in the term �N M �� the next expression to be evaluated lies within
N � and thus the de�nition of evaluation contexts includes the clause �E M �� An
evaluation context always contains a single hole � �� and we use the notation E �M �
to denote the term produced by �lling the hole in E with the term M �
The standard reduction relation ��� is the compatible closure �Barendregt ���	�

ch��
� of �� with respect to evaluation contexts


E � M � ��� E � N � �� M �� N�

The relation ���� is the re�exive� transitive closure of ���� The semantics of the
language is de�ned via the partial function eval on programs


eval 
 �� ��� Value
eval�M � � V if M ���� V�

�� A REVIEW OF HEINTZE�S SET�BASED ANALYSIS

Set�based analysis consists of two phases
 a derivation phase and a solution phase��

The derivation phase derives constraints on the sets of values that program expres�
sions may assume� These constraints describe the data �ow relationships of the

�Cousot and Cousot ����
� showed that the results of set�based analysis can alternatively be
computed via an abstract interpretation based on chaotic iteration�
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analyzed program� The solution phase solves these constraints to yield a conserva�
tive approximation of the set of possible values for each labeled expression in the
program�

��� The Constraint Language

A constraint is simply an inequality between set expressions� Each set expression
denotes a set of values� and the constraint denotes the corresponding set contain�
ment relationship� A set expression � is either a constant� a set variable� or one of
the selector expressions dom�� � or rng�� �


� � SetExp � c j � j dom�� � j rng�� �
c � Const � BasicConst �Tag

�� �� � � SetVar 	 Label �

The selector expression rng�� � denotes the set of values returned by functions in
� � similarly� dom�� � denotes the set of values to which these functions are applied�
Constants include both basic constants and function tags� Set variables include
program labels as a strict subset�
An atomic constraint C is one of the following inequalities between set expres�

sions� and an atomic constraint system S is a collection of atomic constraints


C � AtomicCon � c 
 � j � 
 �

j � 
 dom��� j dom��� 
 �

j � 
 rng��� j rng��� 
 �

S � AtomicConSystem � Pfin�AtomicCon��

We use SetVar�S� to denote the collection of set variables in a constraint system S�
For clarity� we sometimes enclose constraints inside square brackets� as in ��� 
 ����
Our constraint language is based on the �selectors� dom�� � or rng�� � instead

of the more usual �constructors� ��� � ��� �Aiken et al� ���	�� For example�
we describe a function�s behavior via the two constraints dom��� 
 �� and �� 

rng���� instead of the combined constraint ��� � ��� 
 �� By using selectors�
we can specify each �quantum� of the program�s data��ow behavior independently�
which aids in the development of constraint simpli�cation algorithms�

��� Deriving Constraints

The derivation phase of set�based analysis derives atomic constraints on the sets
of values that program expressions may assume� Following Aiken et al� ����	� and
Palsberg and O�Keefe ������� we formulate this derivation as a proof system� Each
proof rule infers a judgment of the form � � M 
 ��S� where

��� the derivation context � maps the free variables of the expression M to either
set variables or constraint schemas �see below��

�
� � names the value set of M � and

��� S is a system of atomic constraints describing the data��ow relationships ofM �

The derivation proceeds in a syntax�directed manner according to the constraint
derivation rules presented in Figure 
� The rule �var� extracts the appropriate set
variable � for a particular program variable x from the derivation context� The
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� � fx � �g � x � ��� �var�

� � b � �� fb � �g �const�

� �M � ��S

� � M l � ��S � f� � lg
�label�

� � fx � ��g �M � ���S

� � ��tx�M� � ��S �

�
t � �

dom��� � ��
�� � rng���

� �abs�

� �Mi � �i�Si

� � �M� M�� � ��S� � S� �

�
�� � dom����

rng���� � �

� �app�

� � V � �V �SV
� � �SetVar�SV � � f�V g� n �FV �range���� � Label�

� � fx � ��� ��V �SV �g � M � ��S

� � �let �x V � M� � ��S
�let�

� is a substitution of set variables for �

� � fx � ��� ��V �SV �g � x � ����SV � � f���V � � �g
�inst�

Fig� 
� Constraint derivation rules�

rule �const� generates the constraint b 
 �� which ensures that the value set for a
constant expression contains that constant� The rule �label� records the possible
values of a labeled expression M l in the label l�
The rule �abs� for functions records the function�s tag and propagates values from

the function�s domain into its formal parameter and from the function�s body into
its range� The rule �app� for applications propagates values from the argument
expression into the domain of the applied function and from the range of that
function into the result of the application expression�
The rule �let� produces a constraint schema � � ��� ���S� for polymorphic� let�

bound values �Aiken et al� ���	� Tofte ������ The set variable � names the result of
the value� the system of atomic constraints S describes the data��ow relationships
of the value� using �� and the set � � f��� � � � � �ng contains those internal set
variables of the constraint system that must be duplicated at each reference to the
let�bound variable via the rule �inst��
The derivation context � maps program variables to either set variables or con�

straint schemas


� � DerivCtxt � Var ��� �SetVar �ConSchema�
� � ConSchema � ��� ���S��

We use FV �range���� to denote the free set variables in the range of �� The free
set variables of a constraint schema ��� ���S� are those in SetVar�S��f�g but not
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c � � � � �

c � �
�s��

� � rng��� � � �

� � rng���
�s��

dom��� � � � � �

dom��� � �
�s��

� � rng��� rng��� � �

� � �
�s��

� � dom��� dom��� � �

� � �
�s��

Fig� �� The rules � � fs�� � � � � s�g�

in �� and the free variables of a set variable are simply the set variable itself�
Many of the constraint derivation rules introduce new set variables� For example�

the rule �const � introduces the new set variable �� Whenever this rule is applied� we
need to choose a fresh set variable for � that is not used elsewhere in the constraint
derivation� Choosing a fresh set variable in this manner yields a more accurate
analysis�

��� Solving Constraint Systems

The derivation phase generates a system of atomic constraints that describes the
data��ow behavior of the analyzed program� To solve this constraint system� we
close it under the inference rules � described in Figure �� Intuitively� these rules
infer all the data��ow paths in the program� which are described by constraints
of the form � 
 � �for �� � � SetVar�� and propagate values along those data�
�ow paths� Speci�cally� the rules �s��� �s��� and �s�� propagate information about
constants� function domains� and function ranges forward along the data��ow paths
of the program� The rule �s�� constructs the data��ow paths from function bodies to
corresponding call sites for each function call� and the rule �s�� similarly constructs
data��ow paths from actual to formal parameters� We write S �� C if S proves
C via the rules �� and use ��S� to denote the closure of S under �� i�e�� the set
fC j S �� Cg�
The analysis tool uses a worklist algorithm to compute the closure of S under

� e�ciently� The worklist keeps track of all constraints in S whose consequences
under � may not be in S� The algorithm repeatedly removes a constraint from the
worklist� and for each consequence under � that is not already in S� it adds that
consequence both to S and to the worklist� The process iterates until the worklist
is empty� at which point S is closed under �� The complete algorithm can be found
in the �rst author�s dissertation �Flanagan ������
This closure process propagates all information concerning the possible constants

for labeled expressions into constraints of the form c 
 l� We de�ne the set�based
analysis of a program as a function that returns the set of possible constants �i�e��
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basic constants and function tags� for each labeled expression�

De�nition ���� �sba 
 �� �� �Label �� P�Const���� If P � �� and 
 � P 
 ��S
then

sba�P ��l� � fc j �c 
 l� � ��S�g �

The set of constants C returned by sba�P ��l� describes a collection of run�time
values �i�e�� basic constants and functions� according to the relation V in C� Es�
sentially� this relation converts between function tags and tagged ��expressions


b in C i� b � C

��tx�M � in C i� t � C

The solution sba�P � conservatively approximates the value sets for each labeled
expression in the program� as described by the following theorem�

Theorem ���� �Correctness of sba�� If P ���� E � V l � then V in sba�P ��l��

Proof� We prove this property using a subject reduction proof� followingWright
and Felleisen ����	� and Palsberg ������� The complete proof is contained in the
�rst author�s dissertation �Flanagan ������

�� TOWARD SIMPLIFYING CONSTRAINTS FOR PROGRAM COMPONENTS

The traditional set�based analysis just described has proven highly e�ective for
programs of up to a couple of thousand lines of code� Unfortunately� it is useless
for larger programs� due to the large size of the constraint systems it produces for
these programs� Since large programs are typically structured as a collection or a
hierarchy of components �e�g�� modules� classes� or functions�� it is natural to try
and exploit this hierarchical structure in the analysis of these programs�
To illustrate this idea� consider a program P containing a component M � where

M may be a module� class� or function de�nition� Suppose the constraint derivation
for M concludes

� � M 
 ��S�

where S� is the constraint system for M � Our goal is to replace S� by a simpler
constraint system� say S�� without changing the results of the analysis� This idea
is easily expressed as an additional constraint derivation rule

� � M 
 ��S� S� � S�

� �M 
 ��S�
����

but the precise meaning of the equivalence relation S� � S� remains to be deter�
mined�
Since the goal of this new rule is to replace one constraint system by a simpler

system without changing the behavior of the analysis as a whole� the situation is
analogous to program optimization� where a compiler replaces one program frag�
ment by a faster fragment without changing the behavior of the program as a whole�
For program optimization� we use the language semantics as a source of insight for
code transformations� To develop a better intuition for constraint systems� we de�
velop a denotational semantics for constraints� study its structure� and exploit it
for ideas concerning the simpli�cation of constraints for program components�
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The �rst subsection presents the denotational semantics of constraints� Each
constraint system denotes a space of solutions for the set variables� By ranking
these solutions according to their accuracy� we can characterize set�based analysis
in terms of the most accurate solution� which is the topic of the second subsection�
Finally� in the third and last subsection� we return to the problem of analyzing
program components and state a precise version of the equivalence relation S� � S�
in terms of the denotational semantics of constraints�

��� The Meaning of Set Constraints

Intuitively� a set expression � denotes a set of values� and a constraint �� 
 ��
denotes a corresponding set containment relationship� We formalize this meaning
of constraints by mapping syntactic set expressions onto a semantic domain� We
�rst describe the precise structure of the semantic domain� and then describe the
mapping from set expressions to that domain�

The Semantic Domain� A set expression denotes a set of values� For our idealized
language� a value set consists of basic constants and functions� and we therefore
choose to represent it as a triple X � hC�D�Ri� The �rst componentC � P�Const�
is a set of basic constants and function tags� The second and third components of
X denote the possible arguments and results of functions in X� respectively� Since
these last two components also denote value sets� the appropriate model for set
expressions is the �nonempty� solution of the equation


D � P�Const� �D �D�

The solution D is equivalent to the set of all in�nite binary trees with each node la�
beled with an element of P�Const ��� We use the functions const 
 D �� P�Const�
and dom� rng 
 D �� D to extract the respective components of an element of D�
We order the elements of D according to a relation v that is antimonotonic in

the domain position� We choose this ordering because information about argument
values at a call site needs to �ow backward along data��ow paths to the formal
parameter of the corresponding function de�nitions� To illustrate this idea� consider
a program that binds a function f to a program variable g� This behavior is
described in the semantic domain as the inequality Xf v Xg� where Xf and Xg

describe the values sets for f and g respectively� Since the argument set for f must
contain all values to which g is applied� the inequality dom �Xg� v dom �Xf � must
also hold� Thus the domain D should satisfy the inference rule

