Componential Set-Based Analysis

CORMAC FLANAGAN

Compaq Systems Research Center
and

MATTHIAS FELLEISEN

Rice University

Set-based analysis (SBA) produces good predictions about the behavior of functional and object-
oriented programs. The analysis proceeds by inferring constraints that characterize the data flow
relationships of the analyzed program. Experiences with MrSpidey, a static debugger based on
SBA, indicate that SBA can adequately deal with programs of up to a couple of thousand lines of
code. SBA fails, however, to cope with larger programs because it generates systems of constraints
that are at least linear, and possibly quadratic, in the size of the analyzed program.

This article presents theoretical and practical results concerning methods for reducing the size
of constraint systems. The theoretical results include a proof-theoretic characterization of the
observable behavior of constraint systems for program components, and a complete algorithm
for deciding the observable equivalence of constraint systems. In the course of this development
we establish a close connection between the observable equivalence of constraint systems and
the equivalence of regular-tree grammars. We then exploit this connection to adapt a variety of
algorithms for simplifying grammars to the problem of simplifying constraint systems.

Based on the resulting algorithms, we have developed componential set-based analysis, a modu-
lar and polymorphic variant of SBA. Experimental results verify the effectiveness of the simplifica-
tion algorithms and the componential analysis. The simplified constraint systems are typically an
order of magnitude smaller than the original systems. These reductions in size produce significant
gains in the speed of the analysis.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—
debugging aids, symbolic execution; D.2.6 [Software Engineering]: Programming Environments;
D.3.4 [Programming Languages|: Processors—(static) debugger, optimizer; F.3.1 [Logics and
Meaning of Programs]: Specifying and Verifying and Reasoning about Programs—mechanical
verification; F.3.3 [Logics and Meaning of Programs]: Studies of Program Constructs—(soft)
type structure

General Terms: Algorithms, Languages, Performance, Theory
Additional Key Words and Phrases: constraint-based analysis, program analysis, Scheme, soft
typing, static debugging

Authors’ addresses: C. Flanagan, Compaq Systems Research Center, 130 Lytton Avenue, Palo
Alto, CA 94301; email: flanagan@pa.dec.com; M. Felleisen, Department of Computer Science,
Rice University, 6100 South Main, Houston, TX 77005-1892; email: matthias@cs.rice.edu.
Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.

© 1999 ACM 0164-0925/99/0100-0000 $5.00

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999, Pages <1p>—<up>.

2 . C. Flanagan and M. Felleisen

1. THE EFFECTIVENESS OF SET-BASED ANALYSIS

Rice’s Scheme program development environment provides a static debugger, Mr-
Spidey, which statically analyzes a program and, using the results of this analysis,
checks the soundness of all primitive operations [Flanagan et al. 1996]. If an op-
eration may fault due to a violation of its precondition, MrSpidey highlights the
program operation so that the programmer can investigate the potential fault site
before running the program.

MrSpidey’s underlying program analysis is a constraint-based system similar to
Heintze’s set-based analysis of ML programs [Heintze 1994]. The analysis consists of
two co-mingled phases: a derivation phase, which derives constraints describing the
data flow relationships of the analyzed program, and a solution phase, which solves
these constraints. The solution conservatively approximates the set of possible
values for each program expression.

In practice, MrSpidey has proven highly effective for pedagogic programming,
which includes programs of several hundreds to 2,000 lines of code. It also works
reasonably well on some programs of up to several thousand lines in length. How-
ever, it becomes less useful for debugging large programs, for two reasons:

—Set-based analysis has an O(n®) worst-case time bound. The constant on the
cubic element in the polynomial is small, but it becomes noticeable for programs
of several thousand lines.

—Large programming projects tend to reuse functions in a polymorphic fashion. To
avoid merging information between unrelated calls to such functions, the analysis
must duplicate the function’s constraint system at each corresponding call site.
This duplication is expensive because of the size of the constraint system.

A closer look at these two obstacles suggests that the major limitation of set-
based analysis is the size of the constraint system that it generates. If we could
reduce the size of a constraint system without affecting the solution space that it
denotes, we could simplify constraint systems for program components at interme-
diate stages during the analysis and thus reduce the analysis time. By simplifying
the constraint system for each module, we could significantly reduce the cost of
solving the combined set of constraints for a modularized program; similarly, by
simplifying the constraint system for a polymorphic function definition, we could
reduce the cost of duplicating that constraint system at each polymorphic reference.

The simplification of constraint systems raises both interesting theoretical and
practical questions. On the theoretical side, we need to ensure that simplification
preserves the solution space, or observable behavior, of a constraint system. In
this article, we provide a proof-theoretic characterization of observable behavior
and establish a close connection between the observable equivalence of constraint
systems and the equivalence of regular tree grammars (RTGs).! Exploiting this
connection, we develop algorithms for deciding the observable equivalence of con-
straint systems, and for finding a minimal constraint system observably equivalent

LA number of researchers, including Reynolds [1969], Jones and Muchnick [1982], Heintze [1994],
Aiken [1994], and Cousot and Cousot [1995], previously exploited the relationship between RTGs
and the least solution of a constraint system. We present a different result, namely a connection
between RTGs and the observable behavior (i.e., the entire solution space) of constraint systems.

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

Componential Set-Based Analysis . 3

to a given system. Unfortunately, both of these problems are PSPACE-hard.

Since a minimal constraint system is only optimal but not necessary for prac-
tical purposes, the practical question concerns finding approximate algorithms for
simplifying constraint systems that would make MrSpidey more useful on large
programs. To answer this question, we exploit the correspondence between RTGs
and constraint systems to adapt a variety of algorithms for simplifying RTG to the
problem of simplifying constraint systems. Based on these simplification algorithms,
we develop a componential ,? or componentwise, variant of set-based analysis. Ex-
perimental results verify the effectiveness of the simplification algorithms and the
componential analysis. The simplified constraint systems are typically an order
of magnitude smaller than the original systems. These reductions in size produce
significant gains in the speed of the analysis.

The presentation of our results proceeds as follows. Section 2 introduces an ide-
alized source language, and Section 3 reviews the traditional set-based analysis of
that language. Section 4 formalizes the notion of constraint system equivalence,
based on the denotational semantics of constraints. Section b describes a logic for
constraint system equivalence, and Section 6 uses this logic to develop a connection
between RTGs and the constraint systems. Section 7 exploits this connection to
derive a number of practical constraint simplification algorithms. Sections 8 and 9
discuss how these algorithms perform in a realistic program analysis system. Sec-
tion 10 discusses related work. Section 11 describes directions for future research.
Appendix A outlines how the analysis extends to additional language features such
as data-structures, assignments, and nonlocal control operators. Appendix B con-
tains proofs of various theorems and lemmas. Appendix C presents the algorithm
for deciding constraint system equivalence. Appendix D contains an index of nota-
tions used in the article.

Notation. We use A —ey B to denote the set of partial maps from A to B,
P to denote the power-set constructor, and Py, to denote the finite power-set
constructor.

2. THE SOURCE LANGUAGE

For simplicity, we present our results for a A-calculus-like language with constants
and labeled expressions. It is straightforward to extend the analysis to a realistic
language with assignments, recursive data structures, objects, and nonlocal control
operators along the lines outlined in Appendix A and described in more detail in
the first author’s dissertation [Flanagan 1997].

2.1 Syntax

Expressions in our language are either variables, values, function applications, la-
beled expressions, or let-expressions: see Figure 1. Values include basic constants
and functions. Functions have identifying tags so that MrSpidey can reconstruct
a call-graph from the results of the analysis. We use let-expressions to intro-
duce polymorphic bindings, and hence restrict these bindings to syntactic val-
ues [Wright 1995]. We use labels to identify those program expressions whose
values we wish to predict. We work with the usual conventions and terminology of

2componential a. of or pertaining to components.

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

4 . C. Flanagan and M. Felleisen

Syntax:
M e A =z |V |(MM)] (et (zV)M)| M (Expressions)
V € Value =b|(\Nw.M) (Values)
xr € Vars =A{zx, vy, z, ...} (Variables)
b € BasicConst (Basic Constants)
t € Tag (Function Tags)
1 € Label (Expression Labels)

Fig. 1. The source language A.

the A,-calculus [Plotkin 1975] when discussing syntactic issues. In particular, the
substitution operation M [z + V] replaces all free occurrences of @ within M by V,
and A° denotes the set of closed terms, also called programs.

2.2 Semantics

We specify the meaning of programs based on three notions of reduction:

(M2.M) V) — M[z — V] (8y)
(let (z V) M) — M[z — V] (Oret)
Vi v (unlabel)

The 3, and ;. rules are the conventional rules for the A-calculus. The unlabel
rule simply removes the label from an expression once its value is needed.

An evaluation context £ is an expression containing a hole [] in place of the next
subterm to be evaluated:

E=[T1(E M) (VE)] (et (x &) M) | £

For example, in the term (N M), the next expression to be evaluated lies within
N, and thus the definition of evaluation contexts includes the clause (£ M). An
evaluation context always contains a single hole [], and we use the notation £] M]
to denote the term produced by filling the hole in £ with the term M.

The standard reduction relation — is the compatible closure [Barendregt 1984,
ch.#2] of — with respect to evaluation contexts:

SIM]—&N] < M-—AN.

The relation —* is the reflexive, transitive closure of ——. The semantics of the
language is defined via the partial function eval on programs:

eval : A° —o> Value
eval(M) = V if M —*V.
3. A REVIEW OF HEINTZE'S SET-BASED ANALYSIS

Set-based analysis consists of two phases: a derivation phase and a solution phase.?
The derivation phase derives constraints on the sets of values that program expres-
sions may assume. These constraints describe the data flow relationships of the

3Cousot and Cousot [1995] showed that the results of set-based analysis can alternatively be
computed via an abstract interpretation based on chaotic iteration.

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

Componential Set-Based Analysis . 5

analyzed program. The solution phase solves these constraints to yield a conserva-
tive approximation of the set of possible values for each labeled expression in the
program.

3.1 The Constraint Language

A constraint 1s simply an inequality between set expressions. Each set expression
denotes a set of values, and the constraint denotes the corresponding set contain-
ment relationship. A set expression 7 is either a constant, a set variable, or one of
the selector expressions dom(7) or rng(7):

T € SetExp = ¢ | a | dom(7) | rng(7)
¢ € Const = BasicConst U Tag
a, 3,y € SetVar D Label.

The selector expression rng(r) denotes the set of values returned by functions in
7; similarly, dom(7) denotes the set of values to which these functions are applied.
Constants include both basic constants and function tags. Set variables include
program labels as a strict subset.

An atomic constraint C is one of the following inequalities between set expres-
sions, and an atomic constraint system & is a collection of atomic constraints:

C ¢ AtomicCon = e<p |
| a <dom(f) | dom(w
| a <rng(B) | rng(a

Q

INIAIA
ww @

S € AtomicConSystem = Pg,(AtomicCon).

We use SetVar(S) to denote the collection of set variables in a constraint system S.
For clarity, we sometimes enclose constraints inside square brackets, as in [r < 73].

Our constraint language is based on the “selectors” dom(r) or rng(r) instead
of the more usual “constructors” (r — 72) [Aiken et al. 1994]. For example,
we describe a function’s behavior via the two constraints dom(a) < «y and as <
rng(«), instead of the combined constraint (a7 — «3) < «. By using selectors,
we can specify each “quantum” of the program’s data-flow behavior independently,
which aids in the development of constraint simplification algorithms.

3.2 Deriving Constraints

The derivation phase of set-based analysis derives atomic constraints on the sets
of values that program expressions may assume. Following Aiken et al. [1994] and
Palsberg and O'Keefe [1995], we formulate this derivation as a proof system. Each
proof rule infers a judgment of the form ' M : «, 8, where

(1) the derivation context T maps the free variables of the expression M to either
set variables or constraint schemas (see below);

(2) a names the value set of M; and

(3) & is a system of atomic constraints describing the data-flow relationships of M.

The derivation proceeds in a syntax-directed manner according to the constraint
derivation rules presented in Figure 2. The rule (var) extracts the appropriate set
variable « for a particular program variable z from the derivation context. The

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

6 . C. Flanagan and M. Felleisen

Tu{z:a}lbFz:ad (var)
F'tb:a,{b<La} (const)

I'tEM:a,8
(label)

't M:a,SU{a<li}
Tu{z:a1}FM:a,S

(abs)
t <«
Tk ()\tx.M) o, S U { dom(a) < ay }
oz < rng(a)
TFM:Bi,S;
5 < don(h) (app)
, > < dom(B
F"(Ml MQ).O{,SlLJSQU{rng(ﬁl) S a }
I'EV:av,Sv
a = (SetVar(Sv) U {av}) \ (FV[range(I')] U Label)
ru{z:va.(av,Sv)}FM: 3,8 (let)
Tk (let (z V) M): 3,8 ‘
¥ 1s a substitution of set variables for &
(inst)

Fu{z :va.(av,Sv)}Fz: 8,¢(Sv)U{¢(av) < 8}
Fig. 2. Constraint derivation rules.

rule (const) generates the constraint b < a, which ensures that the value set for a
constant expression contains that constant. The rule (label) records the possible
values of a labeled expression M' in the label I.

The rule (abs) for functions records the function’s tag and propagates values from
the function’s domain into its formal parameter and from the function’s body into
its range. The rule (app) for applications propagates values from the argument
expression into the domain of the applied function and from the range of that
function into the result of the application expression.

The rule (let) produces a constraint schema o = Va. (3, S) for polymorphic, let-
bound values [Aiken et al. 1994; Tofte 1990]. The set variable 5 names the result of
the value; the system of atomic constraints & describes the data-flow relationships
of the value, using 3; and the set @ = {«y,...,a,} contains those internal set
variables of the constraint system that must be duplicated at each reference to the
let-bound variable via the rule (inst).

The derivation context I' maps program variables to either set variables or con-
straint schemas:

I' € DerivCtzt = Var —e> (SetVar U ConSchema)

o € ConSchema = VYa.(3,S).
We use F'V[range(T)] to denote the free set variables in the range of I'. The free
set variables of a constraint schema Ya&. (3, §) are those in SetVar(S)U {5} but not

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

Componential Set-Based Analysis . 7

c<p <~
c<~v)
a < rng(8) B <y (s2)
o < rng(7) 2
dom(B)<a B<y (s2)
dom(vy) < «)
o <rng(B) rng(B) <+ (s1)
a<y h
a <dom(B) dom(B) <~ (s5)

a<y

Fig. 3. The rules © = {s1,...,s5}.

in @, and the free variables of a set variable are simply the set variable itself.

Many of the constraint derivation rules introduce new set variables. For example,
the rule (const) introduces the new set variable . Whenever this rule is applied, we
need to choose a fresh set variable for a that is not used elsewhere in the constraint
derivation. Choosing a fresh set variable in this manner yields a more accurate
analysis.

3.3 Solving Constraint Systems

The derivation phase generates a system of atomic constraints that describes the
data-flow behavior of the analyzed program. To solve this constraint system, we
close it under the inference rules © described in Figure 3. Intuitively, these rules
infer all the data-flow paths in the program, which are described by constraints
of the form g < v (for #,y € SetVar), and propagate values along those data-
flow paths. Specifically, the rules (s1), (s2), and (s3) propagate information about
constants, function domains, and function ranges forward along the data-flow paths
of the program. The rule (s4) constructs the data-flow paths from function bodies to
corresponding call sites for each function call, and the rule (s5) similarly constructs
data-flow paths from actual to formal parameters. We write § Fg C if § proves
C via the rules ©, and use ©(S) to denote the closure of S under O, i.e., the set
{C|Ske C}.

The analysis tool uses a worklist algorithm to compute the closure of & under
O efficiently. The worklist keeps track of all constraints in & whose consequences
under © may not be in §. The algorithm repeatedly removes a constraint from the
worklist, and for each consequence under © that is not already in &, it adds that
consequence both to & and to the worklist. The process iterates until the worklist
1s empty, at which point & is closed under @. The complete algorithm can be found
in the first author’s dissertation [Flanagan 1997].

This closure process propagates all information concerning the possible constants
for labeled expressions into constraints of the form ¢ < !. We define the set-based
analysis of a program as a function that returns the set of possible constants (i.e.,

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

8 . C. Flanagan and M. Felleisen

basic constants and function tags) for each labeled expression.

Definition 3.1. (sba : A — (Label — P(Const))). If P€ A and - P : o, S
then

sba(P)(l) = {c|[c <] €O(S)} .

The set of constants C' returned by sba(P)(l) describes a collection of run-time
values (i.e., basic constants and functions) according to the relation V in C. Es-
sentially, this relation converts between function tags and tagged A-expressions:

binC iff beC
Az.M)inC iff teC

The solution sba(P) conservatively approximates the value sets for each labeled
expression in the program, as described by the following theorem.

THEOREM 3.2. (CORRECTNESS OF sba). If P——*&[V'] then V in sba(P)(l).

PrOOF. We prove this property using a subject reduction proof, following Wright
and Felleisen [1994] and Palsberg [1995]. The complete proof is contained in the
first author’s dissertation [Flanagan 1997]. O

4. TOWARD SIMPLIFYING CONSTRAINTS FOR PROGRAM COMPONENTS

The traditional set-based analysis just described has proven highly effective for
programs of up to a couple of thousand lines of code. Unfortunately, it is useless
for larger programs, due to the large size of the constraint systems it produces for
these programs. Since large programs are typically structured as a collection or a
hierarchy of components (e.g., modules, classes, or functions), it is natural to try
and exploit this hierarchical structure in the analysis of these programs.

To illustrate this idea, consider a program P containing a component M, where
M may be a module, class, or function definition. Suppose the constraint derivation
for M concludes

'tEM:a 8

where &7 is the constraint system for M. Our goal is to replace & by a simpler
constraint system, say S», without changing the results of the analysis. This idea
1s easily expressed as an additional constraint derivation rule

FI—M:a,Sl 81~Sz
'EM:a S

but the precise meaning of the equivalence relation & ~ &> remains to be deter-
mined.

Since the goal of this new rule is to replace one constraint system by a simpler
system without changing the behavior of the analysis as a whole, the situation is
analogous to program optimization, where a compiler replaces one program frag-
ment by a faster fragment without changing the behavior of the program as a whole.
For program optimization, we use the language semantics as a source of insight for
code transformations. To develop a better intuition for constraint systems, we de-
velop a denotational semantics for constraints, study its structure, and exploit it
for ideas concerning the simplification of constraints for program components.

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

Componential Set-Based Analysis . 9

The first subsection presents the denotational semantics of constraints. Each
constraint system denotes a space of solutions for the set variables. By ranking
these solutions according to their accuracy, we can characterize set-based analysis
in terms of the most accurate solution, which is the topic of the second subsection.
Finally, in the third and last subsection, we return to the problem of analyzing
program components and state a precise version of the equivalence relation & ~ Ss
in terms of the denotational semantics of constraints.

4.1 The Meaning of Set Constraints

Intuitively, a set expression 7 denotes a set of values, and a constraint 7 < m
denotes a corresponding set containment relationship. We formalize this meaning
of constraints by mapping syntactic set expressions onto a semantic domain. We
first describe the precise structure of the semantic domain, and then describe the
mapping from set expressions to that domain.

The Semantic Domain. A set expression denotes a set of values. For our idealized
language, a value set consists of basic constants and functions, and we therefore
choose to represent it as a triple X = (C, D, R). The first component C' € P(Const)
is a set of basic constants and function tags. The second and third components of
X denote the possible arguments and results of functions in X, respectively. Since
these last two components also denote value sets, the appropriate model for set
expressions is the (nonempty) solution of the equation:

D =P(Const) x D x D.

The solution D is equivalent to the set of all infinite binary trees with each node la-
beled with an element of P(Const).* We use the functions const : D — P(Const)
and dom, rng : D — D to extract the respective components of an element of D.

We order the elements of D according to a relation C that is antimonotonic in
the domain position. We choose this ordering because information about argument
values at a call site needs to flow backward along data-flow paths to the formal
parameter of the corresponding function definitions. To illustrate this idea, consider
a program that binds a function f to a program variable g. This behavior is
described in the semantic domain as the inequality X; C X, where X; and X,
describe the values sets for f and g respectively. Since the argument set for f must
contain all values to which g is applied, the inequality dom (X,) C dom (X;) must
also hold. Thus the domain D should satisfy the inference rule

Xy B Xy
dom (X4) C dom (Xy)’

which is why the ordering C needs to be antimonotonic in the domain element.
We define C as the greatest relation satisfying

(C1, D1, Ry) C (Ca, Do, Ry) iff C1 C C2, D2 E Dy, R1 C Rs.

4The set D can be formally defined as the set of total functions f : {dom, rng}* — P(Const),
and the rest of the development can be adapted mutandis mutatis [Palsberg and O’Keefe 1995].
For clarity, we present our results using the more intuitive equational definition instead. Also,
we can analyze languages with additional data structures by extending D to infinite n-ary trees,
where n is the number of selectors (e.g.. dom, rng) corresponding to the extended language.

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

10 . C. Flanagan and M. Felleisen

Under this ordering, the set D forms a complete lattice; the top and bottom ele-
ments and the least upper bound and greatest lower bound operations are defined
recursively as

(Const, L, T)
=(0,T,1)
(
(

-

<ClaD1aR1> U <CZaD2aR2
<ClaD1aR1> r <CZaD2aR2

UCy, D1 M Dy, Ry |_|R2>
NCy, Dy U Dy, Ry |_|R2>.

S~
|

Gy
Gy

The Semantics of Constraints. Since set expressions contain variables, the mean-
ing of a set expression depends on a set environment p, which defines the meaning
of those variables

p € SetEnv = SetVar — D.

Given a set environment p, the meaning of set expressions is defined by the following
unique extension of p from SetVar to SetEzp:

p: SetExp — D

ple) = ({e}, T, 1)
p(dom(r)) = dom (p(r))
p(rng(r)) = rag(p(7)).

The semantics of constraints is easiest to define for the following full constraint
language, which is an extension of the atomic constraint language considered earlier.

C e Constraint = 7 < 79
S € ConstraintSystem = Pg,(Constraint)

We continue to use the calligraphic letters C and § as metavariables ranging over
atomic constraints and systems of atomic constraints, respectively, and use the sans
serif letters C and S as metavariables ranging over full constraints and full constraint
systems, respectively.

We say that a set environment p satisfies a constraint 7 < 7o (written p =
7 < 1) if p(m1) C p(r2). Figure 4 introduces a number of additional definitions
concerning the semantics of constraint systems. The entailment relation = on
constraint systems is obviously reflexive and transitive. Note that a restricted
solution space Soln(S) |g actually contains more set environments than in Soln(S),
since these additional environments can specify arbitrary domain elements for set
variables that are not in E.

4.2 Ranking Solutions

A constraint system may have multiple solutions. To illustrate this idea, consider
the program P = (Afz.z). The constraint derivation rules of Figure 2 yield the
following constraint system for P:

{t <ap, dom(ap) < ay, ay < apy, ay < raglap)}.
This constraint system admits the trivial solution p's defined by

ple(a) = Ty Va € SetVar
Ts (Const, T5, Ts).

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

Componential Set-Based Analysis . 11

Notation Meaning Pronunciation
pEn<n pm)Caln) p satisfies 71 <
pES vCeS. pEC p satisfies S

Soln(S) {r| pES} solution space of S

Si ES2 Soln(S1) C Soln(S2) S; entails S»

S =S, Si ESz and Sz =S S; is observably equivalent to So
Soln(S) |& {p | o' € Soin(S) such that restriction of Soln(S) to

pla) = p'(a) Ya € E} a collection of set variables F
Si1 EES2 Soln(S1) |g C Soln(S2) |& S: entails So with respect to F
S1 &5 S, Si ErS2and S2 Er Sy S; and S» are observably equivalent

with respect to F

S |e {C €S| C only mentions restriction of S to E
set variables in F'}

Fig. 4. Notations concerning the semantics of set constraints.

The domain element T represents all run-time values, including functions that can
take any argument and return any result. Hence, this solution is highly approximate
and thus utterly useless. Fortunately, the constraint system admits a number of
other solutions, including

pr ={ap—{t}, L, L), ar—Lay— L}
pr ={ap—={t},T,T), ar—>T,ay—T}
ps ={ap—{t,e1}, X, X), 0, » X, apy — X }

where X = ({2}, L, L), and ¢; and ey are arbitrary constants.

If we assume P to be the entire program, the function tagged ¢ is never applied,
and hence the true set of run-time values for x is simply the empty set. The solution
p1 describes this situation more accurately than either py or ps. Yet these three
solutions are incomparable under the ordering C, which models the flow of values
through a program, but does not rank set environments according to their accuracy.

Therefore we introduce an alternative ordering C; on D that ranks environments
according to their accuracy. This ordering is monotonic in the domain position and
is defined as the greatest relation satisfying

(C1,D1, Ry) C; (Ca, D2, Ry) iff C1 C Ca2, D1 C5 D2, Ry C5 Ra.

As with the original ordering C, the set D forms a complete lattice under this
alternative ordering C;; the associated top and bottom elements and the least upper

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

12 . C. Flanagan and M. Felleisen

bound and greatest lower bound operations are defined recursively as

Ts = (Const, T, Ty)

J—s = <®aJ—saJ—s>
<01,D1,R1> U <02,D2,R2> = <01 Uy, Dy Us Dy, Ry U R2>
<01,D1,R1> Mg <02,D2,R2> = <01 NCy, D1 Mg Dy, Ry M R2>

We extend the ordering relation C; pointwise from D to set environments. Using
the extended ordering on set environments, a system of atomic constraints & has
both a maximal solution and a minimal solution. The maximal solution is always
the set environment p ' described above, and we use LeastSoln(S) to denote the
minimal solution. This minimal solution exists because the greatest lower bound
of the solution space (with respect to My) is also a solution.

LEMMA 4.1. Bvery system of atomic constraints has a solution that is least with
respect to T, [Heintze 1994].

PRrOOF. Let § be a system of atomic constraints, and define py,;,, = (), S0ln(S),
where (), is the pointwise extension of My to set environments. We prove that
Pmin € Soln(8) by a case analysis showing that pp, satisfies each constraint
C € §. Hence ppip is the least solution of & with respect to C,. [

Using this result, we can now express the set-based analysis of a program in terms
of the denotational semantics of its constraint system.

LEMMA 4.2. If PE A and OF P : o, S then

sba(P)(l) = const(LeastSoln(S)(1)) .
Proor.
¢ € sba(P)(l) Skec<l by definition 3.1
SkEe<l by following lemma 4.3
Vp € Soln(8). ¢ € const(p(l))
c'& N({const(p(D) | p € Soln(S)))

e € const((, (1p | p € Soln () (D)
¢ € const(LeastSoln(S)(1)) O

[RIRNRIN!

The previous proof relies on the following lemma, which states that closing a
system of atomic constraints under © propagates all information concerning the
possible constants for labeled expressions into constraints of the form ¢ </{.

LEMMA 4.3. (SOUNDNEsSS AND COMPLETENESS OF ©). If S is a system of atomic
constraints, then

Stec<a — SkEc<a
PrOOF. See Appendix B.1. [

4.3 Conditions for Constraint System Equivalence

We now return to our original problem, which 1s to determine how to replace one
constraint system by a simpler one without changing the analysis results. Consider
again the situation where a program P contains a component M whose constraint
derivation concludes

'EM:a 8.