Xf v Xg

dom �Xg� v dom �Xf �
�

which is why the ordering v needs to be antimonotonic in the domain element�
We de�ne v as the greatest relation satisfying

hC�� D�� R�i v hC�� D�� R�i i� C� � C�� D� v D�� R� v R��

�The set D can be formally de�ned as the set of total functions f � fdom�rngg� �� P�Const��
and the rest of the development can be adapted mutandis mutatis �Palsberg and O�Keefe ���
��
For clarity� we present our results using the more intuitive equational de�nition instead� Also�
we can analyze languages with additional data structures by extending D to in�nite n�ary trees�
where n is the number of selectors �e�g�� dom� rng� corresponding to the extended language�
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Under this ordering� the set D forms a complete lattice� the top and bottom ele�
ments and the least upper bound and greatest lower bound operations are de�ned
recursively as

� � hConst ����i
� � h
����i

hC�� D�� R�i t hC�� D�� R�i � hC� �C�� D� uD�� R� tR�i
hC�� D�� R�i u hC�� D�� R�i � hC� �C�� D� tD�� R� uR�i�

The Semantics of Constraints� Since set expressions contain variables� the mean�
ing of a set expression depends on a set environment �� which de�nes the meaning
of those variables

� � SetEnv � SetVar �� D�

Given a set environment �� the meaning of set expressions is de�ned by the following
unique extension of � from SetVar to SetExp


� 
 SetExp �� D
��c� � hfcg����i

��dom�� �� � dom ���� ��
��rng�� �� � rng ���� �� �

The semantics of constraints is easiest to de�ne for the following full constraint
language� which is an extension of the atomic constraint language considered earlier�

C � Constraint � �� 
 ��
S � ConstraintSystem � Pfin�Constraint�

We continue to use the calligraphic letters C and S as metavariables ranging over
atomic constraints and systems of atomic constraints� respectively� and use the sans
serif letters C and S as metavariables ranging over full constraints and full constraint
systems� respectively�
We say that a set environment � satis�es a constraint �� 
 �� �written � j�

�� 
 ��� if ����� v ������ Figure 	 introduces a number of additional de�nitions
concerning the semantics of constraint systems� The entailment relation j� on
constraint systems is obviously re�exive and transitive� Note that a restricted
solution space Soln�S� jE actually contains more set environments than in Soln�S��
since these additional environments can specify arbitrary domain elements for set
variables that are not in E�

��� Ranking Solutions

A constraint system may have multiple solutions� To illustrate this idea� consider
the program P � ��tx�x�� The constraint derivation rules of Figure 
 yield the
following constraint system for P 


ft 
 �P � dom��P � 
 �x� �x 
 �M � �M 
 rng��P �g�

This constraint system admits the trivial solution ��s de�ned by

��s��� � �s �� � SetVar
�s � hConst ��s��si�
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Notation Meaning Pronunciation

� j� �� � �� ����� v ����� � satis�es �� � ��

� j� S �C � S� � j� C � satis�es S

Soln�S� f� j � j� Sg solution space of S

S� j� S� Soln�S�� � Soln�S�� S� entails S�

S� �� S� S� j� S� and S� j� S� S� is observably equivalent to S�

Soln�S� jE f� j ��� � Soln�S� such that
���� � ����� �� � Eg

restriction of Soln�S� to
a collection of set variables E

S� j�E S� Soln�S�� jE � Soln�S�� jE S� entails S� with respect to E

S� ��E S� S� j�E S� and S� j�E S� S� and S� are observably equivalent
with respect to E

S jE fC � S j C only mentions
set variables in Eg

restriction of S to E

Fig� 	� Notations concerning the semantics of set constraints�

The domain element �s represents all run�time values� including functions that can
take any argument and return any result� Hence� this solution is highly approximate
and thus utterly useless� Fortunately� the constraint system admits a number of
other solutions� including

�� � f�P �� hftg����i� �x �� �� �M �� � g
�� � f�P �� hftg����i� �x �� �� �M �� � g
�� � f�P �� hft� c�g� X�Xi� �x �� X��M �� X g

where X � hfc�g����i� and c� and c� are arbitrary constants�
If we assume P to be the entire program� the function tagged t is never applied�

and hence the true set of run�time values for x is simply the empty set� The solution
�� describes this situation more accurately than either �� or ��� Yet these three
solutions are incomparable under the ordering v� which models the �ow of values
through a program� but does not rank set environments according to their accuracy�
Therefore we introduce an alternative ordering vs on D that ranks environments

according to their accuracy� This ordering is monotonic in the domain position and
is de�ned as the greatest relation satisfying

hC�� D�� R�i vs hC�� D�� R�i i� C� � C�� D� vs D�� R� vs R��

As with the original ordering v� the set D forms a complete lattice under this
alternative ordering vs� the associated top and bottom elements and the least upper
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bound and greatest lower bound operations are de�ned recursively as

�s � hConst ��s��si
�s � h
��s��si

hC�� D�� R�i ts hC�� D�� R�i � hC� �C�� D� ts D�� R� ts R�i
hC�� D�� R�i us hC�� D�� R�i � hC� �C�� D� us D�� R� us R�i�

We extend the ordering relation vs pointwise from D to set environments� Using
the extended ordering on set environments� a system of atomic constraints S has
both a maximal solution and a minimal solution� The maximal solution is always
the set environment ��s described above� and we use LeastSoln�S� to denote the
minimal solution� This minimal solution exists because the greatest lower bound
of the solution space �with respect to us� is also a solution�

Lemma ���� Every system of atomic constraints has a solution that is least with
respect to vs �Heintze ������

Proof� Let S be a system of atomic constraints� and de�ne �min �
T
sSoln�S��

where
T
s is the pointwise extension of us to set environments� We prove that

�min � Soln�S� by a case analysis showing that �min satis�es each constraint
C � S� Hence �min is the least solution of S with respect to vs�

Using this result� we can now express the set�based analysis of a program in terms
of the denotational semantics of its constraint system�

Lemma ���� If P � �� and 
 � P 
 ��S then

sba�P ��l� � const �LeastSoln�S��l�� �

Proof�

c � sba�P ��l� �� S �� c 
 l by de�nition ���
�� S j� c 
 l by following lemma 	��
�� �� � Soln�S�� c � const���l��
�� c �

T
�fconst���l�� j � � Soln�S�g�

�� c � const�
T
s�f� j � � Soln�S�g��l��

�� c � const�LeastSoln�S��l��

The previous proof relies on the following lemma� which states that closing a
system of atomic constraints under � propagates all information concerning the
possible constants for labeled expressions into constraints of the form c 
 l�

Lemma ���� �Soundness and Completeness of ��� If S is a system of atomic
constraints� then

S �� c 
 � �� S j� c 
 ��

Proof� See Appendix B���

��� Conditions for Constraint System Equivalence

We now return to our original problem� which is to determine how to replace one
constraint system by a simpler one without changing the analysis results� Consider
again the situation where a program P contains a component M whose constraint
derivation concludes

� �M 
 ��S��
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Let the context surrounding M be C� i�e�� P � C�M �� Since the constraint
derivation process is compositional� the constraint derivation for the entire program
concludes


 � P 
 ��S� � SC �

where SC is the constraint system for C� By Lemma 	�
� the results of analyzing P
can only depend on the solution space for the combined constraint system S� � SC �
But this is the same as the intersection of the two respective solution spaces


Soln�S� � SC� � Soln�S�� � Soln�SC��

Hence Soln�S�� describes at least all the properties of S� relevant to the analysis�
but it may also describe solutions for set variables that are not relevant to the
analysis� In particular


�sba�P � only references the solutions for label variables� and

�an inspection of the constraint derivation rules shows that the only interactions
between SC and S� are due to the set variables in f�g � FV �range�����

In short� the only properties of S� relevant to the analysis is the solution space for
its external set variables


E � Label � f�g � FV �range�����

For our original problem� this means that we want a constraint system S� whose
solution space restricted to E is equivalent to that of S� restricted to E


Soln�S�� jE � Soln�S�� jE

or� with the notation from Figure 	� S� and S� are observably equivalent on E


S� ��E S��

We can now re�ne the constraint derivation rule ���� based on this notion of
equivalence


� � M 
 ��S� S� ��E S� where E � Label � f�g � FV �range����

� �M 
 ��S�
����

The re�ned rule is admissible in that the use of this rule does not change the analysis
results�

Lemma ���� �Admissibility of ������ If 
 ��� P 
 ��S then

sba�P ��l� � const�LeastSoln�S��l���

Proof� See Appendix B���

�� THE LOGIC OF CONSTRAINT SYSTEM EQUIVALENCE

The new derivation rule ���� involves the semantic notion of observably equivalent
constraint systems� To make this rule useful� we need a strategy or algorithm for
�nding an observably equivalent but simpler version of a given constraint system�
Because algorithms can only be based on syntactic entities �as opposed to semantic
notions such as observable equivalence�� our �rst step in the development of such
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an algorithm is to reformulate the observable equivalence relation as a syntactic
proof system�
The key properties of the observational equivalence relation are re�ections of the

re�exivity and transitivity of the ordering relation �v� and the monotonicity and
antimonotonicity of the functions rng and dom� respectively� We can reify these
properties into a syntactic proof system via the following set  of inference rules


� 
 � �re�ex �
�� 
 � � 
 ��

�� 
 ��
�trans� �

	� 
 	�

rng�	�� 
 rng�	��
dom�	�� 
 dom�	��

�compat �

The metavariables 	� 	�� 	� in �compat � range over nonconstant set expressions


	� 	�� 	� � � j dom�	� j rng�	� �

The restriction on �compat� avoids inferring useless tautologies� For example� with�
out this restriction� the constraint c 
 � would yield the constraint rng�c� 
 rng���
via �compat�� which is a tautology since the range of a constant is ��
The rules �re�ex � and �trans� � capture the re�exivity and transitivity of the

ordering relation v� �compat� expresses the monotonicity and antimonotonicity of
the functions rng and dom� respectively� We write S �� C if S proves C via the
rules  � and use  �S� to denote the closure of S under  � i�e�� the set fC j S �� Cg�
Since many of the  �inferred constraints lie outside of the original language of

atomic constraints� we de�ne an extended compound constraint language


C � CmpdConstraint � c 
 	 j 	 
 	

S � CmpdConSystem � Pfin�CmpdConstraint�

We use the boldface roman letters C and S as metavariables ranging over compound
constraints and systems of compound constraints� respectively�
The proof system  completely captures the relevant properties of the ordering

v and the functions rng and dom� That is�  is both sound and complete�

Lemma ���� �Soundness and Completeness of  �� For a system S of com	
pound constraints and a compound constraint C�

S �� C �� S j� C�

Proof� See Appendix B�
�

This lemma implies that  �S� contains exactly those compound constraints that
hold in all environments in Soln�S�� Hence� if we consider a collection of external
set variables E� then  �S� jE contains all compound constraints that hold in all
environments in Soln�S� jE� Therefore the following lemma holds�

Lemma ���� For a system S of compound constraints� S ��E  �S� jE �

Proof� See Appendix B�
�

We could use this result to de�ne a proof�theoretic equivalent of restricted en�
tailment

S� �E� S� if and only if  �S�� jE �  �S�� jE
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� � � �re�ex�

� � rng��� � � 	

� � rng�	�
�compose��

� 	 rng��� � 	 	

� 	 rng�	�
�compose��

�� � � � � ��

�� � ��
�trans��

	� � 	�

rng�	�� � rng�	��
dom�	�� � dom�	��

�compat�

� � dom��� � 	 	

� � dom�	�
�compose��

� 	 dom��� � � 	

� 	 dom�	�
�compose��

Fig� �� The inference rule system !�

and then show that S� �E� S� if and only if S� j�E S�� However� this de�nition
based on the proof system  does not lend itself to an e�cient implementation�
Speci�cally� checking if two potential antecedents of �trans� � contain the same set
expression � involves comparing two potentially large set expressions� Hence we
develop an alternative proof system that is more suitable for an implementation�
yet infers the same constraints as  �
The alternative system consists of the inference rules ! described in Figure ��

together with the rules � from Figure �� The rules �re�ex � and �compat � of ! are
those of  � The rules �compose������ of ! replace a reference to a set variable by
an upper or lower �nonconstant� bound for that variable� as appropriate� The rule
�trans�� of ! provides a weaker characterization of transitivity than the previous
rule �trans� �� but� provided we start with a system of atomic constraints� the addi�
tional rules� � and �compose������� compensate for this weakness� That is� suitable
combinations of these additional rules allow us to infer any constraint that could
be inferred by the rule �trans� ��

Lemma ���� �Equivalence of Proof Systems�� For a system of atomic con	
straints S�

 �S� � !��S��

Proof� See Appendix B�
�

We could de�ne a proof�theoretic equivalent of restricted entailment based on
!� as follows


S� �E� S� if and only if !��S�� jE � !��S�� jE �

but this approach is still needlessly ine�cient� In particular� because �compat� does
not eliminate any variables� any �compat ��consequent in !��S�� jE is subsumed by
its antecedent� Hence if we de�ne

" � ! n fcompatg

then this argument implies that the following lemma holds�

Lemma ���� For any system S of atomic constraints� !��S� jE �� "��S� jE �

ACM Transactions on Programming Languages and Systems� Vol� �vol�� No� �no�� �month� �����




� � C� Flanagan and M� Felleisen

Proof� See Appendix B�
�

Together� Lemmas ��
� ���� and ��	 provide the basis of a proof�theoretic equiv�
alent of restricted entailment and observable equivalence that is also suitable for
implementation�

De�nition ���� ��E	� � �
E
	���

��� S� �E	� S� if and only if !��S�� jE � "��S�� jE �

�
� S� �E
	� S� if and only if S� �E	� S� and S� �E	� S��

The two relations �E	� and �
E
	� completely characterize restricted entailment and

observable equivalence of systems of atomic constraints�

Theorem ��	� �Soundness and Completeness of �E	� and �E
	���

�� � S� �E	� S� if and only if S� j�E S��

�
 � S� �E
	� S� if and only if S� ��E S��

Proof� We prove the �rst part of this theorem as follows


S� �E	� S�
�� !��S�� jE � "��S�� jE
�� Soln�!��S�� jE� � Soln�"��S�� jE�
�� Soln�!��S�� jE� jE � Soln�"��S�� jE� jE
�� Soln�!��S�� jE� jE � Soln�!��S�� jE� jE by Lemma ��	
�� Soln� �S�� jE� jE � Soln� �S�� jE� jE by Lemma ���
�� Soln�S�� jE � Soln�S�� jE by Lemma ��

�� S� j�E S�

The second part of this theorem follows from part ��

�� THE DECIDABILITY OF THE LOGIC	 THE THEORY OF SIMPLIFICATION

A correct constraint simpli�cation algorithmmust preserve the observable behavior
of constraint systems as de�ned by the proof�theoretic characterization S� �E

	� S��
We continue our search for such simpli�cation algorithms by further investigating
the properties of the relation S� �E

	� S��
The �rst part of this investigation is the development of a decision algorithm for

S� �E
	� S�� This decision algorithm immediately allows us to simplify constraint

systems by systematically generating all constraint systems in order of increasing
size� until we �nd one observably equivalent to the original system� Although this
naive simpli�cation strategy is ine�cient� it does serve to highlight the relevance of
the decision algorithm in solving the constraint simpli�cation problem� In partic�
ular� the practical constraint simpli�cation strategies of the next section are based
on insights gained by the development of the decision algorithm�
We formulate the decision algorithm to work on systems of atomic constraints�

since these are the constraints used in the analysis� Given two systems of atomic
constraints S� and S�� the decision algorithm needs to verify that !��S�� jE �
!��S�� jE � The following lemma shows that the closure !���� can be performed
in a staged manner� In particular� " does not create any additional opportunities
for rules in �� and �compat� does not create any additional opportunities for " or
��
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Lemma 	��� �Staging�� For any system of atomic constraints S�

!��S� � !���S�� � compat�"���S����

Proof� See Appendix B���

This lemma implies that if S� and S� are �rst closed under �� then the decision
algorithm only needs to verify that

!�S�� jE � !�S�� jE �

The naive approach to enumerate and to compare the two constraint systems
!�S�� jE and !�S�� jE does not work� since they are typically in�nite� For ex�
ample� if S � f� 
 rng���g� then !�S� is the in�nite set f� 
 rng���� � 

rng�rng����� � � �g� Fortunately� the in�nite constraint systems inferred by ! ex�
hibit a regular structure� which we exploit as follows


��� For each Si �where i � � or 
� we generate a regular grammar describing the
upper and lower nonconstant bounds for each set variable in Si�

�
� We extend these regular grammars to regular tree grammars �RTGs� describing
all constraints in "�S�� jE and "�S�� jE� This representation allows us to use
a standard RTG containment algorithm to decide if "�S�� jE � "�S�� jE�

��� Based on the RTG containment algorithm� we develop a decision algorithm for
the more di�cult entailment question !�S�� jE � "�S�� jE by allowing for the
additional �compat� inferences on S��

By checking entailment in both directions� we can decide if two constraint systems
are observably equivalent� These steps are described in more detail below�

��� Regular Grammars

Our �rst step is to transform each constraint system Si �for i � �� 
� into a cor�
responding regular grammar� This regular grammar� denoted Gr�S� E�� contains
two nonterminals �L and �U � for each set variable � in Si� These nonterminals
generate the following two languages of lower and upper nonconstant bounds of ��
respectively


f	 j �	 
 �� � "�S� and SetVar�	� � Eg
f	 j �� 
 	� � "�S� and SetVar�	� � E�g

To illustrate the derivation of these grammars� consider the program component
M � ��x� �x ���� and take E � f�g� A simpli�ed� constraint system SM for M is
described in Figure �� together with the productions in the corresponding regular
grammar� This grammar describes the upper and lower nonconstant bounds for
each set variable in "�SM � jE� For example� the productions


L �� rng��L�
�L �� dom��U �
�U �� �

imply that 
L ��� rng�dom����� or alternatively that rng�dom���� 
 
�

�We use a simpli�ed version of M �s constraint system for a more concise explanation�

ACM Transactions on Programming Languages and Systems� Vol� �vol�� No� �no�� �month� �����




� � C� Flanagan and M� Felleisen

Additional productions
Constraints SM Grammar Gr�SM � E� in Gt�SM � E�

dom��� � � �L �� dom��U�
� � � R �� �� � �U �
� � dom��� �U �� dom��L�

rng��� � � �L �� rng��L�
� � rng��� �U �� rng��U�

�L �� � �U ��� R �� ��L � �U � �� � SetVar �SM �

Fig� �� The constraint system� regular grammar� and RTG for M � ��x� �x ����

The productions of the grammar are determined by SM and "� For example� the
constraint �rng��� 
 
� � SM implies that for each lower bound 	 of �� the rule
�compose�� infers the lower bound rng�	� of 
� Since� by induction� ��s lower bounds
are generated by �L� the production 
L �� rng��L� generates the corresponding
lower bounds of 
�
More generally� the collection of productions

f
L �� rng��L� j for any �� 
 with �rng��� 
 
� � Sg

describes all bounds inferred via �compose�� on a system S of atomic constraints�
Bounds inferred via the remaining �compose � rules can be described in a similar
manner� Bounds inferred via the rule �re�ex � imply the productions �U �� �

and �L �� � for � � E� Finally� consider the rule �trans��� and suppose this
rule infers an upper bound � on �� This bound must be inferred from an upper
bound � on �� using the additional antecedent �� 
 ��� Hence the productions
f�U �� �U j �� 
 �� � Sg generate all upper bounds inferred via �trans��� Similarly�
the productions f�L �� �L j �� 
 �� � Sg generate all lower bounds inferred via
�trans���

De�nition 	��� �Regular Grammar Gr�S� E��� Let S be a system of atomic
constraints and E a collection of set variables� The regular grammarGr�S� E� con�
sists of the nonterminals f�L� �U j � � SetVar�S�g and the following productions


�U �� �� �L �� � � � � E

�U �� �U � �L �� �L � �� 
 �� � S
�U �� dom��L� � �� 
 dom���� � S
�U �� rng��U � � �� 
 rng���� � S
�L �� dom��U � � �dom��� 
 �� � S
�L �� rng��L� � �rng��� 
 �� � S

The grammar Gr�S� E� generates two languages for each set variable that de�
scribe the upper and lower nonconstant bounds for that set variable� Speci�cally�
if ���

G denotes a derivation in the grammar G� and LG�X� denotes the language
f� j X ���

G �g generated by a nonterminal X� then the following lemma holds�

Lemma 	��� Let S be a system of atomic constraints and E a collection of set
variables� If G � Gr�S� E�� then

LG��L� � f	 j �	 
 �� � "�S� and SetVar�	� � Eg
LG��U� � f	 j �� 
 	� � "�S� and SetVar�	� � Eg�
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Proof� For each language� we prove that the inclusion holds in each direction
by induction on the appropriate derivation and by case analysis on the last step in
that derivation�

��� Regular Tree Grammars

For a system of atomic constraints S� the grammar Gr�S� E� does not describe all
constraints in "�S� jE� In particular


�Gr�S� E� does not describe constraints of the form �c 
 � �� Thus� for example�
the regular grammar for SM does not describe the constraint �� 
 dom���� in
"�SM � jE�

�Gr�S� E� does not describe constraints inferred by the �trans�� rule that are not
bounds of the form �	 
 �� or �� 
 	�� Thus� for example� the regular grammar
for SM describes the constraints rng�dom���� 
 
 and 
 
 rng��� in "�SM � jE �
but it does not describe the trans��consequent �rng�dom���� 
 rng���� of those
constraints� which is also in "�SM � jE �

For an arbitrary constraint system S� we represent the constraint system "�S� jE
by extending the grammar Gr�S� E� to a regular tree grammar Gt�S� E�� The
extended grammar combines upper and lower bounds for set variables in the same
fashion as the �trans�� rule and generates constraints of the form �c 
 � � where
appropriate�

De�nition 	��� �Regular Tree Grammar Gt�S� E��� The regular tree gram�
mar Gt�S� E� extends the grammar Gr�S� E� with the root nonterminal R and the
additional productions

R �� ��L 
 �U � � � � SetVar�S�
R �� �c 
 �U � � �c 
 �� � S�

The constructor �� 
 �� is binary�

The extended regular tree grammarGt�S� E� describes all constraints in "�S� jE �

Lemma 	��� Let G � Gt�S� E�� Then "�S� jE � LG�R��

Proof� See Appendix B���

The grammar Gt�SM � E� for the example program component M is described
in Figure �� This grammar yields all constraints in "�SM � jE � For example� the
productions

R �� �� 
 �U � �U �� dom��L� �L �� dom��U �

imply that R ��� �� 
 dom�dom������ or that the argument to the function M is
applied to the constant ��
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��� The Entailment Algorithm

We check entailment based on Lemma ��� as follows� Given S� and S�� we close
them under � and then have

S� �E	� S�
�� !��S�� jE � "��S�� jE by defn �E	�
�� !���S��� jE � "���S��� jE by lemma ���
�� !�S�� jE � "�S�� jE as Si � ��Si�
�� compat�"�S�� jE� � "�S�� jE by lemma ���
�� compat�LG�

�R�� � LG�
�R� by lemma ���� where Gi � Gt�Si� E��

The containment question

LG�
�R� � LG�

�R�

can be decided via a standard RTG containment algorithm �G#ecseg and Steinby
���	�� To decide the more di�cult question

compat �LG��R�� � LG��R�

we extend the RTG containment algorithm to allow for constraints inferred via
�compat� on the language LG��R�� Unfortunately� the extended algorithm takes
exponential time� and hence is not directly useful in program analysis systems�
Because the algorithm is mostly of theoretical interest� we defer its presentation to
Appendix C�
Faster algorithms for the entailment problem may exist� but these algorithms

are all in PSPACE� because the containment problem on NFAs� which is PSPACE�
complete �Aho et al� ���	�� can be polynomially reduced to the entailment problem
on constraint systems�
Although the entailment algorithm is computationally expensive� we can still� in

theory� decide if two constraint systems are observably equivalent by running the
entailment algorithm in both directions� In addition� given a constraint system� we
can� again� in theory� �nd a minimal� observably equivalent system using the naive
systematic search strategy outlined in the introduction to this section� Of course�
the process of computing the minimal equivalent system with this algorithm is far
too expensive for use in practical program analysis systems� which is why we now
turn our attention to the development of more practical constraint simpli�cation
algorithms�


� CONSTRAINT SIMPLIFICATION	 THE PRACTICE

To take advantage of the rule ���� in program analysis algorithms� we do not need
a completely minimized constraint system� Any simpli�cations in a constraint
system produce corresponding reductions in the time and space required for the
overall analysis� Hence we concentrate on �nding fast algorithms that simplify
constraint systems�
For this purpose� we exploit the connection between constraint systems and

RTGs� By Lemma ���� any transformation on constraint systems that preserves
the language

LGt
�
S��E��R�
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Constraints Production Rules Nonempty Reachable
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Fig� �� The constraints� RTG and simpli�ed constraints forM � ��gy����fx��� y���

also preserves the observable behavior of S with respect to E� Based on this
observation� we have adapted a variety of existing algorithms for simplifying regular
tree grammars to algorithms for simplifying constraint systems� In the following
subsections� we present the four most promising algorithms found so far� We use
G to denote Gt�S� E�� and we let X range over nonterminals and p over paths�
which are sequences of the constructors dom and rng� Each algorithm assumes that
the constraint system S is closed under �� Computing this closure corresponds to
propagating data��ow information locally within a program component� This step
is relatively cheap� since program components are typically too small to trigger the
cubic time behavior of the analysis�


�� Removing Empty Constraints

A nonterminal X is empty if LG�X� � 
� Similarly� a production is empty if it
refers to empty nonterminals� and a constraint is empty if it only induces empty
productions� Since empty productions have no e�ect on the language generated
by G� an empty constraint in S can be deleted without changing S�s observable
behavior�
Let us illustrate this idea with the program component M � ��gy����fx��� y���

Although this example is simplistic� it illustrates the behavior of our simpli�cation
algorithms� The solved constraint system SM for M is shown in Figure �� together
with the corresponding grammar Gt�SM � E� where E � f�Mg� An inspection of
this grammar shows that the set of nonempty nonterminals is

f�ML � �MU � �
y
L� �

a
U � �
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�
U � �
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Five of the constraints in SM are empty and are removed by this simpli�cation
algorithm� yielding a simpli�ed system of eight nonempty constraints�
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�	� Use a variant of Hopcroft
s algorithm �Hopcroft 	��	� to compute an equivalence
relation � on the set variables of S that satis�es the following conditions�
�a� Each set variable in E is in an equivalence class by itself

�b� If �� � �� � S then �� � �� �� � �� such that ��� � ��� � S

�c� If �� � rng���� � S then �� � �� �� � �� such that ��� � rng����� � S

�d� If �rng��� � �� � S then �� � �� �� � �� such that �rng���� � ��� � S

�e� If �� � dom���� � S then �� � �� �� � �� such that ��� � dom����� � S


��� Merge set variables according to their equivalence class


Fig� �� The Hopcroft algorithm�


�� Removing Unreachable Constraints

A nonterminalX is unreachable if there is no production R �� �Y 
 Z� or R �� �Z 

Y � such that LG�Y � �� 
 and Z ��

G p�X�� Similarly� a production is unreachable
if it refers to unreachable nonterminals� and a constraint is unreachable if it only
induces unreachable productions� Unreachable productions have no e�ect on the
language LG�R�� and hence unreachable constraints in S can be deleted without
changing the observable behavior of S�
In the above example� the reachable nonterminals are ��U � �

a
U � and �

g
U � Three

of the constraints are unreachable and are removed by this algorithm� yielding a
simpli�ed system with �ve reachable constraints�


�� Removing ��Constraints

A constraint of the form �� 
 �� � S is an �	constraint � Suppose � �� E and the
only upper bound on � in S is the ��constraint �� 
 ��� i�e�� there are no other
constraints of the form � 
 � � rng��� 
 �� or � 
 dom��� in S� Then� for any
solution � of S� the set environment �� de�ned by

���
� �

�
��
� if 
 �� �

���� if 
 � �

is also a solution of S� Therefore we can replace all occurrences of � in S by � while
still preserving the observable behavior Soln�S� jE � This substitution transforms
the constraint �� 
 �� to the tautology �� 
 ��� which can be deleted� Dually� if
�� 
 �� � S with � �� E and � having no other lower bounds� then we can replace
� by �� again eliminating the constraint �� 
 ���
To illustrate this idea� consider the remaining constraints forM � In this system�

the only upper bound for the set variable �� is the ��constraint ��� 
 �a�� Hence
this algorithm replaces all occurrences of �� by �a� which further simpli�es this
constraint system into a set of three elements

f� 
 �a� �a 
 rng��M�� g 
 �Mg�

For this example� this algorithm yields the smallest system of atomic constraints
that is observably equivalent to the original system ��S��


�� Hopcroft�s Algorithm

The previous algorithmmerges set variables under certain circumstances� and only
when they are related by an ��constraint� We would like to identify more general
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Fig� �� Behavior of the constraint simpli�cation algorithms�

circumstances under which set variables can be merged� To this end� we de�ne a
valid uni�er for S to be an equivalence relation � on the set variables of S such
that we can merge the set variables in each equivalence class of � without changing
the observable behavior of S� Using a model�theoretic argument�� we can show
that an equivalence relation � is a valid uni�er for S if for all solutions � � Soln�S�
there exists another solution �� � Soln�S� such that �� agrees with � on E and
����� � ����� for all � � ��
A natural strategy for generating �� from � is to map each set variable to the

least upper bound of the set variables in its equivalence class

����� �
F

����

������

Figure � describes su�cient conditions to ensure that �� generated in this manner is
a solution of S� and hence that � is a valid uni�er for S� To produce an equivalence
relation satisfying these conditions� we use a variant of Hopcroft�s O�n log n� time
algorithm �Hopcroft ����� for computing an equivalence relation on states in a DFA
and then merge set variables according to their equivalence class�


The following theorem states that this simpli�cation algorithm preserves the
observable behavior of constraint systems�

Theorem 
��� �Correctness of the Hopcroft Algorithm�� Let S be a
system of atomic constraints with external variables E� let � be an equivalence
relation on the set variables in a constraint system S satisfying conditions �a
 to
�e
 from Figure �� let the substitution f map each set variable to a representation
element of its equivalence class� and let S� � f�S�� i�e�� S� denotes the constraint
system S with set variables merged according to their equivalence class� Then S ��E

S��

Proof� Let � be a solution of S� De�ne �� by

����� �
F

����

������

	Unlike the previous simpli�cation algorithms� the development of this algorithm does not exploit
the connection between constraint systems and RTGs�

A similar developmentbased on the de�nition ����� �

T
f����� j � � ��g results in an alternative

algorithm� which is less e�ective in practice�
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The set environments � and �� agree on E by condition �a� on �� and we can show
that �� j� C for all C � S by a case analysis on C�


�� Simpli�cation Benchmarks

To test the e�ectiveness of the simpli�cation algorithms� we extended MrSpidey
with the four algorithms that we have just described
 empty � unreachable� �	
removal � and Hopcroft � Each algorithm in the sequence also implements the pre�
ceding simpli�cation algorithms�
We tested the algorithms on the constraint systems for nine program components�

These experiments were run on a ���MHz Sparc Ultra � with �
�MB of memory�
using the MzScheme byte�code compiler �Flatt ������ The results are described in
Figure �� The second column gives the number of lines in each program component�
and the third column gives the number of constraints in the original �unsimpli�ed�
constraint system after closing it under the rules �� The remaining columns de�
scribe the behavior of each simpli�cation algorithm� presenting the factor by which
the number of constraints was reduced� and the time �in milliseconds� required for
this simpli�cation�
The results demonstrate the e�ectiveness of our simpli�cation algorithms� The

resulting constraint systems are typically at least an order of magnitude smaller
than the original system� As expected� the more sophisticated algorithms are more
e�ective� but are also more expensive�

�� COMPONENTIAL SET�BASED ANALYSIS

Equipped with the simpli�cation algorithms� we can now turn our attention to our
original problem
 extending set�based analysis to handle signi�cantly larger pro�
grams� These larger programs are typically constructed as a collection of program
components� Exploiting this component�based structure is the key to analyzing
such programs e�ciently�
Componential set�based analysis processes programs in three steps


��� For each component in the program� the analysis derives and simpli�es the
constraint system for that component and saves the simpli�ed system in a con	
straint �le� for use in later runs of the analysis� The simpli�cation is performed
with respect to the external variables of the component� excluding expression
labels� in order to minimize the size of the simpli�ed system� Thus� the simpli�
�ed system only needs to describe how the component interacts with the rest of
the program� and the simpli�cation algorithm can discard constraints that are
only necessary to infer local value set invariants� These discarded constraints
are reconstructed later as needed�

This step can be skipped for each program component that has not changed
since the last run of the analysis� and the component�s constraint �le can be
used instead�

�
� The analysis combines the simpli�ed constraint systems of the entire program
and closes the combined collection of constraints under �� thus propagating
data��ow information between the constraint systems for the various program
components�
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Num� of Analysis Reanalysis Constraint
Program lines Analysis constraints time time �le �bytes�
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��removal ��K �	��� ��
s ���s 	�K
Hopcroft ��K �	��� ����s ���s 	
K
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mod�poly ����� standard �� �
M � � �
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M � � �

unreachable 	��K ����� 	
���s 	���s �
��K
��removal ��K ����� 	����s ����s ����K
Hopcroft ��K ����� 	
���s ����s ���K

�� indicates the analysis exhausted heap space�

Fig� ��� Behavior of the modular analyses�

��� Finally� to reconstruct the full analysis results for the program component that
the programmer is focusing on� the analysis tool combines the constraint system
from the second step with the unsimpli�ed constraint system for that compo�
nent� It closes the resulting system under �� which yields appropriate value set
invariants for each labeled expression in the component�

The new analysis can easily process programs that consist of many components�
For its �rst step� it eliminates all those constraints that have only local relevance�
thus producing a small combined constraint system for the entire program� As a
result� the analysis tool can solve the combined system more quickly and using far
less space than Heintze�s set�based analysis� Finally� it recreates as much precision
as traditional set�based analysis as needed on a per�component basis�
The new analysis performs extremely well in an interactive setting because it

exploits the saved constraint �les where possible and thus avoids reprocessing many
program components unnecessarily�

��� Experimental Results

We implemented four variants of componential set�based analysis� Each analysis
uses a particular simpli�cation algorithm from Section � to simplify the constraint
systems for the program components� We tested these analyses with �ve benchmark
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programs� ranging from ��
�� to ������ lines� For comparison purposes� we also
analyzed each benchmark with the standard set�based analysis that performs no
simpli�cation� The results are documented in Figure ���
The benchmark programs were written in the MzScheme �Flatt ����� dialect of

Scheme� which has a module system �Flatt and Felleisen ������ The componential
analyses treated each module as a separate component� The analyses handled
library primitives �such as car� in a polymorphicmanner according to the constraint
derivation rules �let� and �inst�� in order to avoid merging information between
unrelated calls to these functions� Treating these primitives in a monomorphic
manner would have produced an analysis that was overly coarse and hence not
very useful for our intended application �static debugging�� In this experiment� user�
de�ned functions were analyzed in a monomorphicmanner� the following subsection
describes the use of constraint simpli�cation in a polymorphic analysis�
The fourth column in the �gure shows the maximumsize of the constraint system

generated by each analysis and shows this size as a percentage of the constraint
system generated by the standard analysis� The analyses based on the simpli�cation
algorithms produce signi�cantly smaller constraint systems and can analyze more
programs� such as sba and poly� for which the standard analysis exhausted the
available heap space�
The �fth column shows the time required to analyze each program from scratch�

without using any existing constraint �les�� The analyses that exploit constraint
simpli�cation yield signi�cant speed�ups over the standard analysis because they
manipulate much smaller constraint systems� The results indicate� that for these
benchmarks� the �	removal algorithm yields the best trade�o� between e�ciency
and e�ectiveness of the simpli�cation algorithms� The additional simpli�cation
performed by the more expensive Hopcroft algorithm is out�weighed by the over�
head of running the algorithm� The trade�o� may change as we analyze yet larger
programs�
To test the responsiveness of the componential analyses in an interactive setting

based on an analyze�debug�edit cycle� we reanalyzed each benchmark after changing
a randomly chosen component in that benchmark� The reanalysis times are shown
in the sixth column of Figure ��� Even in the absence of constraint simpli�cation�
there is some advantage in caching the intermediate constraint systems between
runs� but much of this advantage is lost in the time taken to read and write large
constraint �les� In the presence of constraint simpli�cation� this approach yields
an order�of�magnitude improvement in analysis times over the original� standard
analysis� since the saved constraint �les are used to avoid reanalyzing all of the un�
changed program components� For example� the analysis of zodiac� which used to
take over two minutes� now completes in under four seconds� Since debugging ses�
sions with MrSpidey typically require analyzing the project many times� e�g�� when
a bug is identi�ed and eliminated� using separate analysis substantially improves
the usability of MrSpidey�
The disk�space required to store the constraint �les is shown in column seven�

Even though these �les use a straightforward� text�based representation� their size
is typically within a factor of two or three of the corresponding source �le�

�These times exclude scanning and parsing time�

ACM Transactions on Programming Languages and Systems� Vol� �vol�� No� �no�� �month� �����



Componential Set�Based Analysis � ��

copy Relative time of smart polymorphic analyses Mono�
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check 	�� 
���s 	�� 	�� ��� ��� 	��
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� �
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boyer �	� ���s ��� ��� ��� 
�� ���
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�� 
	� �
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�� 
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�� 	
� 	
� 	�� 	��
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 � � 	��s � �	s � �	s � ��s � ��s

�� indicates the copy analysis exhausted heap space�
and the table contains absolute times for the other analyses�

Fig� ��� Times for the smart polymorphic analyses� relative to the copy analysis�


� EFFICIENT POLYMORPHIC ANALYSIS

The constraint simpli�cation algorithms also enable an e�cient polymorphic� or
context�sensitive� analysis� To avoid merging information between unrelated calls
to functions that are used in a polymorphic fashion� a polymorphic analysis dupli�
cates the function�s constraints at each call site� We extended MrSpidey with �ve
polymorphic analyses� The �rst analysis is copy � which duplicates the constraint
system for each polymorphic reference via a straightforward implementation of the
rules �let� and �inst��� The remaining four analyses are smart analyses that simplify
the constraint system for each polymorphic de�nition�
We tested the analyses using a standard set of benchmarks �Jagannathan and

Wright ������ The results of the test runs are documented in Figure ��� The
second column shows the number of lines in each benchmark� the third column
presents the time for the copy analysis� and columns four to seven show the times
for each smart polymorphic analysis� as a percentage of the copy analysis time� For
comparison purposes� the last column shows the relative time of the original� but
less accurate� monomorphic analysis�
The results again demonstrate the e�ectiveness of our constraint simpli�cation

algorithms� The smart analyses that exploit constraint simpli�cation are always
signi�cantly faster and can analyze more programs than the copy analysis� For
example� while copy exhausts heap space on the nucleic benchmark� all smart
analyses successfully analyzed this benchmark�
Again� it appears that the �	removal analysis yields the best trade�o� between

e�ciency and e�ectiveness of the simpli�cation algorithms� This analysis provides
the additional accuracy of polymorphism without much additional cost over the
coarse� monomorphic analysis� With the exception of the benchmarks browse�
splay� and graphs� which do not reuse many functions in a polymorphic fashion�
this analysis is a factor of 
 to 	 times faster than the copy analysis� and it is also
capable of analyzing larger programs�

�We also implemented a polymorphic analysis that reanalyzes a de�nition at each reference� but
found its performance to be comparable to� and sometimes worse than� the copy analysis�
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��� RELATED WORK

Our results were developed in ����$���� and published at PLDI���� In the mean�
time� a number of researchers have investigated the problem of constraint simpli��
cation in order to derive faster and more scalable analyses and type systems�
Deutsch and Heintze ������ examine constraint simpli�cation for set�based analy�

sis� They propose two simpli�cation algorithms� which are analogous to our empty
and unreachable constraint simpli�cation algorithms� but do not present results on
the cost or e�ectiveness of these simpli�cation algorithms�
F%ahndrich and Aiken ������ examine constraint simpli�cation for an analysis

based on a more complex constraint language� They develop a number of heuristic
algorithms for constraint simpli�cation� which they test on programs of up to ����
lines� Their fastest approach yields a factor of � saving in both time and space� but
is slow in absolute times compared to other program analyses�
Pottier ������ studies an ML�style language with subtyping� Performing type

inference on this language produces subtype constraints that are similar to our
constraints� Pottier de�nes an entailment relation on constraints� and presents an
incomplete algorithm for deciding entailment� In addition� he proposes some ad
hoc algorithms for simplifying constraints� He does not report any results on the
cost or e�ectiveness of these algorithms�
Trifonov and Smith ������ describe a subtyping relation between constrained

types� which are similar to our constraint systems� and they present an incomplete
decision algorithm for subtyping� They do not discuss constraint simpli�cation�
Eifrig et al� ������ discuss constraint simpli�cation in the context of type inference
for objects� They present three algorithms for simplifying constraint systems� two
of which are similar to the empty and �	removal algorithms� and the third is a
special case of the Hopcroft algorithm� They do not present results on the cost or
e�ectiveness of these algorithms�
Duesterwald et al ����	� describe algorithms for simplifying data �ow equations�

These algorithms are similar to the �	removal and Hopcroft algorithms� Their
approach only preserves the greatest solution of the equation system and assumes
that the control �ow graph is already known� Hence it cannot be used to analyze
programs in a componential manner or to analyze programs with advanced control�
�ow mechanisms such as �rst�class functions or virtual methods� The article does
not present results on the cost or e�ectiveness of these algorithms�

��� FUTURE WORK

All our constraint simpli�cation algorithms preserve the observable behavior of
constraint systems� and thus do not e�ect the accuracy of the analysis� If we were
willing to tolerate less accurate analysis results� we could choose a compressed
constraint system that does not preserve the observable behavior of the original
system� but only entails� or conservatively approximates� that behavior� This ap�
proach could yield signi�cant savings in both time and space�
A promising approach for deriving such approximate constraint systems is to rely

on a programmer�provided signature describing the behavior of a program compo�
nent� and to derive the new constraint system from that signature� After checking
the entailment condition to verify that signature�based constraints correctly ap�
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proximates the behavior of the component� we could use those constraints in the
remainder of the analysis� Since the signature�based constraints are expected to
be smaller than the derived ones� this approach could signi�cantly reduce analysis
times for large projects� We are investigating this approach for developing a typed
module language on top of Scheme�

APPENDIX

A� EXTENDING SET�BASED ANALYSIS

Realistic programming languages provide a variety of additional facilities on top
of the idealized core language �� These facilities typically include compound data
structures� assignments� and nonlocal control operators such as �rst�class continu�
ations or exceptions� This section discusses the extension of set�based analysis to
encompass these additional features of practical programming languages� This ex�
tension also suggests how componential set�based analysis can be adapted to other
safe languages such as Java�

A�� Additional Selectors

Most of the additional programming constructs mentioned above introduce addi�
tional kinds of values into the language� Modeling these additional values in the
analysis requires the introduction of additional selectors into the constraint lan�
guage and the corresponding extension of the underlying domain D and the set of
operations and relations de�ned on D�
To simplify this process� we �rst abstract over the collection of selectors in the

constraint language� The constraint language currently contains a single monotonic
selector� rng� and a single antimonotonic selector� dom� We generalize the constraint
language with two sets� Sel� and Sel�� of monotonic and antimonotonic selectors�
respectively� which are currently de�ned as the singletons


Sel� � frngg
Sel� � fdomg

We use the metavariables sel�� sel�� and sel to range over selectors in Sel��
Sel�� and Sel��Sel�� respectively� Expressed in terms of these metavariables� the
language of set expressions becomes

� � SetExp � � j c j sel��� � j sel��� ��

and an atomic constraint is of the form

C � AtomicCon � c 
 � j � 
 �

j � 
 sel���� j sel���� 
 �

j � 
 sel���� j sel���� 
 ��

These constraints have their expected semantics on an extended domain D that
contains a product for each selector in the constraint language


D � P�Const� �D � � � � � D� �z �
sel

��Sel�

�D � � � � � D� �z �
sel

��Sel�

This reformulation simpli�es the process of extending the analysis to cope with
additional programming constructs� The remainder of the derivation of the analysis
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� �Mi � �i�Si

� � �cons M� M�� � ��S� � S� � f�� � car������ � cdr���g
�cons�

� �M � ��S

� � �car M� � ��S � fcar��� � �g
�car�

� �M � ��S

� � �cdr M� � ��S � fcdr��� � �g
�cdr�

Fig� �
� Constraint derivation rules for pairs�

can be adapted to the modi�ed formulation� mutandis mutatis�

A�� Analysis of Pairs

Let �p be the following extension of � with immutable pairs�

M � �p � � � � j �cons M M � j �car M � j �cdr M �
V � Value � � � � j �cons V V �

Semantics� The additional syntactic forms have their usual Scheme semantics�
which we formalize with two additional notions of reduction

�car �cons V� V��� �� V� �car �
�cdr �cons V� V��� �� V� �cdr �

and with an extended notion of evaluation contexts

E � � � � j �cons E M � j �cons V E� j �car E� j �cdr E��

The standard reduction relation ��� and the evaluator eval for the extended lan�
guage �p is de�ned in the usual manner� following Section 
�

Analysis� The analysis of the extended language �p requires two additional
monotonic selectors car and cdr