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

Componential Set-Based Analysis . 13

Let the context surrounding M be C, ie., P = C[M]. Since the constraint
derivation process is compositional, the constraint derivation for the entire program
concludes

@"P:ﬁ,leJSC,

where S¢ is the constraint system for '. By Lemma 4.2, the results of analyzing P
can only depend on the solution space for the combined constraint system & U S¢.
But this is the same as the intersection of the two respective solution spaces:

Soln (81 U S¢) = Soln(S1) N Soln(Se).

Hence Soln(S1) describes at least all the properties of 8y relevant to the analysis,
but 1t may also describe solutions for set variables that are not relevant to the
analysis. In particular:

—sba(P) only references the solutions for label variables; and

—an inspection of the constraint derivation rules shows that the only interactions
between S¢ and Sy are due to the set variables in {a} U FV[range(T)].

In short, the only properties of &; relevant to the analysis is the solution space for
its external set variables:

E = Label U {a} U FV[range(T)].

For our original problem, this means that we want a constraint system & whose
solution space restricted to E is equivalent to that of & restricted to E:

Soln(81) |g = Soln(8Ss2) |&
or, with the notation from Figure 4, &; and 8s are observably equivalent on E:
81 =g 82.

We can now refine the constraint derivation rule (=) based on this notion of
equivalence:

r-M:a,8 S Zp 8 where B = Label U {a} U FV[range(T')]
'EM:a S

The refined rule is admaissible in that the use of this rule does not change the analysis
results.

LEMMA 4.4. (ADMISSIBILITY OF (2)). If 0 b P : o, S then
sba(P)(l) = const(LeastSoln(S)(1)).
PrOOF. See Appendix B.1. [

5. THE LOGIC OF CONSTRAINT SYSTEM EQUIVALENCE

~

The new derivation rule () involves the semantic notion of observably equivalent
constraint systems. To make this rule useful, we need a strategy or algorithm for
finding an observably equivalent but simpler version of a given constraint system.
Because algorithms can only be based on syntactic entities (as opposed to semantic
notions such as observable equivalence), our first step in the development of such

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

14 . C. Flanagan and M. Felleisen

an algorithm is to reformulate the observable equivalence relation as a syntactic
proof system.

The key properties of the observational equivalence relation are reflections of the
reflexivity and transitivity of the ordering relation (C) and the monotonicity and
antimonotonicity of the functions rng and dom, respectively. We can reify these
properties into a syntactic proof system via the following set A of inference rules:

<7t 7<7M r1 < Ko

< <, \ranss
a<a (refler) n< T (trans-) rng(x1) < rng(xz)

dom(kg) < dom(k1)

(compat)

The metavariables , k1, K2 in (compat) range over nonconstant set expressions:
K, K1,k = o | dom(k) | rng(k) .

The restriction on (compat) avoids inferring useless tautologies. For example, with-
out this restriction, the constraint ¢ < a would yield the constraint rng(c) < rng(a)
via (compat), which is a tautology since the range of a constant is L.

The rules (reflex) and (trans;) capture the reflexivity and transitivity of the
ordering relation C; (compat) expresses the monotonicity and antimonotonicity of
the functions rng and dom, respectively. We write § Fa C if S proves C via the
rules A and use A(S) to denote the closure of S under A/ i.e., the set {C | S Fa C}.

Since many of the A-inferred constraints lie outside of the original language of
atomic constraints, we define an extended compound constraint language:

C € CmpdConstraint = ¢ <k |k <k
S € CmpdConSystem = Pg,(CmpdConstraint)

We use the boldface roman letters C and S as metavariables ranging over compound
constraints and systems of compound constraints, respectively.

The proof system A completely captures the relevant properties of the ordering
C and the functions rng and dom. That 1s; A is both sound and complete.

LEmMMa 5.1. (SOUNDNESs AND COMPLETENESS OF A). For a system S of com-
pound constraints and a compound constraint C,

SFAC <«<— SEC.
PrOOF. See Appendix B.2. [

This lemma implies that A(S) contains exactly those compound constraints that
hold in all environments in Soln(S). Hence, if we consider a collection of external
set variables | then A(S) |g contains all compound constraints that hold in all
environments in Soln(S) |g. Therefore the following lemma holds.

LEMMA 5.2. For a system S of compound constraints, S =g A(S) |g.
PrOOF. See Appendix B.2. [

We could use this result to define a proof-theoretic equivalent of restricted en-
taillment

Sy FE 8, if and only if A(Sy) |z D A(S:) |&

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

Componential Set-Based Analysis . 15

<
asa (reflex) fLe (compat)
- rng(r1) < rng(k2)
a < rng(p) B<k dom(k2) < dom(k1)
< (compose,)
a < rng(k) a < dom(3) B>k ()
o < don(r) compose,
a > rng(f3) B>k <
(compose,)
a > rog(x) o > don(3) 5<n ()
compose,
1<« a <1 a 2 don(k)
B — (transq)
71 < T2

Fig. 5. The inference rule system W.

and then show that & I—g Sy if and only if 81 Eg S;. However, this definition
based on the proof system A does not lend itself to an efficient implementation.
Specifically, checking if two potential antecedents of (trans,) contain the same set
expression T involves comparing two potentially large set expressions. Hence we
develop an alternative proof system that is more suitable for an implementation,
vet infers the same constraints as A.

The alternative system consists of the inference rules ¥ described in Figure 5,
together with the rules © from Figure 3. The rules (reflex) and (compat) of ¥ are
those of A. The rules (compose; ,) of ¥ replace a reference to a set variable by
an upper or lower (nonconstant) bound for that variable, as appropriate. The rule
(transy) of U provides a weaker characterization of transitivity than the previous
rule (trans;), but, provided we start with a system of atomic constraints, the addi-
tional rules, © and (compose; ,), compensate for this weakness. That is, suitable
combinations of these additional rules allow us to infer any constraint that could
be inferred by the rule (trans;).

LEMMa 5.3. (EQUIVALENCE OF PROOF SYSTEMS). For a system of atomic con-
strawnts 8,

A(8) = ¥O(S).
PrOOF. See Appendix B.2. [

We could define a proof-theoretic equivalent of restricted entailment based on
YO as follows:

81 FE 85 if and only if ¥O(S)) |g D ¥O(S2) |k,

but this approach is still needlessly inefficient. In particular, because (compat) does
not eliminate any variables, any (compat)-consequent in ¥O(Ss) |g is subsumed by
its antecedent. Hence if we define

IT =Y\ {compat}
then this argument implies that the following lemma holds.

LEMMA 5.4. For any system S of atomic constraints, ¥O(S) |p = TIO(S) |g.

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

16 . C. Flanagan and M. Felleisen

PrOOF. See Appendix B.2. [

Together, Lemmas 5.2, 5.3, and 5.4 provide the basis of a proof-theoretic equiv-
alent of restricted entailment and observable equivalence that is also suitable for
implementation.

Definition 5.5. (F£g, =Eg).
(1) S FEg S5 if and only if ¥O(S)) | D TO(Ss) |k,
(2) S =Fo Sy if and only if 8; FEg So and S» FE S Sy

The two relations ¥4 and =g completely characterize restricted entailment and
observable equivalence of systems of atomic constraints.

THEOREM 5.6. (SOUNDNESS AND COMPLETENESS OF Hf o anp =£).

(1) S FEo Ss if and only if 1 Eg So.
(2) & :{IE,@ Sy if and only if S1 =g Ss.

ProOOF. We prove the first part of this theorem as follows:
S HE Ss

— VO(S) |z 2 IO(S2) |e

< Soln(¥O(S1) |g) D Soln(1IO(S2) |k)

<= Soln(¥O(S1) |g) |g 2 Soln(T1O(S2) |E) |&

< Soln(¥O(S1) |g) |g D Soln(¥O(S2) |g) |z by Lemma 5.4
< Soln(A(S1) |E) |E D Soln(A(S2) |E) |E by Lemma 5.3
< Soln(81) |g D Soln(S2) |k by Lemma 5.2
“— & ':E So

The second part of this theorem follows from part 1. O
6. THE DECIDABILITY OF THE LOGIC: THE THEORY OF SIMPLIFICATION

A correct constraint simplification algorithm must preserve the observable behavior
of constraint systems as defined by the proof-theoretic characterization Sy =£ Ss.
We continue our search for such simplification algorithms by further investigating
the properties of the relation & :56 So.

The first part of this investigation is the development of a decision algorithm for
81 =% S2. This decision algorithm immediately allows us to simplify constraint
systems by systematically generating all constraint systems in order of increasing
size, until we find one observably equivalent to the original system. Although this
naive simplification strategy is inefficient, it does serve to highlight the relevance of
the decision algorithm in solving the constraint simplification problem. In partic-
ular, the practical constraint simplification strategies of the next section are based
on insights gained by the development of the decision algorithm.

We formulate the decision algorithm to work on systems of atomic constraints,
since these are the constraints used in the analysis. Given two systems of atomic
constraints §; and Ss, the decision algorithm needs to verify that ¥©(8;) |p =
PO(S2) |g. The following lemma shows that the closure ¥O(-) can be performed
in a staged manner. In particular, IT does not create any additional opportunities
for rules in ©, and (compat) does not create any additional opportunities for IT or

0.

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

Componential Set-Based Analysis . 17

LEMMA 6.1. (STAGING). For any system of atomic constraints S,
TO(S) = ¥(O(S)) = compat(TI(O(S))).
PrOOF. See Appendix B.3. O

This lemma implies that if §; and 8y are first closed under ©, then the decision
algorithm only needs to verify that

U(S1) |[p = ¥(S2) |E.

The naive approach to enumerate and to compare the two constraint systems
U(S1) | and ¥(S2) |g does not work, since they are typically infinite. For ex-
ample, if § = {& < rng(«a)}, then ¥(S) is the infinite set {o < rng(a),a <
rng(rng(a)),...}. Fortunately, the infinite constraint systems inferred by ¥ ex-
hibit a regular structure, which we exploit as follows:

(1) For each &; (where i = 1 or 2) we generate a regular grammar describing the
upper and lower nonconstant bounds for each set variable in ;.

(2) We extend these regular grammars to regular tree grammars (RTGs) describing
all constraints in TI(Sy1) |g and TI(S2) |g. This representation allows us to use
a standard RTG containment algorithm to decide if TI(S1) |g D T(S2) |&.

(3) Based on the RTG containment algorithm, we develop a decision algorithm for
the more difficult entailment question ¥(S;) |g 2 TI(S2) |g by allowing for the
additional (compat) inferences on 8.

By checking entailment in both directions, we can decide if two constraint systems
are observably equivalent. These steps are described in more detail below.

6.1 Regular Grammars

Our first step is to transform each constraint system S; (for ¢ = 1,2) into a cor-
responding regular grammar. This regular grammar, denoted G, (S,), contains
two nonterminals oz and ag, for each set variable « in §;. These nonterminals
generate the following two languages of lower and upper nonconstant bounds of «,
respectively:
{k | [k < a] €TI(S) and SetVar(x) C E}
{k | [< k] € TI(S) and SetVar(k) C E.}
To illustrate the derivation of these grammars, consider the program component
M = (Az.(z 1)), and take E = {a}. A simplified® constraint system Sy; for M is
described in Figure 6, together with the productions in the corresponding regular

grammar. This grammar describes the upper and lower nonconstant bounds for
each set variable in TI(Sys) |g. For example, the productions

dr — rng(fr)
Br — dom(ay)
ay = o

imply that 4z —* rng(dom(a)), or alternatively that rng(dom(a)) < 6.

5We use a simplified version of M’s constraint system for a more concise explanation.

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

18 . C. Flanagan and M. Felleisen

Additional productions

Constraints Sy Grammar G, (S, E) in G¢(Sp, E)
dom(er) < 3 Br — dom(ay)

1<y R 1 <oyl

v < dom(B) vy — dom(Br)
mg(5) < 5|50 o eng(Br)

§ < rng(a)|dy — rng(ay)

ap = a ay—a|Rw [ap < ay] Vo € SetVar(Syy)

Fig. 6. The constraint system, regular grammar, and RTG for M = (Ax. (z 1)).

The productions of the grammar are determined by Sy and II. For example, the
constraint [rng(f) < 6] € Sy implies that for each lower bound & of 3, the rule
(composes) infers the lower bound rng(x) of . Since, by induction, #’s lower bounds
are generated by Sr, the production §r — rng(5r) generates the corresponding
lower bounds of §.

More generally, the collection of productions

{6z — rng(fr) | for any 3,6 with [rng(8) < d] € S}

describes all bounds inferred via (composes) on a system S of atomic constraints.
Bounds inferred via the remaining (compose) rules can be described in a similar
manner. Bounds inferred via the rule (reflex) imply the productions ay — «
and ap — o« for @ € E. Finally, consider the rule (trans,), and suppose this
rule infers an upper bound 7 on a. This bound must be inferred from an upper
bound 7 on 3, using the additional antecedent [< f]. Hence the productions
{av = Bu | [o <] € 8} generate all upper bounds inferred via (trans,). Similarly,
the productions {81 — ar | [& < 5] € 8} generate all lower bounds inferred via
(transy).

Definition 6.2. (REGULAR GRAMMAR G, (S, F)). Let S be a system of atomic
constraints and E a collection of set variables. The regular grammar G, (S, F) con-
sists of the nonterminals {ar, oy | a € SetVar(S)} and the following productions:

ay — a, ap =« YaecF

ay v« By, B — af, V[agﬁ]ES

ay — dom(8r) Vo <dom(B)] €8
ay — rng(fu) V[<rng(p) €S
B — dom(ay) V [dom(a) < Bl €8
Br — rng(ar) V [rng(a) < Gl e 8

The grammar G, (S, E) generates two languages for each set variable that de-
scribe the upper and lower nonconstant bounds for that set variable. Specifically,
if —% denotes a derivation in the grammar G, and L4 (X) denotes the language
{r | X =% 7} generated by a nonterminal X, then the following lemma holds.

LEMMA 6.3. Let § be a system of atomic constraints and E a collection of set
variables. If G = G, (S, E), then

Lalap) = {x | [< a] €TI(S) and SetVar(x) C E'}
La(av) = {k | [a < &] € TI(S) and SetVar(x) C E}.

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

Componential Set-Based Analysis . 19

ProOF. For each language, we prove that the inclusion holds in each direction
by induction on the appropriate derivation and by case analysis on the last step in
that derivation. [O

6.2 Regular Tree Grammars

For a system of atomic constraints §, the grammar G, (S,) does not describe all
constraints in TI(S) |g. In particular:

—G, (S, E) does not describe constraints of the form [¢ < 7]. Thus, for example,
the regular grammar for Syr does not describe the constraint [1 < dom(3)] in

(Sxn) |E.

—G, (S, E) does not describe constraints inferred by the (¢rans,) rule that are not
bounds of the form [k < «] or [o < k]. Thus, for example, the regular grammar
for Sar describes the constraints rng(dom(e)) < § and ¢ < rng(«) in TI(Sy) |&,
but it does not describe the trans,-consequent [rng(dom(«)) < rng(«)] of those
constraints, which is also in TI(Sxr) |&.

For an arbitrary constraint system S, we represent the constraint system II(S) |g
by extending the grammar G, (S, E) to a reqular tree grammar G(S,E). The
extended grammar combines upper and lower bounds for set variables in the same
fashion as the (trans,) rule and generates constraints of the form [¢ < 7] where
appropriate.

Definition 6.4. (REGULAR TREE GRAMMAR G4(S, E)). The regular tree gram-
mar G¢(8S, F) extends the grammar G, (S, F') with the root nonterminal R and the

additional productions

R = [or < ay] YV a € SetVar(S)
R [c < ay] Vie<aleS.

The constructor [- < -] is binary.

The extended regular tree grammar G¢(S, F) describes all constraints in TI(S) |g.

LEMMA 6.5. Let G = G¢(S,E). ThenTI(S) |g = Lg(R).

PrOOF. See Appendix B.3. O

The grammar G¢(Syr, F) for the example program component M is described
in Figure 6. This grammar yields all constraints in TI(Sps) |g. For example, the
productions

R [1 <4y] yu — dom(8L) B — dom(ay)

imply that R —* [1 < dom(dom(«))], or that the argument to the function M is
applied to the constant 1.

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

20 . C. Flanagan and M. Felleisen

6.3 The Entailment Algorithm

We check entailment based on Lemma 6.5 as follows. Given 8§; and Ss, we close
them under © and then have

82 ge Sl
VO(S:) [z DMO(S1) |z by defn Fig
¥(0(82)) [2 H(O(S1)) | by lemma 6.1
V(S2) | 2 H(S1) |m as S; = O(S))
compat(T1(S2) |g) D TI(S1) |g by lemma6.1
compat(La,(R)) D L&, (R) by lemma 6.5, where Gy = G¢(S;, E).

HHHHH

The containment question

[’G2(R) 2 La, (R)

can be decided via a standard RTG containment algorithm [Gécseg and Steinby
1984]. To decide the more difficult question

compat (Le,(R)) 2 La, (R)

we extend the RTG containment algorithm to allow for constraints inferred via
(compat) on the language Lg,(R). Unfortunately, the extended algorithm takes
exponential time; and hence is not directly useful in program analysis systems.
Because the algorithm is mostly of theoretical interest, we defer its presentation to
Appendix C.

Faster algorithms for the entailment problem may exist, but these algorithms
are all in PSPACE, because the containment problem on NFAs, which is PSPACE-
complete [Aho et al. 1974], can be polynomially reduced to the entailment problem
on constraint systems.

Although the entailment algorithm is computationally expensive, we can still, in
theory, decide if two constraint systems are observably equivalent by running the
entailment algorithm in both directions. In addition, given a constraint system, we
can, again, in theory, find a minimal, observably equivalent system using the naive
systematic search strategy outlined in the introduction to this section. Of course,
the process of computing the minimal equivalent system with this algorithm is far
too expensive for use in practical program analysis systems, which i1s why we now
turn our attention to the development of more practical constraint simplification
algorithms.

7. CONSTRAINT SIMPLIFICATION: THE PRACTICE

~

To take advantage of the rule (&) in program analysis algorithms, we do not need
a completely minimized constraint system. Any simplifications in a constraint
system produce corresponding reductions in the time and space required for the
overall analysis. Hence we concentrate on finding fast algorithms that simplify
constraint systems.

For this purpose, we exploit the connection between constraint systems and
RTGs. By Lemma 6.5, any transformation on constraint systems that preserves
the language

La,os),m)(R)

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

Componential Set-Based Analysis . 21

Constraints Production Rules Nonempty Reachable
f <ot = [f <o
dom(af) < o® af dom(osz)
1 < ot R — [1<ay] 1 < ot 1 < ot
ol < rnglaf) | o} = rng(osz)
rng(af) < a® af rng(aé)
a¥ < aof ap; = oay osz—>ozz£ a¥ < aof
o” < dom(af) | ol dom(ag\/)j
g < oM R = [g<af] g < oM g < aM
dom(aM) < ¥ o¥ — dom(aM) dom(a™M) < ¥
a < M é/ %[a < M a M
a® < rng(a™)| of, = rnglag) a® < rng(a™)|a® < rng(a™)
ol < a¥ ay =oaf af = al ol < a¥
al < a° oz%] = af oz‘ib—)ozlL ar < a® al < a°
1 < a® R — [1<af] 1 < a® 1 < a®
oM v oM oM oM

Fig. 7. The constraints, RTG and simplified constraints for M = (My.((M z.1) y)).

also preserves the observable behavior of & with respect to £. Based on this
observation, we have adapted a variety of existing algorithms for simplifying regular
tree grammars to algorithms for simplifying constraint systems. In the following
subsections, we present the four most promising algorithms found so far. We use
G to denote G¢(S, E), and we let X range over nonterminals and p over paths,
which are sequences of the constructors dom and rng. Each algorithm assumes that
the constraint system & 1s closed under ©. Computing this closure corresponds to
propagating data-flow information locally within a program component. This step
is relatively cheap, since program components are typically too small to trigger the
cubic time behavior of the analysis.

7.1 Removing Empty Constraints

A nonterminal X is empty if Lg(X) = . Similarly, a production is empty if it
refers to empty nonterminals, and a constraint is empty if it only induces empty
productions. Since empty productions have no effect on the language generated
by G, an empty constraint in § can be deleted without changing &’s observable
behavior.

Let us illustrate this idea with the program component M = (Ay.(\ z.1) y)).
Although this example 1s simplistic, it illustrates the behavior of our simplification
algorithms. The solved constraint system Sys for M is shown in Figure 7, together
with the corresponding grammar G¢(Syr, F) where E = {o™}. An inspection of
this grammar shows that the set of nonempty nonterminals is

M M Yy a r 1 T
{aL y O O, Oy O Oy Oy R}

Five of the constraints in Spy are empty and are removed by this simplification
algorithm, yielding a simplified system of eight nonempty constraints.

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

22 . C. Flanagan and M. Felleisen

(1) Use a variant of Hopcroft’s algorithm [Hopcroft 1971] to compute an equivalence
relation ~ on the set variables of § that satisfies the following conditions:
(a) Each set variable in E is in an equivalence class by itself.

(b) If [@ < 8] € 8 then Vo ~ o' 33 ~ 8’ such that [o' < 8] € 8.

(c) If [@ < rng(B)] € S then Ya ~ o' 38 ~ 8’ such that [o’ < rng(8')] € S.

(d) If [rng(a) < B8] € S then Ya ~ o' 38 ~ 3’ such that [rng(a’) < '] € S.
(e

(2) Merge set variables according to their equivalence class.

— =

If [< dom(3)] € S then Yo ~ o’ V8 ~ 8’ such that [o' < dom(8')] € S.

Fig. 8. The Hopcroft algorithm.

7.2 Removing Unreachable Constraints

A nonterminal X is unreachable if there is no production R — [Y < Z]or R — [Z <
Y] such that L&(Y) # 0 and 7 —% p(X). Similarly, a production is unreachable
if 1t refers to unreachable nonterminals; and a constraint is unreachable if it only
induces unreachable productions. Unreachable productions have no effect on the
language L£&(R), and hence unreachable constraints in S can be deleted without
changing the observable behavior of §.

In the above example, the reachable nonterminals are af;, af;, and af,. Three
of the constraints are unreachable and are removed by this algorithm, yielding a
simplified system with five reachable constraints.

7.3 Removing e-Constraints

A constraint of the form [o < §] € S is an e-constraint. Suppose o ¢ E and the
only upper bound on « in § is the e-constraint [« < f], i.e., there are no other
constraints of the form a < 7, rng(a) < v, or v < dom(a) in §. Then, for any
solution p of 8, the set environment p’ defined by

, o) ifd £ o
p“>={ﬁ&3ﬁaia

is also a solution of §. Therefore we can replace all occurrences of o in & by 8 while
still preserving the observable behavior Soln(S) |g. This substitution transforms
the constraint [<] to the tautology [8 <], which can be deleted. Dually, if
[0 < 5] € S with 8 € E and § having no other lower bounds, then we can replace
3 by «, again eliminating the constraint [a0 < f].

To illustrate this idea, consider the remaining constraints for M. In this system,
the only upper bound for the set variable o' is the e-constraint [a! < a®]. Hence
this algorithm replaces all occurrences of o' by a®, which further simplifies this
constraint system into a set of three elements

{1 <a® o <rng(a™), g <a™}.
For this example, this algorithm yields the smallest system of atomic constraints
that is observably equivalent to the original system ©(S).
7.4 Hopcroft's Algorithm

The previous algorithm merges set variables under certain circumstances; and only
when they are related by an e-constraint. We would like to identify more general

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

Componential Set-Based Analysis . 23

empty unreachable e-removal Hopcroft
Definition lines size || factor | time || factor time || factor | time || factor | time
map 5 221 3| <10 6 20 11 30 13 30
reverse 6 287 4| <10 8 20 20 10 20 30
substring 8 579 12 10 64 10 64 10 96 20
gqsort 41| 1387 15| <10 15 30 58 50 66 40
unify 89| 2921 10 10 11 80 55| 120 65| 150
hopcroft 201 | 8429 25 10 42 100 118 | 100 124| 200
check 237 (21854 4 50 4 1150 26| 370 168 | 510
escher—fish| 493 | 30509 187 10 678 40 678 40 678 80
scanner | 120959215 3| 180 17 840 45 | 2450 57 (2120

Fig. 9. Behavior of the constraint simplification algorithms.

circumstances under which set variables can be merged. To this end, we define a
valid unifier for § to be an equivalence relation ~ on the set variables of & such
that we can merge the set variables in each equivalence class of ~ without changing
the observable behavior of §. Using a model-theoretic argument,® we can show
that an equivalence relation ~ is a valid unifier for § if for all solutions p € Soln(S)
there exists another solution p’ € Soln(S) such that p' agrees with p on F and
p(a) = p'(B) for all o ~ 3.

A natural strategy for generating p’ from p is to map each set variable to the
least upper bound of the set variables in its equivalence class

da)= L plo).

i
o~

Figure 8 describes sufficient conditions to ensure that p’ generated in this manner is
a solution of &, and hence that ~ is a valid unifier for §. To produce an equivalence
relation satisfying these conditions, we use a variant of Hopcroft’s O(n log n) time
algorithm [Hopcroft 1971] for computing an equivalence relation on states in a DFA
and then merge set variables according to their equivalence class.”

The following theorem states that this simplification algorithm preserves the
observable behavior of constraint systems.

THEOREM 7.1. (CORRECTNESS OF THE HOPCROFT ALGORITHM). Let S be a
system of atomic constraints with external variables E; let ~ be an equivalence
relation on the set variables in a constraint system S satisfying conditions (a) to
(e) from Figure 8; let the substitution f map each set variable to a representation
element of its equivalence class; and let 8" = f(S), i.e., 8’ denotes the constraint
system 8 with set variables merged according to their equivalence class. Then § =g
S

PROOF. Let p be a solution of §. Define p’ by

da)= L plo).

i
o~

6Unlike the previous simplification algorithms, the development of this algorithm does not exploit
the connection between constraint systems and RTGs.

7A similar development based on the definition p’(a) = ﬂ{p(a') | @ ~ o'} results in an alternative
algorithm, which is less effective in practice.

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

24 . C. Flanagan and M. Felleisen

The set environments p and p' agree on E by condition (a) on ~, and we can show
that p’ |=C for all C € S by a case analysison C. [

7.5 Simplification Benchmarks

To test the effectiveness of the simplification algorithms, we extended MrSpidey
with the four algorithms that we have just described: empty, unreachable, e-
removal, and Hopcroft. Each algorithm in the sequence also implements the pre-
ceding simplification algorithms.

We tested the algorithms on the constraint systems for nine program components.
These experiments were run on a 167MHz Sparc Ultra 1 with 326MB of memory,
using the MzScheme byte-code compiler [Flatt 1997]. The results are described in
Figure 9. The second column gives the number of lines in each program component,
and the third column gives the number of constraints in the original (unsimplified)
constraint system after closing it under the rules ©. The remaining columns de-
scribe the behavior of each simplification algorithm, presenting the factor by which
the number of constraints was reduced, and the time (in milliseconds) required for
this simplification.