Sel� � frng� car� cdrg
Sel� � fdomg

These additional selectors yield corresponding products in the domain D� Each
elementX � D is now a ��tuple hC�D�R�A�� A�i� where the additional components
A� and A� describe the possible car and cdr �elds of pairs represented by X�
We extend the relation V in X to describe the pairs represented by an element
X � hC�D�R�A�� A�i in D as follows


b in X i� b � C

��tx�M � in X i� t � C

�cons V� V�� in X i� V� in A�� V� in A�

The constraint derivation rules for the new syntactic forms are described in Fig�
ure �
� The rule �cons� records the possible values for each component of the pair�
The rules �car � and �cdr� extract the appropriate component from the set variable
for the argument expression�
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The set�based analysis function sba for the extended language �p is de�ned fol�
lowing De�nition ���� As in Section ���� we can compute sba�P � from the closure
of S under �


sba�P ��l� � fb j S �� b 
 lg
� f��tx�M � j S �� t 
 lg
� f�cons V� V�� j S �� �� 
 car�l�� V� � sba�P �����

S �� �� 
 cdr�l�� V� � sba�P �����g

A�� Analysis of First�Class Continuations

Consider the following language �cc� which extends �p with �rst�class continua�
tions


M � �cc � � � � j �abort M � j �callcct M �

An abort�expression evaluates its subexpression� and returns the resulting value
as the result of the entire computation� The callcc�expression �callcct M � �rst
evaluates its argumentM to a function� then captures the current evaluation context
�or continuation� surrounding the expression� and applies the function produced by
M to this evaluation context� An invocation of a captured evaluation context causes
the current evaluation context to be discarded and replaced by the captured context�
Just like a function expression� a callcc�expression has an identifying tag so that
MrSpidey can reconstruct the textual source of the corresponding continuation
values from the results of the analysis�

Semantics� We de�ne the semantics of the abort and callcc constructs by ex�
tending the standard reduction relation with the following rules for aborting and
capturing evaluation contexts


E � �abort M � � ��� M �abort

E � �callcct M � � ��� E � �M ��tx��abort E � x ���� � �callcc�

The evaluator for the extended language is de�ned in the usual manner� following
Section 
�

Analysis� Figure �� introduces the additional derivation rules for abort and
callcc expressions� An abort expression never returns� so the derivation rule
�abort� introduces a fresh type variable for these expressions� The least solution
�under vs� for this type variable is �s� denoting the empty set of values�
The rule �callcc� introduces a new type variable 
 to denote the captured con�

tinuation� The rule records that

��� the type variable 
 contains the tag t from the callcc expression�

�
� 
 is the argument to the function �denoted by �� that is returned by M �

��� the result value this function becomes the result of the callcc expression�

�	� argument values to 
 are also returned as results of the callcc expression�

In addition� the rule adds the �dummy� constraint � 
 rng�
�� This dummy con�
straint is required in order that the constraint derivation rules satisfy the subject
reduction lemma� That is� the �callcc� reduction rule produces a contractum con�
taining the syntactic term ��tx��abort E � x ���� which is not present in the �callcc��
redex� Applying the constraint derivation rules to this contractum yields a number
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� �M � ��S

� � �abort M� � ��S
�abort�

� �M � ��S

� � �callcct M� � ��S �

����	
���


t � 



 � dom���
rng��� � �

dom�
� � �

� � rng�
�

�����
���


�callcc�

Fig� ��� Constraint derivation rules for �rst�class continuations�

of constraints� including the constraint � 
 rng�
�� where � describes the value
set for �abort E � x ��� and 
 describes the value set for the ��expression� The
subject reduction lemma requires that this constraint is entailed by the constraint
system for the �callcc��redex� In order to satisfy this requirement� we include that
constraint in the redex�s constraint system�
The set�based analysis function sba for the extended language �cc is de�ned as

in De�nition ��� and is computed in the usual fashion based on the closure of the
derived constraint system under ��

A�� Analysis of Assignable Variables

Next we consider the set�based analysis of a language with assignable variables�
Let �� be the following extension of �p


M � �� � � � � j �letrec �D�� M � j �set� z M � j z �Expressions�
D � De�nes � �de�ne z V � �De�nitions�
z � AssignVar �Assign� Variables�

The extended language contains assignable variables� in addition to the regu�
lar� immutable variables� These assignable variables are introduced by a letrec�
expression �letrec �D�� M �� where D� is a sequence of de�nitions of the form
�de�ne z V �� Each assignable variable in D� is bound in the entire letrec�
expression� and we work with the usual conventions concerning ��renaming for
assignable variables� An assignment expression �set� z M � �rst evaluates M to
some value� assigns the variable z to that value� and then returns the value�

Semantics� We evaluate programs within an enclosing letrec containing a heap
and an expression� The heap is a sequence of de�nitions containing all currently
de�ned assignable variables


H � Heap � D�

All references and assignments to assignable variables operate on this heap� We
use the functional notation H�z� to extract the value bound to z in the heap H�
To allow the evaluation of subexpressions inside the set� form� we extend the

notion of evaluation contexts


E � � � � j �set� z E�
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� � fzi � �ig � Vi � �i�Si
� � fzi � �ig �M � ��S

� � �letrec ��de�ne z� V�� � � � �de�ne zn Vn�� M�
� ��S � S� � 
 
 
 � Sn � f�i � �i j 	 � i � ng

�letrec�

� � fz � �g � z � ��S � f� � �g �ref �

� � M � ��S

� � �set� z M� � ��S � f� � ��z�g
�set��

Fig� �	� Constraint derivation rules for assignable variables�

We extend the standard reduction relation with the following additional cases for
the new syntactic forms� To evaluate an internal letrec� we lift its de�nitions out
into the global heap� ensuring that the appropriate hygiene conditions are satis�ed


�letrec �H� E � �letrec �D�� M � ��
��� �letrec �H �D�� E � M �� �letrec�

if dom�H� � dom�D�� � 


�letrec �H� E � z �� ��� �letrec �H� E � V �� if H�z� � V �ref �

�letrec �H � �de�ne z V �� E � �set� z V �� ��
��� �letrec �H � �de�ne z V ��� E � V � �� �set��

�letrec �H� E � M �� ��� �letrec �H� E � M � �� if M ��M � �compat�

The semantics of the extended language is de�ned via the partial function eval
on programs� This evaluator now returns a pair consisting of a heap and a value�
where the heap provides bindings for the assignable variables in the value�

eval 
 �� ��� Heap � Value
eval�M � � hH�V i if �letrec �� M � ���� �letrec �H� V �

Analysis� The analysis of �� is based on the additional constraint derivation
rules described in Figure �	� The rule �letrec� extends the derivation context � to
map each assignable variable zi to a fresh set variable �i and generates constraints
for both the de�ned values and the letrec�body using the extended derivation
context� The rule �set� � propagates all possible assigned values into the value set
for the assigned variable� A constraint derivation context now maps immutable
variables to either set variables or constraint schemas� as before� and now also
maps assignable variables to set variables�
The set�based analysis function sba for the extended language �� can be de�ned

and computed in the usual fashion�
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B� PROOFS

B�� Proofs for Section �

Lemma ���� �Soundness and Completeness of ��� If S is a system of atomic
constraints� then

S �� c 
 � �� S j� c 
 ��

Proof� The soundness of � is straightforward� To prove the completeness of ��
assume S j� c 
 �� Let � be any �xpoint of the functional F de�ned as

F 
 SetEnv �� SetEnv
F ������ � h fc j S �� c 
 �g�F

f���� j S �� � 
� 
� � 
 dom�
�g�F
f���� j S �� � 
 rng���g i

where S �� � 
� 
 means there exists some 
�� � � � � 
n with � � 
� and 
n � 
 such
that

S �� 
i 
 
i�� for � 
 i � n�

Note� The asymmetry between the de�nition of the domain and range components
of F ������ arises from the rules �� The rule �s�� propagates set variables denot�
ing results of functions in � forward along data��ow paths into constraints of the
form � 
 rng���� However� the same propagation does not occur for set variables
denoting arguments to functions in �� Hence this propagation is performed in the
de�nition of F ������ by �nding all � such that � 
 dom�
� and � 
� 
�
If � j� S� then � j� c 
 �� and hence S �� c 
 � by the de�nition of �� as

required� Thus it just remains to prove that � j� S� We proceed by case analysis
on constraints C � S�

�Suppose C � �� 
 ��� We need to show that the correct ordering holds between
the components of ���� and ����� For the �rst component� since C � S� by �s��
we have

fc j S �� c 
 �g � fc j S �� c 
 �g
��� const ������ � const ������ �

For the second �domain� component� by �s��

S �� � 
� 
 � S �� � 
� 

��� f���� j S �� � 
� 
� � 
 dom�
�g � f���� j S �� � 
� 
� � 
 dom�
�g
���
F
f���� j S �� � 
� 
� � 
 dom�
�g v

F
f���� j S �� � 
� 
� � 
 dom�
�g

��� dom ������ v dom ������ �

For the third �range� component� by �s��

S �� � 
 rng��� � S �� � 
 rng���
��� f���� j S �� � 
 rng���g � f���� j S �� � 
 rng���g
���
F
f���� j S �� � 
 rng���g v

F
f���� j S �� � 
 rng���g

��� rng ������ v rng ������ �

Hence ���� v �����
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�Suppose C � �dom��� 
 ���

��dom���� �
F
f���� j S �� � 
� 
� � 
 dom�
�g by de�nition of �

v
F
f���� j S �� dom�
� 
 �� � 
 dom�
�g by �s��

v
F
sf���� j S �� � 
 �g by �s��

v ����

�The remaining cases for C hold by similar reasoning�

Hence � j� S� and the lemma holds�

The following lemma demonstrates that the rule ���� is admissible in that any
derivation in the extended constraint derivation system produces information equiv�
alent to that produced by the original analysis�

Lemma ���� �Admissibility of ������ If 
 ��� P 
 ��S then

sba�P ��l� � const�LeastSoln�S��l���

Proof� This lemma follows from the property

if � ��� M 
 ��S�� and E � Label � f�g � FV �range����� then there
exists S� such that � � M 
 ��S� and S� ��E S��

We prove this hypothesis by induction on the derivation � ��� M 
 ��S�� and by
case analysis on the last step in the derivation�

�Suppose � ��� M 
 ��S� via ���� because � ��� M 
 ��S� and S� ��E S�� By
induction� � � M 
 ��S� where S� ��E S�� Since ��E is an equivalence relation�
S� ��E S�� and hence the lemma holds�

�Otherwise the proof of each case holds based on the induction hypothesis�

B�� Proofs for the Logic of Constraint System Equivalence

The following proofs require a number of auxiliary de�nitions�

De�nition B��� �Paths��

�A path p� q� r � Path is a sequence of the constructors dom and rng� We use � to
denote the empty sequence� and p�q to denote the concatenation of the paths p
and q�

�The arity of a path p� denoted 
p� is the number of dom�s in p� taken modulo 
�
If 
p is �� we say p is monotonic� otherwise p is antimonotonic�

�For a path p� the notation p�� � denotes the set expression � enclosed in the dom�s
and rng�s of p� i�e�� if p � rng�dom� then p��� � rng�dom�����

�For a path p and a domain element X � D� the notation p�X� extracts the
component of X at the position p� This notation is formalized as follows


��X� � X

�rng�p��X� � rng �p�X��
�dom�p��X� � dom �p�X��

�The relations 
� and 
� denote 
 and �� respectively�

�The relations �� and �� denote � and �� respectively�

ACM Transactions on Programming Languages and Systems� Vol� �vol�� No� �no�� �month� �����



�� � C� Flanagan and M� Felleisen

Lemma ���� �Soundness and Completeness of  �� For a system S of com	
pound constraints and a compound constraint C�

S �� C �� S j� C�

Proof� The soundness of  is straightforward� To demonstrate the complete�
ness of  � we assume S j� C and prove that S �� C by case analysis on C�

��� Suppose C � �c 
 	�� De�ne � by

�p � Path� �� � SetVar � const�p������� � fc j S �� c 
 p���g�

This solution � is actually the LeastSoln�S�� For the purposes of this proof�
however� it is su�cient to prove a weaker result� speci�cally that � j� S� We
prove this result by a case analysis showing that � satis�es every constraint
C� � S�
�a� Suppose C� � �c� 
 q����� Then� by the de�nition of �� c� � const���q������

and hence � j� c� 
 q����
�b� Suppose C� � �p��� 
 q����� We need to show that ��p���� v ��q����� We

prove this inequality by showing that for any path r


const�r���p������ ��r const �r���q�������

If r is monotonic� then

const�r���p������ � fc j S �� c 
 r�p����g
� fc j S �� c 
 r�q����g
via �trans� � from S �� r�p���� 
 r�q����
which follows from �p��� 
 q���� � S via �compat�

� const �r���q�������

The case where r is antimonotonic follows by a similar argument�
Hence � j� S� and� in particular� � j� c 
 	� Since 	 � p��� for some p and ��
then we have that

c � const�p������� � fc j S �� c 
 p���g�

Hence� S �� c 
 	� as required�

�
� Suppose C � �	� 
 	��� Let c be a constant not used in S or C� let S� �
S � fc 
 	�g� and let � � LeastSoln�S��� Since � j� C� we have that

� j� fc 
 	�� 	� 
 	�g�

Hence � j� c 
 	�� and by the �rst part of this proof� S
� �� c 
 	��

We now show that

for any 	�� S� �� c 
 	� if and only if S �� 	� 
 	��

The right�to�left implication is straightforward� We prove the left�to�right im�
plication by induction on the derivation of S� �� c 
 	�

�a� Suppose S� �� c 
 	� because �c 
 	�� � S�� Then 	� � 	� because c is

unique� and S �� 	� 
 	� via �re�ex �� as required�
�b� If �c 
 	�� �� S�� then S� �� c 
 	� must be derived via the rule �trans� �

based on the antecedents S� �� fc 
 	��� 	�� 
 	�g� By induction� S ��
	� 
 	��� Hence S �� 	� 
 	� via �trans� �� as required�
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Since S� �� c 
 	�� the above hypothesis implies that S �� 	� 
 	�� as
required�

Lemma ���� For a system S of compound constraints� S ��E  �S� jE �

Proof� We need to show that S ��E  �S� jE � i�e��

Soln�S� jE � Soln� �S� jE� jE�

Since  is sound

Soln�S� jE � Soln� �S�� jE � Soln� �S� jE� jE�

because the solution space increases as the constraints  �S� are restricted to E�
To show the containment in the other direction� assume � j�  �S� jE � Without

loss of generality� assume ���� � �s for all � �� E� We extend � to a superenviron�
ment �� that satis�es S as follows


�p � Path� �� � SetVar � const�p�������� �
�
fconst���� �� j S �� � 
 p���g

We show that �� j� S by case analysis on the constraints C � S�

�Suppose C � �c 
 q����� Then

const�q�������� �
S
fconst���� �� j S �� � 
 q���g

� fcg

as required�

�Suppose C � �p��� 
 q����� Then for any path r� S �� r�p���� 
�r r�q���� via
�compat�� HenceS

f� j S �� � 
 r�p����g ��r

S
f� j S �� � 
 r�q����g�

and therefore

const����r�p������ �
S
fconst���� �� j S �� � 
 r�p����g

��r

S
fconst���� �� j S �� � 
 r�q����g

� const����r�q�������

Hence

���p���� v ���q�����

And hence �� j� C� as required�

Thus �� j� S� It remains to show that � and �� agree on E� Let � � E and r � Path �
Then

const ����r����� �
S
fconst���� �� j S �� � 
 r���g

by de�nition of ��

�
S
fconst���� �� j S �� � 
 r���� SetVar�� � � Eg

since ���� � �s for � �� E

and hence ��� � � �s for SetVar �� � �� E

�
S
fconst���� �� j � 
 r��� �  �S� jEg

� const���r������

since �r��� 
 r���� �  �S� jE by �re�ex � and �compat �� and for �� 
 r���� �
 �S� jE � const���� �� � const���r������ Thus � and �� agree on E� and the lemma
holds�
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Lemma ���� �Equivalence of Proof Systems�� For a system of atomic con	
straints S�

 �S� � !��S��

Proof� The proof of the inclusion !��S� �  �S� is straightforward�
We prove the converse inclusion  �S� � !��S� by induction on the numer of

non !��steps in the derivation of C �  �S�� Again� for the base case� if C �  �S�
because C � S� then C � !��S�� Otherwise we proceed by case analysis on the
last rule used in the derivation of C �  �S��

�re�ex �� �compat�� These rules are also in !� and by induction� the antecedents
are in !��S�� hence C � !��S��

�trans� �� The last step in the derivation must be

�� 
 � � 
 ��

�� 
 ��
��trans� �

We proceed by case analysis on � to show that ��� 
 ��� � !��S��
��� The case � � c is impossible� since ��� 
 c� is not a compound constraint�
�
� If � � SetVar � then ��� 
 ��� � !��S� via �trans���
��� Suppose � � rng�� ��� If � � � SetVar then ��� 
 ��� � !��S� via �s���

Otherwise �� 
 rng�� �� and rng�� �� 
 �� are not atomic constraints� and we
proceed by considering the derivation of these constraints in !��S��
Suppose the last step in the derivation of S �	� �� 
 rng�� �� is via �trans��


�� 
 � � 
 rng�� ��

�� 
 rng�� ��
�trans��

Then S �	� � 
 rng�� ��� S �� rng�� �� 
 ��� and hence S �� � 
 �� via a
shorter proof� so by induction S �	� � 
 ��� and hence S �	� �� 
 �� via
�trans���
The case where last step in the derivation of S �	� rng�� �� 
 �� is via �trans��
holds by similar reasoning�
Otherwise� the last step in the derivation of �� 
 rng�� �� is either via

�� 
 rng���� �� 
 � �

�� 
 rng�� ��
�compose��

where �� � ��� or

� �� 
 � �

rng�� ��� 
 rng�� ��
�compat�

where �� � rng�� ���� Similarly� the last step in the derivation of rng��
�� 
 �� is

either via

� � 
 �� rng���� 
 ��

rng�� �� 
 ��
�compose��

where �� � ��� or

� � 
 � ��

rng�� �� 
 rng�� ���
�compat�
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where �� � rng�� ���� We consider the four possible combinations for the deriva�
tions of �� 
 rng�� �� and rng�� �� 
 ��

�a� Suppose �� 
 rng�� �� is inferred via �compose�� and rng��

�� 
 �� is inferred
via �compose��� Then f�� 
 � �� � � 
 ��g �  �S�� and therefore ��� 
 ��� �
 �S� via �trans� �� By induction� ��� 
 ��� � !��S�� and the following
derivation then shows that ��� 
 ��� � !��S��

�� 
 rng���� �� 
 ��

�� 
 rng����
�s�� rng���� 
 ��

�� 
 ��
�s��

�b� Suppose �� 
 rng�� �� is inferred via �compose�� and rng��
�� 
 �� is inferred

via �compat �� Then f�� 
 � �� � � 
 � ��g �  �S�� and therefore ��� 
 � ��� �
 �S� via �trans� �� By induction� ��� 
 � ��� � !��S�� and the following
derivation shows that ��� 
 ��� � !��S��

�� 
 rng���� �� 
 � ��

�� 
 rng�� ���
�compose��

�c� Suppose �� 
 rng�� �� is inferred via �compat� and rng�� �� 
 �� is inferred
via �compose��� This case holds by reasoning similar to the previous case�

�d� Suppose �� 
 rng�� �� is inferred via �compat� and rng�� �� 
 �� is inferred
via �compat�� Then f� �� 
 � �� � � 
 � ��g �  �S�� and therefore ��

�
� 
 � ��� �

 �S� via �trans� �� By induction� �� �� 
 � ��� � !��S�� and therefore a
�compat ��inference shows that ��� 
 ��� � !��S��

There are no other possibilities for the derivations of �� 
 rng�� �� and rng�� �� 

���

�	� Suppose � � dom�� ��� This case holds by reasoning similar to the previous case
where � � rng�� ���

There are no other possibilities for � �

There are no other possibilities for the derivation of C �  �S�� Hence  �S� �
!��S��

Lemma ���� For any system S of atomic constraints� !��S� jE �� "��S� jE �

Proof� Since the rule �compat� does not create any " or � opportunities�
!��S� � compat �"��S��� and hence we just need to show that

compat�"��S�� jE �� "��S� jE �

Now

compat�"��S�� � "��S�
��� compat�"��S�� jE � "��S� jE
��� compat�"��S�� jE j� "��S� jE�

To prove the converse� let � j� "��S� jE � If � �j� compat�"��S�� jE� then let C be
the constraint in compat �"��S�� jE with the smallest derivation such that � �j� C�
Then the last step in the derivation of C must be via �compat �� Let C� be the
antecedent of this rule in compat�"��S��� Then SetVar�C�� � SetVar �C� � E�
and hence C� � compat�"��S�� jE with a smaller derivation� Therefore � j� C��
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and hence since �compat � is sound� � j� C� Thus � j� compat �"��S�� jE� as
required�

B�� Proofs for the Decidability of the Logic

Lemma 	��� �Staging�� For any system of atomic constraints S�

!��S� � !���S�� � compat�"���S����

Proof� The equality !���S�� � compat�"���S��� holds� since �compat� does
not create any " or � opportunities�
The inclusion !��S� � !���S�� obviously holds� To prove the inclusion !��S� �

!���S�� holds� we suppose S �	� C� and prove C � !���S�� by induction on the
derivation S �	� C� and by case analysis on the last step in this derivation�

�Suppose S �	� C via some rule in !� By induction� the antecedents of this rule
are in !���S��� and hence C � !���S���

�Suppose S �	� C via one of the rules �s��� �s��� or �s��� These rules are sub�
sumed by �trans��� �compose��� and �compose��� and hence this case is subsumed
by the previous case�

�Suppose S �	� C via �s��� based on the antecedents f� 
 rng���� rng��� 
 �g�
By induction� these antecedents are in !���S��� An examination of ! shows
that ! can only infer �� 
 rng���� if there exists ��� �� such that ��S� contains
the constraints

� 
� �� �� 
 rng���� �� 
� ��

Similarly� ! can only infer �rng��� 
 �� if there exists ���� �� such that ��S�
contains the constraints

� 
� ��� rng����� 
 �� �� 
� ��

Hence

S �� �� 
 rng����� via multiple applications of �s��
S �� �� 
 �� via �s��
��S� �	 � 
 � via multiple applications of �trans���

�The case for �s�� holds by reasoning similar to the previous case�

Lemma 	��� Let G � Gt�S� E�� Then "�S� jE � LG�R��

Proof� We prove that "�S� jE � LG�R� by case analysis on C � "�S� jE�

�Suppose C � �� 
 	�� Then by Lemma ���� �U ���
G 	� Since SetVar�C� � E�

� � E� and hence �L ��G �� Thus R ��G ��L 
 �U � ��
�
G �� 
 	�� and hence

�� 
 	� � LG�R��

�The case where C � �	 
 �� follows by similar reasoning�

�Suppose C � �c 
 	�� If C � S� then 	 � �� � � E� and R ��G �c 
 �U � ��G

�c 
 �� as required�
If C �� S� then an examination of the inference rules in " shows that C can
only be inferred via �trans��� based on the antecedents �c 
 �� and �� 
 	� in