The results demonstrate the effectiveness of our simplification algorithms. The
resulting constraint systems are typically at least an order of magnitude smaller
than the original system. As expected, the more sophisticated algorithms are more
effective, but are also more expensive.

8. COMPONENTIAL SET-BASED ANALYSIS

Equipped with the simplification algorithms, we can now turn our attention to our
original problem: extending set-based analysis to handle significantly larger pro-
grams. These larger programs are typically constructed as a collection of program
components. Exploiting this component-based structure is the key to analyzing
such programs efficiently.

Componential set-based analysis processes programs in three steps:

(1) For each component in the program, the analysis derives and simplifies the
constraint system for that component and saves the simplified system in a con-
straint file, for use in later runs of the analysis. The simplification is performed
with respect to the external variables of the component, excluding expression
labels, in order to minimize the size of the simplified system. Thus, the simpli-
fied system only needs to describe how the component interacts with the rest of
the program, and the simplification algorithm can discard constraints that are
only necessary to infer local value set invariants. These discarded constraints
are reconstructed later as needed.

This step can be skipped for each program component that has not changed
since the last run of the analysis, and the component’s constraint file can be
used instead.

(2) The analysis combines the simplified constraint systems of the entire program
and closes the combined collection of constraints under ©, thus propagating
data-flow information between the constraint systems for the various program
components.

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

Componential Set-Based Analysis . 25

Num. of Analysis |Reanalysis|Constraint
Program lines Analysis constraints time time file (bytes)
scanner 1253 standard 61K 14.1s 7.7s 572K
empty 24K (39%) 12.0s 3.1s 189K
unreachable 15K (25%) 9.7s 2.0s 39K
e-removal 14K (23%) 9.5s 1.7s 28K
Hoperoft 14K (23%) 10.4s 1.7s 25K
zodiac 3419 standard 704K 133.4s 110.6s 1634K
empty 62K (9%) 34.1s 8.1s 328K
unreachable 21K (3%) 28.8s 4.5s 169K
e-removal 13K (2%) 28.8s 3.8s 147K
Hopcroft 11K (2%) 31.4s 3.8s 136K
nucleic 3432 standard 333K 83.9s 51.2s 2882K
empty 0K (27%) 52.8s 17.8s 592K
unreachable 68K (20%) 48.4s 14.6s 386K
e-removal 56K (17%) 48.3s 13.1s 330K
Hoperoft 56K (17%) 60.9s 13.2s 328K
sba 11560 standard *, >5M * * *
empty 1908K (<38%) | 181.5s 65.55 1351K
unreachable 105K (<2%) | 149.5s 43.3s 920K
e-removal 76K (<2%) | 147.1s 42.2s 770K
Hoperoft 65K (<1%) | 156.8s 41.1s 716K
mod-poly | 17661 standard *, >5M * * *
empty *, >5M * * *
unreachable 201K (<4%) | 259.6s 26.9s 1517K
e-removal 68K (<1%) | 239.6s 13.3s 1038K
Hoperoft 38K (<1%) | 254.1s 10.9s 907K

(* indicates the analysis exhausted heap space)

Fig. 10. Behavior of the modular analyses.

(3) Finally, to reconstruct the full analysis results for the program component that
the programmer is focusing on, the analysis tool combines the constraint system
from the second step with the unsimplified constraint system for that compo-
nent. It closes the resulting system under @, which yields appropriate value set
invariants for each labeled expression in the component.

The new analysis can easily process programs that consist of many components.
For its first step, it eliminates all those constraints that have only local relevance,
thus producing a small combined constraint system for the entire program. As a
result, the analysis tool can solve the combined system more quickly and using far
less space than Heintze’s set-based analysis. Finally, it recreates as much precision
as traditional set-based analysis as needed on a per-component basis.

The new analysis performs extremely well in an interactive setting because it
exploits the saved constraint files where possible and thus avoids reprocessing many
program components unnecessarily.

8.1 Experimental Results

We implemented four variants of componential set-based analysis. Each analysis
uses a particular simplification algorithm from Section 7 to simplify the constraint
systems for the program components. We tested these analyses with five benchmark

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

26 . C. Flanagan and M. Felleisen

programs, ranging from 1,200 to 17,000 lines. For comparison purposes, we also
analyzed each benchmark with the standard set-based analysis that performs no
simplification. The results are documented in Figure 10.

The benchmark programs were written in the MzScheme [Flatt 1997] dialect of
Scheme, which has a module system [Flatt and Felleisen 1998]. The componential
analyses treated each module as a separate component. The analyses handled
library primitives (such as car) in a polymorphic manner according to the constraint
derivation rules (let) and (inst), in order to avoid merging information between
unrelated calls to these functions. Treating these primitives in a monomorphic
manner would have produced an analysis that was overly coarse and hence not
very useful for our intended application (static debugging). In this experiment, user-
defined functions were analyzed in a monomorphic manner; the following subsection
describes the use of constraint simplification in a polymorphic analysis.

The fourth column in the figure shows the maximum size of the constraint system
generated by each analysis and shows this size as a percentage of the constraint
system generated by the standard analysis. The analyses based on the simplification
algorithms produce significantly smaller constraint systems and can analyze more
programs, such as sba and poly, for which the standard analysis exhausted the
available heap space.

The fifth column shows the time required to analyze each program from scratch,
without using any existing constraint files.® The analyses that exploit constraint
simplification yield significant speed-ups over the standard analysis because they
manipulate much smaller constraint systems. The results indicate, that for these
benchmarks, the e-removal algorithm yields the best trade-off between efficiency
and effectiveness of the simplification algorithms. The additional simplification
performed by the more expensive Hopcroft algorithm is out-weighed by the over-
head of running the algorithm. The trade-off may change as we analyze yet larger
programs.

To test the responsiveness of the componential analyses in an interactive setting
based on an analyze-debug-edit cycle, we reanalyzed each benchmark after changing
a randomly chosen component in that benchmark. The reanalysis times are shown
in the sixth column of Figure 10. Even in the absence of constraint simplification,
there i1s some advantage in caching the intermediate constraint systems between
runs, but much of this advantage is lost in the time taken to read and write large
constraint files. In the presence of constraint simplification, this approach yields
an order-of-magnitude improvement in analysis times over the original, standard
analysis, since the saved constraint files are used to avoid reanalyzing all of the un-
changed program components. For example, the analysis of zodiac, which used to
take over two minutes, now completes in under four seconds. Since debugging ses-
sions with MrSpidey typically require analyzing the project many times, e.g., when
a bug is identified and eliminated, using separate analysis substantially improves
the usability of MrSpidey.

The disk-space required to store the constraint files is shown in column seven.
Even though these files use a straightforward, text-based representation, their size
is typically within a factor of two or three of the corresponding source file.

8These times exclude scanning and parsing time.

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

Componential Set-Based Analysis . 27

copy Relative time of smart polymorphic analyses Mono.
Program | lines analysis empty | unreachable e-removal | Hopcroft analysis
lattice 215 4.2s 39% 36% 35% 38% 42%
browse 233 2.5s 76% 76% 76% 81% 75%
splay 265 7.9s 75% 73% 70% 72% 83%
check 281 50.1s 21% 23% 14% 14% 23%
graphs 621 2.8s 85% 85% 82% 87% 82%
boyer 624 4.3s 46% 46% 49% 50% 40%
matrix 744 7.58 64% 57% 51% 52% 45%
maze 857 6.2s 64% 59% 58% 61% 54%
nbody 880 39.6s 57% 25% 25% 26% 28%
nucleic 3335 * * 243s * 425 * 42 * 44s * 36s

(* indicates the copy analysis exhausted heap space,
and the table contains absolute times for the other analyses)

Fig. 11. Times for the smart polymorphic analyses, relative to the copy analysis.

9. EFFICIENT POLYMORPHIC ANALYSIS

The constraint simplification algorithms also enable an efficient polymorphic, or
context-sensitive, analysis. To avoid merging information between unrelated calls
to functions that are used in a polymorphic fashion, a polymorphic analysis dupli-
cates the function’s constraints at each call site. We extended MrSpidey with five
polymorphic analyses. The first analysis is copy, which duplicates the constraint
system for each polymorphic reference via a straightforward implementation of the
rules (let) and (inst).” The remaining four analyses are smart analyses that simplify
the constraint system for each polymorphic definition.

We tested the analyses using a standard set of benchmarks [Jagannathan and
Wright 1995]. The results of the test runs are documented in Figure 11. The
second column shows the number of lines in each benchmark; the third column
presents the time for the copy analysis; and columns four to seven show the times
for each smart polymorphic analysis, as a percentage of the copy analysis time. For
comparison purposes, the last column shows the relative time of the original, but
less accurate, monomorphic analysis.

The results again demonstrate the effectiveness of our constraint simplification
algorithms. The smart analyses that exploit constraint simplification are always
significantly faster and can analyze more programs than the copy analysis. For
example, while copy exhausts heap space on the nucleic benchmark, all smart
analyses successfully analyzed this benchmark.

Again, it appears that the e-removal analysis yields the best trade-off between
efficiency and effectiveness of the simplification algorithms. This analysis provides
the additional accuracy of polymorphism without much additional cost over the
coarse, monomorphic analysis. With the exception of the benchmarks browse,
splay, and graphs, which do not reuse many functions in a polymorphic fashion,
this analysis is a factor of 2 to 4 times faster than the copy analysis, and 1t is also
capable of analyzing larger programs.

9We also implemented a polymorphic analysis that reanalyzes a definition at each reference, but
found its performance to be comparable to, and sometimes worse than, the copy analysis.

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

28 . C. Flanagan and M. Felleisen

10. RELATED WORK

Our results were developed in 1995-1996 and published at PLDI’97. In the mean-
time, a number of researchers have investigated the problem of constraint simplifi-
cation in order to derive faster and more scalable analyses and type systems.

Deutsch and Heintze [1996] examine constraint simplification for set-based analy-
sis. They propose two simplification algorithms, which are analogous to our empty
and unreachable constraint simplification algorithms, but do not present results on
the cost or effectiveness of these simplification algorithms.

Fahndrich and Aiken [1996] examine constraint simplification for an analysis
based on a more complex constraint language. They develop a number of heuristic
algorithms for constraint simplification, which they test on programs of up to 6000
lines. Their fastest approach yields a factor of 3 saving in both time and space, but
is slow in absolute times compared to other program analyses.

Pottier [1996] studies an ML-style language with subtyping. Performing type
inference on this language produces subtype constraints that are similar to our
constraints. Pottier defines an entailment relation on constraints, and presents an
incomplete algorithm for deciding entailment. In addition, he proposes some ad
hoc algorithms for simplifying constraints. He does not report any results on the
cost or effectiveness of these algorithms.

Trifonov and Smith [1996] describe a subtyping relation between constrained
types, which are similar to our constraint systems, and they present an incomplete
decision algorithm for subtyping. They do not discuss constraint simplification.
Eifrig et al. [1995] discuss constraint simplification in the context of type inference
for objects. They present three algorithms for simplifying constraint systems, two
of which are similar to the empty and e-remowval algorithms, and the third is a
special case of the Hopcroft algorithm. They do not present results on the cost or
effectiveness of these algorithms.

Duesterwald et al [1994] describe algorithms for simplifying data flow equations.
These algorithms are similar to the e-removal and Hoperoft algorithms. Their
approach only preserves the greatest solution of the equation system and assumes
that the control flow graph is already known. Hence it cannot be used to analyze
programs in a componential manner or to analyze programs with advanced control-
flow mechanisms such as first-class functions or virtual methods. The article does
not present results on the cost or effectiveness of these algorithms.

11. FUTURE WORK

All our constraint simplification algorithms preserve the observable behavior of
constraint systems, and thus do not effect the accuracy of the analysis. If we were
willing to tolerate less accurate analysis results, we could choose a compressed
constraint system that does not preserve the observable behavior of the original
system, but only entails, or conservatively approximates, that behavior. This ap-
proach could yield significant savings in both time and space.

A promising approach for deriving such approximate constraint systems is to rely
on a programmer-provided signature describing the behavior of a program compo-
nent, and to derive the new constraint system from that signature. After checking
the entailment condition to verify that signature-based constraints correctly ap-

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

Componential Set-Based Analysis . 29

proximates the behavior of the component, we could use those constraints in the
remainder of the analysis. Since the signature-based constraints are expected to
be smaller than the derived ones, this approach could significantly reduce analysis
times for large projects. We are investigating this approach for developing a typed
module language on top of Scheme.

APPENDIX
A. EXTENDING SET-BASED ANALYSIS

Realistic programming languages provide a variety of additional facilities on top
of the idealized core language A. These facilities typically include compound data
structures, assignments, and nonlocal control operators such as first-class continu-
ations or exceptions. This section discusses the extension of set-based analysis to
encompass these additional features of practical programming languages. This ex-
tension also suggests how componential set-based analysis can be adapted to other
safe languages such as Java.

A.1 Additional Selectors

Most of the additional programming constructs mentioned above introduce addi-
tional kinds of values into the language. Modeling these additional values in the
analysis requires the introduction of additional selectors into the constraint lan-
guage and the corresponding extension of the underlying domain P and the set of
operations and relations defined on D.

To simplify this process, we first abstract over the collection of selectors in the
constraint language. The constraint language currently contains a single monotonic
selector, rng, and a single antimonotonic selector, dom. We generalize the constraint
language with two sets, Sel™ and Sel™, of monotonic and antimonotonic selectors,
respectively, which are currently defined as the singletons:

Selt = {rng}
Sel™ = {dom}

We use the metavariables selt, sel™, and sel to range over selectors in Selt,
Sel™, and Sel™ U Sel™, respectively. Expressed in terms of these metavariables, the
language of set expressions becomes

T € SetEzp = a | c|sel™(r) | sel™(7),

and an atomic constraint is of the form

C € AtomicCon = c< | a< B
| a<sei-(8) | se1-(a) < 5
| a<selt(B) | sel®(a) < j.

These constraints have their expected semantics on an extended domain D that
contains a product for each selector in the constraint language:

D=P(Const) xDx---xDxDx---xD

sel— € Sel™ selte Selt

This reformulation simplifies the process of extending the analysis to cope with
additional programming constructs. The remainder of the derivation of the analysis

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

30 . C. Flanagan and M. Felleisen

't M;: a8

T+ (cons M; M) : 3,8 US, U{a; < car(8),az < cdr(8)} (cons)
I'EM: a8

T+ (car M): 3,8 U{car(a) < 8} (car)
I'EM: a8

(edr)

't (edr M) : 3,8 U {cdr(a) < 8}

Fig. 12. Constraint derivation rules for pairs.

can be adapted to the modified formulation, mutandis mutatis.

A.2 Analysis of Pairs

Let AP be the following extension of A with immutable pairs.

M € AP = ...]|(cons M M) | (car M) | (edr M)
V € Value = ... | (cons V V)

Semantics. The additional syntactic forms have their usual Scheme semantics,
which we formalize with two additional notions of reduction

(car (cons V) Vo)) — W; (car)
(cdr (cons V; V2)) — V» (edr)

and with an extended notion of evaluation contexts
E=...|(cons & M) | (cons V &) | (car &) | (cdr &).

The standard reduction relation —— and the evaluator eval for the extended lan-
guage AP is defined in the usual manner, following Section 2.

Analysis. The analysis of the extended language AP requires two additional
monotonic selectors car and cdr:

Selt = {rng, car, cdr}
Sel”™ = {dom}

These additional selectors yield corresponding products in the domain D. Each
element X € D is now a 5-tuple (C, D, R, A1, Aa), where the additional components
A1 and Ay describe the possible car and cdr fields of pairs represented by X.
We extend the relation V' in X to describe the pairs represented by an element

X ={(C,D, R, Ay, A2) in D as follows:

bin X iff beC
MNz.M)in X iff teC
(cons V1 V) in X iff V] in Ay, Vs in Ay

The constraint derivation rules for the new syntactic forms are described in Fig-
ure 12. The rule (cons) records the possible values for each component of the pair.
The rules (car) and (edr) extract the appropriate component from the set variable
for the argument expression.

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

Componential Set-Based Analysis . 31

The set-based analysis function sba for the extended language AP is defined fol-
lowing Definition 3.1. As in Section 3.3, we can compute sba(P) from the closure

of § under ©:

sba(P)() = {b|Ste b}
U {(NMz.M)|Stet<I}
U {(cons V} Va) | Ste ay <car(l), V1 € sba(P)(a1)

Sto az < cdr(l), Vs € sba(P)(as2)}

A.3 Analysis of First-Class Continuations

Consider the following language A°°, which extends AP with first-class continua-
tions:

M € A = ... | (abort M) | (callec’ M)

An abort-expression evaluates its subexpression, and returns the resulting value
as the result of the entire computation. The callcc-expression (callcct M) first
evaluates its argument M to a function, then captures the current evaluation context
(or continuation) surrounding the expression, and applies the function produced by
M to this evaluation context. An invocation of a captured evaluation context causes
the current evaluation context to be discarded and replaced by the captured context.
Just like a function expression, a callcc-expression has an identifying tag so that
MrSpidey can reconstruct the textual source of the corresponding continuation
values from the results of the analysis.

Semantics. We define the semantics of the abort and callce constructs by ex-
tending the standard reduction relation with the following rules for aborting and
capturing evaluation contexts:

&l (abort M)] — M (abort)
&l (callec! M)] — E[(M (Mz.(abort [z])))] (callee)

The evaluator for the extended language 1s defined in the usual manner, following
Section 2.

Analysis. Figure 13 introduces the additional derivation rules for abort and
callcc expressions. An abort expression never returns, so the derivation rule
(abort) introduces a fresh type variable for these expressions. The least solution
(under Cy) for this type variable is L, denoting the empty set of values.

The rule (callee) introduces a new type variable § to denote the captured con-
tinuation. The rule records that

(1) the type variable § contains the tag ¢ from the callcc expression;

(

2)
(3) the result value this function becomes the result of the callcc expression;
4)

(

In addition, the rule adds the “dummy” constraint v < rng(d). This dummy con-
straint is required in order that the constraint derivation rules satisfy the subject
reduction lemma. That is, the (callec) reduction rule produces a contractum con-
taining the syntactic term (A’z.(abort &[z])), which is not present in the (callcc)-
redex. Applying the constraint derivation rules to this contractum yields a number

J is the argument to the function (denoted by «) that is returned by M;

argument values to J§ are also returned as results of the callec expression.

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

32 . C. Flanagan and M. Felleisen

I'tM:ao,8
(abort)
I't+ (abort M): 3,8
I'tM:ao,8
(callce)
t <4
§ < dom(a)
'k (callee’ M):3,8U< rng(a) < f
dom(8) < 3
v < rng(d)

Fig. 13. Constraint derivation rules for first-class continuations.

of constraints, including the constraint v < rng(d), where v describes the value
set for (abort £[x]), and J describes the value set for the A-expression. The
subject reduction lemma requires that this constraint is entailed by the constraint
system for the (callee)-redex. In order to satisfy this requirement, we include that
constraint in the redex’s constraint system.

The set-based analysis function sba for the extended language A°° is defined as
in Definition 3.1 and is computed in the usual fashion based on the closure of the
derived constraint system under ©.

A.4 Analysis of Assignable Variables

Next we consider the set-based analysis of a language with assignable variables.
Let A' be the following extension of A?:

M e A = ... | (letrec (D*) M) | (set! z M) | = (Expressions)
D € Defines = (define z V) (Definitions)
z € AssignVar (Assign. Variables)

The extended language contains assignable variables, in addition to the regu-
lar, immutable variables. These assignable variables are introduced by a letrec-
expression (letrec (D*) M), where D* is a sequence of definitions of the form
(define z V). Each assignable variable in D* is bound in the entire letrec-
expression, and we work with the usual conventions concerning a-renaming for
assignable variables. An assignment expression (set! z M) first evaluates M to
some value, assigns the variable z to that value, and then returns the value.

Semantics. We evaluate programs within an enclosing letrec containing a heap
and an expression. The heap is a sequence of definitions containing all currently
defined assignable variables:

H ¢ Heap = D*

All references and assignments to assignable variables operate on this heap. We
use the functional notation H(z) to extract the value bound to z in the heap H.

To allow the evaluation of subexpressions inside the set! form, we extend the
notion of evaluation contexts:

E=...|(set!z &)

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

Componential Set-Based Analysis . 33

FU{Z,‘:Ozi}l—Vl‘:ﬁ,‘,Si
Tu{z:ai}FM:~,8

let
I'F (letrec ((define z1 V1)...(define z, V,,)) M) (fetrec)
Y, SUS U U8 U{Bi <a;|1<i<n}
Tu{z:8}Fz:a,8U{a <3} (ref)
I'tM:aS8
(set!)

I't(set! 2 M) :a,SU{a <T'(z)}

Fig. 14. Constraint derivation rules for assignable variables.

We extend the standard reduction relation with the following additional cases for
the new syntactic forms. To evaluate an internal letrec, we lift its definitions out
into the global heap, ensuring that the appropriate hygiene conditions are satisfied:

(letrec (H) &[(letrec (D*) M)])

— (letrec (HUD*)E[M]) (letrec)
if dom(H) N dom(D*) =0
(letrec (H) €[z]) +— (letrec (H) E[V']) ifH(z)=V (ref)
(letrec (H U (define z V)) &[(set! z V')])
— (letrec (H U (define z V')) E[V']) (set!)

(letrec (H) E{ M 1) — (letrec (H) E[M’]) itM — M’ (compat)

The semantics of the extended language is defined via the partial function eval
on programs. This evaluator now returns a pair consisting of a heap and a value,
where the heap provides bindings for the assignable variables in the value.

eval : A° —e» Heap x Value
eval(M) = (H,V) if (letrec () M) —"* (letrec (H) V)

Analysis. The analysis of A' is based on the additional constraint derivation
rules described in Figure 14. The rule (letrec) extends the derivation context T to
map each assignable variable z; to a fresh set variable a; and generates constraints
for both the defined values and the letrec-body using the extended derivation
context. The rule (set!) propagates all possible assigned values into the value set
for the assigned variable. A constraint derivation context now maps immutable
variables to either set variables or constraint schemas, as before, and now also
maps assignable variables to set variables.

The set-based analysis function sba for the extended language A' can be defined
and computed in the usual fashion.

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

34 . C. Flanagan and M. Felleisen

B. PROOFS
B.1 Proofs for Section 4

LEMMA 4.3. (SOUNDNEsSS AND COMPLETENESS OF ©). If S is a system of atomic
constraints, then

Stec<a — SkEc<a

PrOOF. The soundness of O is straightforward. To prove the completeness of O,
assume S = ¢ < a. Let p be any fixpoint of the functional F' defined as

F . SetEnv — SetEnv
Flp)(a) = ({c|Stec<a},
Li{p(7) | Ste o <7 6, v < dom(5)},
LI{p(y) | SFe v < rng(a)})

where § Fg a <* § means there exists some d1,...,d, with o = §; and §,, = § such
that

S"@(siS(SH_l for1§i<n.

Note. The asymmetry between the definition of the domain and range components
of F(p)(e) arises from the rules ©. The rule (s3) propagates set variables denot-
ing results of functions in o forward along data-flow paths into constraints of the
form vy < rng(a). However, the same propagation does not occur for set variables
denoting arguments to functions in «. Hence this propagation is performed in the
definition of F(p)(a) by finding all v such that v < dom(4) and o <* 4.

If p = 8, then p = ¢ < «, and hence § Fg ¢ < a by the definition of p, as
required. Thus it just remains to prove that p = §. We proceed by case analysis
on constraints C € S.

—Suppose € = [< F]. We need to show that the correct ordering holds between
the components of p(«) and p(5). For the first component, since C € S, by (s1)
we have

{e]Stoc<al C {e|Stoc< f)
const (p(«)) C const (p(f)) .

For the second (domain) component, by (s1)

Ste <6 = Stoa<™§
~ Ap(y) | Ske B <74, v <dom(d)} C {p(y) | SFe a <4, v < dom(d)}
AHp(v) [Ste 8 <76, v <dom(8)} C [{p(y) [Ste o <76, v < dom(d)}
C

dom (p(8)) T dom (p(a).
For the third (range) component, by (s2)
Ste v <rng(a) = Ste vy < rng(d)
= Ap(y) | Ste vy <rng(a)} C {p(y) | Ste v < rng(p)}
~ WHe(y) | Ste v <rngla)} T | H{e(7) | Ste v <rng(B)}
g (p(a)) T rng (p(8)) .

Hence p(a) C p(9).

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

Componential Set-Based Analysis . 35

—Suppose C = [dom(«r) < 3.

pldom(a)) = | Hp(y) | Ste o <* 4, v < dom(d)} by definition of p
C [{o(x) | § Fo don(d) < 6, 7 < don(8)} by (ss)
C U {r(v) [SFe v <5} by (s5)
C p(8)

—The remaining cases for C hold by similar reasoning.

Hence p = 8, and the lemma holds. O

~

The following lemma demonstrates that the rule (=) is admissible in that any
derivation in the extended constraint derivation system produces information equiv-
alent to that produced by the original analysis.

LEMMA 4.4. (ADMISSIBILITY OF (2)). If b~ P : o, S then
sba(P)(l) = const(LeastSoln(S)(1)).

Proor. This lemma follows from the property

if Tk~ M : o8, and B = Label U {a} U FV[range(T')], then there
exists Sy such that ' M : a, Sy and &) =g Ss.

We prove this hypothesis by induction on the derivation I' F~ M : «, 81, and by
case analysis on the last step in the derivation.

—Suppose T' ke M @ a,8 via (=) because ' Fo« M : o, S3 and S5 =g S;. By
induction, I' - M : a, 84 where 83 =g 84. Since =g is an equivalence relation,
81 Zg S, and hence the lemma holds.

—Otherwise the proof of each case holds based on the induction hypothesis. [

B.2 Proofs for the Logic of Constraint System Equivalence

The following proofs require a number of auxiliary definitions.
Definition B.3. (PATHS).

—A path p,q,r € Path is a sequence of the constructors dom and rng. We use ¢ to
denote the empty sequence, and p.q to denote the concatenation of the paths p
and gq.

—The arity of a path p, denoted mp, is the number of dom’s in p, taken modulo 2.
If mp is 0, we say p is monotonic; otherwise p is antimonotonic.

—TFor a path p, the notation p(7) denotes the set expression 7 enclosed in the dom’s
and rng’s of p, i.e., if p = rng.dom, then p(«o) = rng(dom(a)).

—TFor a path p and a domain element X € D, the notation p(X) extracts the
component of X at the position p. This notation is formalized as follows:

(X)) = X
(rng.p)(X) = rng (p(X))
(dom.p)(X) = dom (p(X))
—The relations < and <3 denote < and >, respectively.
—The relations Cy and C; denote C and D, respectively.

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

36

C. Flanagan and M. Felleisen

LEmMMa 5.1. (SOUNDNESs AND COMPLETENESS OF A). For a system S of com-
pound constraints and a compound constraint C,

SFAC <«<— SEC.

PrOOF. The soundness of A is straightforward. To demonstrate the complete-
ness of A we assume S = C and prove that S Fa C by case analysis on C.