ACM Transactions on Programming Languages and Systems� Vol� �vol�� No� �no�� �month� �����



Componential Set�Based Analysis � �


"�S� jE � By Lemma ���� �L ���
G c and �U ���

G 	� Hence R �� �c 
 	�� and hence
�c 
 	� � LG�R�� as required�

�Finally� consider C � �	� 
 	��� where 	�� 	� �� SetVar � An examination of the
inference rules in " shows that C can only be inferred via �trans��� based on the
antecedents �	� 
 �� and �� 
 	��� By Lemma ���� �L ���

G 	� and �U ���
G 	��

Hence R �� �	� 
 	��� and hence �	� 
 	�� � LG�R�� as required�

We prove that "�S� jE � LG�R� by case analysis on C � LG�R��

�Suppose C � �	� 
 	��� Then for some �� �L ���
G 	� and �U ���

G 	�� By
Lemma ���� f	� 
 �� � 
 	�g � "�S� and SetVar�	i� � E� Hence �	� 
 	�� �
"�S� jE � as required�

�Otherwise C � �c 
 	�� Then for some �� �c 
 �� � S and �U ���
G 	� By

Lemma ���� f� 
 	g � "�S� and SetVar�	� � E� Hence �c 
 	� � "�S� jE� as
required�

C� THE ENTAILMENT ALGORITHM

The algorithm for deciding the restricted entailment of constraint systems is pre�
sented in Figure ��� Given two systems of atomic constraints S� and S� and a
collection E of external set variables� the algorithm decides if S� �E	� S�� Based
on the reasoning of Section ���� the relation S� �

E
	� S� holds if and only if

LG��R� � compat�LG��R��

where Gi � Gt���Si�� E�� To decide if LG��R� � compat�LG��R��� the algorithm
�rst computes a relation RS��S� such that RS��S� ��L� �U � C�D� holds if and only if

L���L 
 �U �� � compat�L�C�� � L�D��

where �L� �U are nonterminals describing set expressions� C� D describe collec�
tions of constraints� and L���L 
 �U �� denotes the language f��L 
 �U � j �L ���

�L� �U ��� �Ug�
The relation RS��S� is de�ned as the largest relation satisfying the conditions

in Figure ��� It is computed by starting with the maximal relation �true at every
point�� and then iteratively setting entries to false� until the largest relation sat�
isfying these conditions is reached� The �rst condition in the de�nition of RS��S�

uses an RTG containment algorithm to detect if L���L 
 �U �� � L�C� � L�D��
The following two conditions handle constraints of the form �rng���L� 
 rng���U ��
or �dom���U� 
 dom���L��� and allow for inferences via �compat��
Based on the relation RS��S� � the algorithm then de�nes a computable entailment

relation S� �Ealg S� on constraint systems� This relation holds if and only if S� �
E
	�

S��

Theorem C��� �Correctness of the Entailment Algorithm�� S� �E	� S�
if and only if S� �Ealg S��

Proof� We prove this theorem based on the following invariant concerning the
relation RS��S� ��� �� �� ��


RS��S� ��L� �U � C�D� �� LG����L 
 �U �� � compat�L�C�� � L�D� ���
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The Entailment Algorithm

For i � f	� �g let�

Gi � Gt���Si�� E�
Li � f�L j � � SetVar�Si�g
Ui � f�U j � � SetVar�Si�g

and let Gi be pre�processed to remove ��transitions

For C � Pfin�L� � U��� de�ne

LG��C� � f��L � �U � j h�L� �Ui � C� �L �
G� �L� �U �
G� �Ug

The relation RS��S� �
� 
� 
� 
� is de�ned as the largest relation on

L� � U� � Pfin�L� � U���Pfin�L� � U��

such that if

RS��S� ��L� �U � C�D� �L �
G� X �U �
G� Y

then one of the following cases hold�

�	� LG� ��X � Y �� � LG��C �D�


��� X � rng���

L�� Y � rng���

U� and RS��S� ��
�

L� �
�

U � C�D
��� where

D
� � fh��L� 


�

U i j h�L� 
Ui � C�D��L �
G� rng���L�� 
U �
G� rng�
�U �g

��� X � dom���

U�� Y � dom���

L� and RS��S� ��
�

L� �
�

U � C�D
��� where

D
� � fh
�L� �

�

U i j h�L� 
Ui � C�D��L �
G� dom���U �� 
U �
G� dom�
�L�g

��� In no other cases does RS��S� ��L� �U � C�D� hold


The computable entailment relation S� �
E
alg S� holds if and only if�

�	� �R �
G� ��L � �U �� RS��S� ��L� �U � fh�L� �Ui j � �
SetVar�S��g� ��� and

��� �R �
G� �c � �U �� LG� ��U� � LG� �f�U j R �
G� �c � �U �g�


Fig� �
� The computable entailment relation �Ealg�

Now also assume that S� �E	� S�� Then "��S�� jE � compat�"��S��� jE � By
Lemma ���� "��Si� jE � LGi

�R�� and hence

LG��R� � compat�LG��R���

Thus� for all R ��G� ��L 
 �U �

LG����L 
 �U �� � compat�LG��R��
��� LG����L 
 �U �� � compat�LG��fh�L� �U i j � � SetVar�S��g���

Hence

RS��S� ��L� �U� fh�L� �U i j � � SetVar�S��g� 
��

Also� from LG��R� � compat�LG��R��� we have that for all R ��G� �c 
 �U �

LG���c 
 �U �� � compat�LG��R��
��� LG���c 
 �U �� � LG��R�
��� LG���U� � LG��f�U j R ��G ��c 
 �U �g��
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Hence S� �Ealg S� holds� The proof of the converse implication that S� �
E
alg S�

implies S� �E	� S� proceeds by a similar argument�
It remains to show that ��� holds� To prove the left�to�right direction� suppose

that RS��S� ��L� �U � C�D� holds and

�L ��G�
X ���

G�
�L

�U ��G�
Y ���

G�
�U �

We prove by induction on �L that

L���L 
 �U �� � compat�L�C�� � L�D��

One of three cases in the de�nition of R must hold�

��� L���L 
 �U �� � L�C �D�� This case is trivial�

�
� In this case

X � rng���L� ��L ��
�
G�

� �L �L � rng�� �L�
Y � rng���U � ��U ���

G�
� �U �U � rng�� �U �

and RS��S� ��
�
L� �

�
U � C�D

��� where

D� � fh��L� 

�
U i j h�L� 
Ui � C �D� �L ��G� rng��

�
L�� 
U ��G� rng�


�
U �g�

By induction� �� �L 
 � �U � � compat�L�C�� � L�D���

�If �� �L 
 � �U � � L�D
�� then there exists h��L� 
Ui � D such that ��L ��

�
G�

� �L and

�U ���

G�
� �U � By the de�nition of D

�� there exists h�L� 
U i � C �D such that
�L ���

G�
�L and 
U ���

G�
�U � Therefore ��L 
 �U � � L�C �D�� as required�

�If �� �L 
 � �U � � compat�L�C�� then ��L 
 �U � � compat �L�C��� as required�

��� The proof for the third case of the de�nition of RS��S� ��� �� �� �� is similar to that
for the second case�

To prove the right�to�left direction� suppose

L���L 
 �U �� � compat�L�C�� � L�D�

and that the relation RS��S� ��L� �U � C�D� does not hold� Hence there exists X�Y
such that �L ��G� X and �U ��G� Y and none of the three conditions in Fig�
ure �� hold� Furthermore� since R is the largest relation satisfying the conditions
in Figure ��� there exists a �nite proof that none of the three conditions hold�
Of all possible such counterexamples h�L� �U � X� Y� C�Di� we pick the one with

the smallest proof that the relation RS� �S� ��L� �U � C�D� does not hold� and proceed
by case analysis on the last step in this proof�

�Suppose RS� �S� ��L� �U � C�D� does not hold because of condition ���� Then
L��X 
 Y �� �� L�C �D�� which contradicts the assumptions above�

�Suppose RS��S� ��L� �U � C�D� does not hold because of condition �
�� Then X �
rng���L� and Y � rng���U �� Consider any pair of set expressions �L and �U
such that ��L ���

G�
�L and ��U ���

G�
�U � We consider the two possibilities for

�rng��L� 
 rng��U �� � compat�L�C�� � L�D� separately�
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�If �rng��L� 
 rng��U �� � L�C��L�D�� then there exists h�L� 
U i � C�D such
that

�L ��G�
rng���L� ��

�
G�

rng��L�

U ��G�

rng�
�U � ��
�
G�

rng��U ��

Hence ��L 
 �U � � L�D��� where

D� � fh��L� 

�
U i j h�L� 
U i � C �D� �L ��G�

rng���L�� 
U ��G�
rng�
�U �g�

�Otherwise �rng��L� 
 rng��U �� � compat�L�C��nL�C�� and hence ��L 
 �U � �
compat�L�C���

Hence

L����L 
 ��U �� � compat�L�C�� � L�D���

The proof that RS��S� ��L� �U � C�D� does not hold cannot rely on a smaller proof
thatRS� �S� ��

�
L� �

�
U � C�D

�� does not hold� since that would yield a counterexample
with a smaller proof�

�The case where RS� �S� ��L� �U � C�D� does not hold because of condition ��� is
also impossible via reasoning similar to the previous case�

Thus the invariant ��� is true� and thus the theorem holds�

D� NOTATIONS

Symbol Meaning

��� Partial map constructor
P Power set constructor
Pfin Finite power set constructor

M � � Terms
V � Value Values
x � Var Variables
b � BasicConst Basic constants
t � Tag Function tags
l � Label Labels

�v� �let � unlabel Reduction rules
�� Reduction relation
E Evaluation contexts
���� ���� Standard reduction relation
eval Evaluator

� � SetExp Set expressions
�� �� � � SetVar Set variables
c � Const Constants
dom� rng Selectors
C � AtomicCon Atomic constraints
S � AtomicConSystem System of atomic constraints
SetVar Set variables in a constraint system
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� � DerivCtxt Set variable context
� �M 
 ��S Constraint derivation rules
� � ConSchema Constraint schema
FV �range���� Free variables in the range of �

�� Deduction via �
� � fs�� � � � � sng Inference rules
sba Analysis function
in Values described by constants

D Domain for constraints
const � dom� rng Extract components of element of D
v�����t�u Ordering� elements and operations on D

� � SetEnv Set environment
C � Constraint Constraints
S � ConstraintSystem Constraint systems
j� Satis�es� or entails
Soln�S� Solution space
�� Observable equivalence
Soln�S� jE Restricted solution space
j�E Restricted entailment
��E Restricted observable equivalence
S jE Restriction of a constraint system

vs��s��s�ts�us Alternative ordering on domain
LeastSoln Least Solution

E External variables

 Inference rules on constraint systems
	 Nonconstant set expression
C � CmpdConstraint Compound constraint
S � CmpdConSystem System of compound constraints
! Inference rules on constraint systems
" Inference rules on constraint systems
�E	���

E
	� Relations on constraint systems

G Grammar
Gr�S� E� Function producing regular grammar
�L� �U Grammar nonterminals
LG�X� Language for nonterminal X in G

Gt�S� E� Function producing RTG
R Root nonterminal
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Sel�� Sel� Sets of selectors
sel�� sel�� sel Selectors

�p Language � plus pairs
car� cdr Selectors for pairs

�cc Language �p plus continuations

�� Language �p plus assignments
D � De�nes De�nitions
z � AssignVar Assignable variables
H � Heap Heap of de�nitions


� Transitive closure of 


p� q� r � Path Paths
arity� 
 Arity function

i Either 
 or �
�i Either � or �

R Relation for computing entailment
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