(1) Suppose C = [¢ < &]. Define p by

Vp € Path. Vo € SetVar. const(p(p(a))) ={c | Ska ¢ < p(a)}.

This solution p is actually the LeastSoln(S). For the purposes of this proof,

however, it is sufficient to prove a weaker result, specifically that p = S. We

prove this result by a case analysis showing that p satisfies every constraint

C'es.

(a) Suppose C' = [¢! < ¢(8)]. Then, by the definition of p, ¢’ € const(p(q(5))),
and hence p = ¢ < ¢(8).

(b) Suppose C’ = [p(«) < ¢(5)]. We need to show that p(p(a)) C p(q(3)). We
prove this inequality by showing that for any path :

const(r(p(p(a)))) Crr const(r(p(a(9)))).

If is monotonic, then

const(r(p(p(a)))) = {c | Sta c<r(p(a))}
C {c|Skac<r(al3))
via (trans;) from S Fa r(p(a)) < r(¢(8))
which follows from [p(«) < ¢(5)] € S via (compat)

const(r(p(¢(8)))).

The case where r is antimonotonic follows by a similar argument.
Hence p = S, and, in particular, p |= ¢ < . Since & = p(«) for some p and «a,
then we have that

¢ € const(p(p(a))) ={c | Sta c<pa)}.

Hence, S A ¢ < &, as required.

Suppose C = [k1 < Kao]. Let ¢ be a constant not used in S or C; let 8’ =
SU{e < k1}; and let p = LeastSoln(S’). Since p |= C, we have that

p E{c< k1, k1 <ot

Hence p = ¢ < k2, and by the first part of this proof, 8’ Fa ¢ < ks.
We now show that

for any ', 8" Fa ¢ < &k’ if and only if S Fa k1 < &'

The right-to-left implication is straightforward. We prove the left-to-right im-

plication by induction on the derivation of 8’ Fa ¢ < &'

(a) Suppose S’ Fa ¢ < &' because [¢ < &'] € §’. Then &' = &k, because ¢ is
unique, and S Fa &1 < k; via (reflex), as required.

(b) If [e < k'] ¢ 8, then S8’ Fa ¢ < &/ must be derived via the rule (trans;)
based on the antecedents 8’ Fa {¢ < k” k" < k’}. By induction, S Fa
k1 < &"”. Hence S Fa k1 < &' via (trans;), as required.

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

Componential Set-Based Analysis . 37

Since 8’ Fa ¢ < kg, the above hypothesis implies that S Fa k1 < k2, as
required. O

LEMMA 5.2. For a system S of compound constraints, S =g A(S) |g.
PrOOF. We need to show that S =g A(S) |g, i.e.,
Soln(8S) |g = Soln(A(S) |g) |E.
Since A is sound
Soln(S) |g = Soln(A(S)) |g C Soln(A(S) |E) |E,

because the solution space increases as the constraints A(S) are restricted to E.

To show the containment in the other direction, assume p |= A(S) |g. Without
loss of generality, assume p(«) = L, for all o« € E. We extend p to a superenviron-
ment p’ that satisfies S as follows:

Vp € Path. Yo € SetVar. const(p U{const)| Starm<pla)}

We show that p/ = S by case analysis on the constraints C € S.
—Suppose C = [¢ < ¢(3)]. Then

const(q(p'(8))) = %}%CO”S'J‘(p(m)) | SFa T <q(0)}

as required.

—Suppose C = [p(a) < ¢(F)]. Then for any path r, S Fa r(p(a)) <xr r(q(f)) via
(compat). Hence

Ulr [Stka 7 <r(pla))} Cror U{T [Sta 7 <r(e(B))},
and therefore

const(p' (r(p(a)))) = Hconst(p(7)) |
Crr U{const(p(7)) |
= const(p'(r(¢(9))))-

Hence

P (p(a)) C ' (4(8))-
And hence p’ = C, as required.

Thus p’ = S. It remains to show that p and p’ agree on E. Let o € E and r € Path.
Then
const(p'(r(a))) = U{const(p(7)) | Sta 7 <r(a)}
by definition of p’
= U{const(p(T)) | Ska 7 < r(a), SetVar(r) C E}
since p(f) = Ly for ¢ F
and hence p(r) = L, for SetVar(r) ¢ £
= U{const(p(r)) | 7 <r(a) € A(S) [r}
= const(p(r(a)))
since [r(a) < r(a)] € A(S) |g by (reflex) and (compat), and for [< r(«)] €
A(S) |g, const(p(T)) C const(p(r(e))). Thus p and p’ agree on E, and the lemma
holds. O

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

38 . C. Flanagan and M. Felleisen

LEMMa 5.3. (EQUIVALENCE OF PROOF SYSTEMS). For a system of atomic con-
strawnts 8,
A(S) = TO(S).

ProoF. The proof of the inclusion ¥O(S) C A(S) is straightforward.

We prove the converse inclusion A(S) C ¥O(S) by induction on the numer of
non ¥O-steps in the derivation of C € A(S). Again, for the base case, if C € A(S)
because C € S, then C € ¥O(S). Otherwise we proceed by case analysis on the
last rule used in the derivation of C € A(S).

(reflex), (compat). These rules are also in ¥, and by induction, the antecedents

are in ¥O(S); hence C € ¥O(S).

(trans;). The last step in the derivation must be

<7 7T< 7y

<n trans;)

We proceed by case analysis on 7 to show that [r; < 73] € ¥O(S).

(1) The case 7 = ¢ is impossible, since [r; < ¢] is not a compound constraint.

(2) If 7 € SetVar, then [r; < 2] € ¥O(S) via (transy).

(3) Suppose T = rng(r'). If 7/ € SetVar then [r < 1] € ¥O(S) via (s4).
Otherwise 7 < rng(r’) and rng(r’') < 7 are not atomic constraints, and we
proceed by considering the derivation of these constraints in ¥O(S).

Suppose the last step in the derivation of § Fge 7 < rang(r’) is via (transy):

n <y v <rng(r)

S ——— (transy)
Then S Fgeo v < rng(7'), S Fa rng(7) < m, and hence S Fa v < 1 via a
shorter proof, so by induction § Fge v < 7, and hence § Fgo 7 < ™ via
(transy).

The case where last step in the derivation of § Fge rng(7’) < m is via (trans,)
holds by similar reasoning.

Otherwise, the last step in the derivation of m < rng(r’) is either via

ay <rng(f) pL <7
a1 < rag(r')

(compose)

where 7 = a;, or

q<r

t
rg(r]) < zng(r) P

where 7 = rng(7{). Similarly, the last step in the derivation of rng(r') < r5 is

either via
T < B rng(f2) < as
rog(7) < o (composes)
where 7 = ay, or
<7
(compat)

rng(7') < rng(r)

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

Componential Set-Based Analysis . 39

where 75 = rng(74). We consider the four possible combinations for the deriva-

tions of 71 < rng(7') and rng(7') < 7:

(a) Suppose 1y < rng(7') isinferred via (compose;) and rng(r') < 13 is inferred
via (composes). Then {8 < 7,7/ < B2} C A(S), and therefore [3; < 3a] €
A(S) via (trans;). By induction, [; < f2] € ¥O(S), and the following
derivation then shows that [r < 7] € TO(S).

a1 < rng(f) B1 < Ba
a1 < rng(fs)

(s2) rng(fe) < a»

(54)

(b) Suppose 1 < rng(7') isinferred via (compose;) and rng(r') < 13 is inferred
via (ecompat). Then {8 < 7/, 7" < i} C A(S), and therefore [f; < 1] €
A(S) via (trans;). By induction, [3; < 7] € ¥O(S), and the following
derivation shows that [r < 3] € PO(S).

ap <rng(f) Hi<m
ay < rng(m)

a1§a2

(compose)

(c) Suppose 7 < rng(7') is inferred via (compat) and rng(7') < m is inferred
via (composeg). This case holds by reasoning similar to the previous case.
(d) Suppose 7 < rng(7') is inferred via (compat) and rng(7’) < m is inferred
via (compat). Then {r] < 7,7 < i} C A(S), and therefore [r{ < 4] €
A(S) via (trans;). By induction, [r{ < 7] € ¥O(S), and therefore a
(compat)-inference shows that [< m] € TO(S).
There are no other possibilities for the derivations of ; < rng(7') and rng(r’') <
7.
(4) Suppose 7 = dom(7'). This case holds by reasoning similar to the previous case
where 7 = rng(7’).
There are no other possibilities for 7.

There are no other possibilities for the derivation of C € A(S). Hence A(S) C
vO(S). O

LEMMA 5.4. For any system S of atomic constraints, ¥O(S) |p = TIO(S) |g.

PRrROOF. Since the rule (compat) does not create any II or © opportunities,
TO(S) = compat(TIO(S)), and hence we just need to show that
compat(TIO(S)) |p = TO(S) |E.
Now
compat(TIO(S)) D TO(S)
. compat(TIO(8S)) |z 2 TO(S) |&
. compat(IO(S)) |z E TO(S) |&.

To prove the converse, let p ETIO(S) |g. If p = compat(TIO(S)) |g, then let C be
the constraint in compat (TIO(S)) |g with the smallest derivation such that p = C.
Then the last step in the derivation of C must be via (compat). Let C’ be the
antecedent of this rule in compat(IIO(S)). Then SetVar(C') = SetVar(C) C E,
and hence C' € compat(TIO(S)) |g with a smaller derivation. Therefore p = C/,

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

40 . C. Flanagan and M. Felleisen

and hence since (compat) is sound, p |E C. Thus p | compat(TIO(S)) |g, as
required. O

B.3 Proofs for the Decidability of the Logic

LEMMA 6.1. (STAGING). For any system of atomic constraints S,
TO(S) = ¥(O(S)) = compat(TI(O(S))).

ProoF. The equality ¥(O(S)) = compat(T[(O(S))) holds, since (compat) does
not create any Il or © opportunities.

The inclusion ¥O(S) D ¥(O(S)) obviously holds. To prove the inclusion ¥O(S) C
T (O(S)) holds, we suppose S Fge C, and prove C € ¥(0(S)) by induction on the
derivation & Fge C, and by case analysis on the last step in this derivation.

—Suppose 8§ Fge C via some rule in ¥. By induction, the antecedents of this rule
are in ¥(O(S)), and hence C € ¥(O(S)).

—Suppose S Fgeo C via one of the rules (s1), (s2), or (s3). These rules are sub-
sumed by (transy), (composey), and (compose,), and hence this case is subsumed
by the previous case.

—Suppose S Fge C via (s4), based on the antecedents {a < rng(3), rng(3) < v}.
By induction, these antecedents are in ¥(©(S)). An examination of ¥ shows
that ¥ can only infer [o < rng(3)] if there exists o', 3’ such that ©(S8) contains
the constraints

a <* o o' < rng(3') B<* .

Similarly, ¥ can only infer [rng(3) < 4] if there exists 3,4’ such that ©(S)
contains the constraints

p< g’ rmg(B”) <y A <y
Hence

Ste o <rng(f"’) via multiple applications of (s3)
Ske o <~ via (s4)
O(S) Fg o < v via multiple applications of (trans,).

—The case for (s5) holds by reasoning similar to the previous case. [

LEMMA 6.5. Let G = G¢(S,E). ThenTI(S) |g = Lg(R).
ProoF. We prove that TI(S) |z C Lg(R) by case analysis on C € TI(S) |z.

—Suppose C = [a < k]. Then by Lemma 6.3, ay —7 k. Since SetVar(C) C E,
o € F, and hence ap —¢g a. Thus R —¢ [op < ay] =% [a < k], and hence
[a < k] € La(R).

—The case where C = [k < «] follows by similar reasoning.

—Suppose C = [e < k]. If C € S, then £k = o, & € E, and R —¢ [¢c < ay] —¢
[c < a] as required.

If C ¢ S, then an examination of the inference rules in Il shows that C can
only be inferred via (transy), based on the antecedents [¢ < «a] and [a < &] in

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

Componential Set-Based Analysis . 41

I(S) |g. By Lemma 6.3, ap —¢ ¢ and ap =& k. Hence R — [¢ <], and hence
[c < k] € L&(R), as required.

—TFinally, consider C = [k1 < Ka], where k1, K2 € SetVar. An examination of the
inference rules in IT shows that C can only be inferred via (trans,), based on the
antecedents [k, < a] and [« < K3]. By Lemma 6.3, ap =% k1 and ay —g Ka.
Hence R — [k1 < k2], and hence [k1 < &3] € Lg(R), as required.

We prove that TI(S) |g D L& (R) by case analysis on C € Lg(R).

—Suppose C = [k1 < k3]. Then for some o, ay —& k1 and ay —} k2. By
Lemma 6.3, {r1 < a, a < Ko} CTI(S) and SetVar(xk;) C E. Hence [k1 < ka] €
TI(S) |g, as required.

—Otherwise C = [¢ < k]. Then for some «a, [¢c < a] € § and ay —§ . By
Lemma 6.3, {o < s} C TI(S) and SetVar(x) C E. Hence [¢ <] € TI(S) |g, as
required. [

C. THE ENTAILMENT ALGORITHM

The algorithm for deciding the restricted entailment of constraint systems is pre-
sented in Figure 15. Given two systems of atomic constraints & and S; and a
collection E of external set variables, the algorithm decides if Ss |—§® S1. Based
on the reasoning of Section 6.3, the relation S» '_56 &1 holds if and only if

L, (R) C compat(La,(R))

where G; = G(0(S;), E). To decide if Lg, (R) C compat(Lg,(R)), the algorithm
first computes a relation Rs, s, such that Rs, s,[ar, fvr, C, D] holds if and only if

L[< Bul) C compat(L(C)) U L(D),

where ap, Sy are nonterminals describing set expressions; C', D) describe collec-
tions of constraints; and L([ar < fy]) denotes the language {[rr < 7] | az —*
TL, ﬁU —* TU}.

The relation R, s, is defined as the largest relation satisfying the conditions
in Figure 15. Tt is computed by starting with the maximal relation (true at every
point), and then iteratively setting entries to false, until the largest relation sat-
isfying these conditions is reached. The first condition in the definition of Rs, s,
uses an RTG containment algorithm to detect if L([or < By]) C L(C) U L(D).
The following two conditions handle constraints of the form [rng(af) < rng(5()]
or [dom(ay;) < dom(53;)], and allow for inferences via (compat).

Based on the relation R, s,, the algorithm then defines a computable entailment
relation S I—flg 8y on constraint systems. This relation holds if and only if S, '_56
8.

TaEOREM C.1. (CORRECTNESS OF THE ENTAILMENT ALGORITHM). S FEo &
if and only of So I—flg Si.

ProoF. We prove this theorem based on the following invariant concerning the
relation Rs, s,[, -]:

Rs, s.lar, fu,C, D] <= Lg,([ar < fu]) C compat(L(C)) U L(D) (1)

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

42 . C. Flanagan and M. Felleisen

The Entailment Algorithm
For i € {1, 2} let:

Gi = Gi(0(S),E)
L; = A{ar | a € SetVar(S;)}
Ui = {av | a € SetVar(8:)}

and let GG; be pre-processed to remove e-transitions.

For C' € Pgn(L2 x Usz), define
L, (C)=Alrr <] |{ar,Bv)€C, ar —a, 71, Bur—a, T}
The relation Rs, s,[-,] is defined as the largest relation on
L1 x Uy x Pen(Lz X Uz) X Pen(Lz x Us)
such that if
Rs,,s.lan, Bu,C, D] ap —a X Bu g, Y
then one of the following cases hold:
(1) L& ([X <Y]) C La,(CUD).
(2) X =rng(a?), Y =rng(By) and Rs, s,[ak, By, C, D'], where
D' ={{v1,0u) | (v2,0v) € CUD,yL =, rng(y1),6v e, rng(6y)}
(3) X = dom(ay), Y =dom(8%) and Rs, s,[8%, v, C, D'], where
D' ={{6%,v0) | (v£,0v) € CUD, v —a, dom(yyr), 6 +—ra, dom(87)}
(4) In no other cases does Rs,,s,[ar, Bv, C, D] hold.
The computable entailment relation Sz FZ &) holds if and only if:

alg
(1) VR ¢, lar < av]l Rs,slap,av,{{vi,vv) | v €
SetVar(82)},0], and

(2) VR =a, [c < avl L, (av) € Lo, ({yo | R =6, [e <yol}).
Fig. 15. The computable entailment relation l—ﬁg.

Now also assume that Sy F¥g 8;. Then HO(S)) |g C compat(1IO(S:)) |g. By
Lemma 6.5, TIO(S;) | = L¢,(R), and hence

L, (R) C compat(Le, (R)).
Thus, for all R —e, [ar < av]
La([or < oav]) C compat(La,(R))
w Lay(lor < ap]) C compat(La,({(yz,w) | v € SetVar(S:)})).
Hence
Rs, s.lan, av, {{yr,y) | v € SetVar(S2)}, 0].
Also, from L, (R) C compat(La, (R)), we have that for all R =, [¢ < av]

L, ([e <ay]) C compat(Le,(R))
w Lay([e <av]) C Lan(R)
L, (av) C La,({yw | Rra2[c <qul}).

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

Componential Set-Based Analysis . 43

Hence 8- I—flg Sy holds. The proof of the converse implication that S, I—flg S

implies 8o '_56 81 proceeds by a similar argument.
It remains to show that (1) holds. To prove the left-to-right direction, suppose
that Rs, s.[ar, fv, C, D] holds and

arp —a, X |—>Z~1 TL
ﬁU =Gy Y i—>*Gl TU -

We prove by induction on 77 that
L([rr < 1r7]) C compat(L(C)) U L(D).
One of three cases in the definition of R must hold.

(1) L([er < Bu]) C L(C'U D). This case is trivial.
(2) In this case

X = rng(af) ol =G, T 11, = rng(7y)
Y = rng(6y) By =&, T T = rng(r;)

and Rs, s,[af, 5, C, D'], where

D' ={{v,00) | (vz,0v) € CU D,y ¢, tng(yr), dv —a, rng(dy)}.

By induction, [r} < 7(;] € compat(L(C)) U L(D').
—If [r;, < 7] € L(D') then there exists (y7,dy) € D such that 7 —7, 77 and
8ty =&, T+ By the definition of D', there exists (yr,dy) € C'U D such that
YL =g, 7o and dy =g, Tu. Therefore [rr < my] € L(C'U D), as required.
—If [r}, < 7{;] € compat(L(C)) then [< 7i7] € compat(L(C)), as required.
(3) The proof for the third case of the definition of Rs, s,[-, -, -, -] is similar to that
for the second case.

To prove the right-to-left direction, suppose
L[z < Bu]) C compat (L(C)) U L(D)

and that the relation Rs, s,[or, B, C, D] does not hold. Hence there exists X,V
such that ap —¢, X and Sy —¢, Y and none of the three conditions in Fig-
ure 15 hold. Furthermore, since R is the largest relation satisfying the conditions
in Figure 15, there exists a finite proof that none of the three conditions hold.

Of all possible such counterezamples {oy, B, X,Y,C, D), we pick the one with
the smallest proof that the relation R, s,[ar, v, C, D] does not hold, and proceed
by case analysis on the last step in this proof.

—Suppose Rs, s.lar, v, C, D] does not hold because of condition (1). Then
L([X <Y]) € L(C U D), which contradicts the assumptions above.

—Suppose Rs, s,[ar, fu, C, D] does not hold because of condition (2). Then X =
rng(af) and Y = rng(5);). Consider any pair of set expressions 11 and 7y
such that of —¢, 71 and Gf; =5, 70. We consider the two possibilities for
[rng(7) < rng(rv)] € compat(L(C)) U L(D) separately.

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

44 . C. Flanagan and M. Felleisen

—If [rng(r) < rng(mv)] € L(C)U L(D), then there exists (yr,dy) € C'UD such
that

VL =G, tng(vL) &G, tng(TL)
du —a, rng(dy;) =G, rog(m).
Hence [rp < 1] € L£(D'), where
D' ={{y1,90) | (v£,0v) € CU D,y =, tng(7r), 0v —a, rng(dy)}.
< rn

—Otherwise [rng(m) g(m)] € compat(L(C))\ L(C'), and hence [rp < 1] €
compat(L(C)).
Hence

L([o, < By]) C compat (L(C)) U L(D').

The proof that Rs, s,[ar, v, C, D] does not hold cannot rely on a smaller proof
that Rs, s,[a], By, C, D] does not hold, since that would yield a counterexample
with a smaller proof.

—The case where Rg, s,[ar, v, C, D] does not hold because of condition (3) is
also impossible via reasoning similar to the previous case.

Thus the invariant (1) is true, and thus the theorem holds. O

D. NOTATIONS

Symbol Meaning

—o> Partial map constructor

P Power set constructor

Pein Finite power set constructor
MeA Terms

V € Value Values

x € Var Variables

b € BasicConst Basic constants

t € Tag Function tags

[€ Label Labels

By, By, unlabel
—

Reduction rules
Reduction relation

& Evaluation contexts

—, —* Standard reduction relation
eval Evaluator

T € SetExp Set expressions

a, B,y € SetVar Set variables

¢ € Const Constants

dom, rng Selectors

C € AtomicCon

S € AtomicConSystem

SetVar

Atomic constraints
System of atomic constraints
Set variables in a constraint system

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

I' € DerivCtxt

'-M:a S8

o € ConSchema
FV]range(T')]
Fo

0= {51,~~~,5n}
sba

in

D

const, dom, rng
E’ —l—’ J_’ I—I’ I_l

p € SetEnv

C € Constraint

S € ConstraintSystem
=

Soln(S)

Soln(S) |

Fr

=E

S |k

Esa Tsa J—Sa I—Isa I_ls
LeastSoln

E

A
K
C € CmpdConstraint
S € CmpdConSystem
0
IT

"5@, :ge
G
G, (S, E)

ar,ay

La(X)

G(S, F)
R

Componential Set-Based Analysis

Set variable context

Constraint derivation rules
Constraint schema

Free variables in the range of T’

Deduction via ©

Inference rules

Analysis function

Values described by constants

Domain for constraints
Extract components of element of D
Ordering, elements and operations on D

Set environment

Constraints

Constraint systems

Satisfies, or entails

Solution space

Observable equivalence
Restricted solution space
Restricted entailment

Restricted observable equivalence
Restriction of a constraint system

Alternative ordering on domain
Least Solution

External variables

Inference rules on constraint systems
Nonconstant set expression
Compound constraint

System of compound constraints
Inference rules on constraint systems
Inference rules on constraint systems
Relations on constraint systems

Grammar

Function producing regular grammar
Grammar nonterminals

Language for nonterminal X in G

Function producing RTG
Root nonterminal

45

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

46 . C. Flanagan and M. Felleisen

Sel™ Sel™ Sets of selectors

selt sel™ sel Selectors

AP Language A plus pairs

car, cdr Selectors for pairs

Ace Language AP plus continuations
A Language AP plus assignments
D € Defines Definitions

z € AssignVar Assignable variables

H € Heap Heap of definitions

<* Transitive closure of <

p,q,r € Path Paths

arity, ™ Arity function

< Either < or >

C; Either C or D

R Relation for computing entailment
ACKNOWLEDGMENT

We thank the anonymous referees who made several useful suggestions.

REFERENCES

Ano, A., J. HOPCROFT AND J. ULLMAN. 1974. The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, Mass.

AIKEN, A., WIMMERS, E. L., AND LaksHMaN, T. K. 1994. Soft typing with conditional types. In
Proceedings of the Symposium on the Principles of Programming Languages. 163-173.

BARENDREGT, H.P. 1984. The Lambda Calculus: Its Syntar and Semantics, Revised ed. Studies
in Logic and the Foundations of Mathematics, vol. 103. North-Holland, Amsterdam.

CousoT, P. aND CousoT, R. 1995. Formal language, grammar, and set-constraint-based program
analysis by abstract interpretation. In Proceedings on Functional Programming and Computer
Architecture. 170-181.

DEeuTscH, A. AND HEINTZE, N. 1996. Partial solving of set constraints. Unpublished manuscript.

DuesTERWALD, E., GupTA, R., AND SOFFA, M. L. 1994. Reducing the cost of data flow analysis
by congruence partitioning. In International Conference on Compiler Construction.

EirriG, J., SMITH, S., AND TRIFONOV, V. 1995. Sound polymorphic type inference for objects.
In Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and
Applications.

FAHNDRICH, M. AND AIKEN, A. 1996. Making set-constraint based program analyses scale. Tech-
nical Report UCB/CSD-96-917, University of California at Berkeley.

FranacaN, C. 1997. Effective static debugging via componential set-based analysis. Ph.D. thesis,
Rice University, Houston, Texas.

Franacan, C., FLaTT, M., KRISHNAMURTHI, S., WEIRICH, S., AND FELLEISEN, M. 1996. Finding
bugs in the web of program invariants. In Programming Language Design and Implementation.
23-32.

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

Componential Set-Based Analysis . 47

FrarT, M. 1997. MzScheme reference manual. Technical Report TR97-280, Rice University.

FraTT, M. AND FELLEISEN, M. 1998. Units: Cool modules for HOT languages. In Proceedings of
the Symposium on the Programming Language Design and Implementation.

GECSEG, F. AND STEINBY, M. 1984. Tree Automata. Akadémiai Kiadé, Budapest.

HEINTZE, N. 1994. Set-based analysis of MLi programs. In Proceedings of the ACM Conference
on Lisp and Functional Programming. 306-317.

HopcrorT, J. E. 1971. An n log n algorithm for minimizing the states of a finite automaton. The
Theory of Machines and Computations, 189-196.

JAGANNATHAN, S. AND WRIGHT, A. K. 1995. Effective flow analysis for avoiding run-time checks.
In 2nd International Static Analysis Symposium, Lecture Notes in Computer Science, vol. 983.
Springer-Verlag, 207-224.

JonEs, N. AND MUCHNICK, S. 1982. A flexible approach to interprocedural data flow analysis and
programs with recursive data structures. In Principles of Programming Languages. 66-74.

PALSBERG, J. 1995. Closure analysis in constraint form. Transactions on Programming Languages
and Systems 17, 1, 47-62.

PALSBERG, J. AND O’KEEFE, P. 1995. A type system equivalent to flow analysis. In Proceedings
of the Symposium on the Principles of Programming Languages. 367-378.

ProTkin, G. D. 1975. Call-by-name, call-by-value, and the A-calculus. Theor. Comput. Sci. 1,
125-159.

PoTTIER, F. 1996. Simplifying subtyping constraints. In Proceedings of the International Con-
ference on Functional Programmaing. 122—-133.

REYNOLDS, J. 1969. Automatic computation of data set defintions. Information Processing’68,
456-461.

TorTE, M. 1990. Type inference for polymorphic references. Info. Comput. 89, 1 (November),
1-34.

TRIFONOV, V. AND SMITH, S. 1996. Subtyping constrained types. In 3rd International Static
Analysis Symposium, Lecture Notes in Computer Science, vol. 1145. 349-365.

WRIGHT, A. AND FELLEISEN, M. 1994. A syntactic approach to type soundness. Info. Com-
put. 115, 1, 38-94.

WRIGHT, A. K. 1995. Simple imperative polymorphism. Lisp Symbol. Comput. 8, 4 (Dec.),
343-356.

Received November 1997; accepted April 1998

ACM Transactions on Programming Languages and Systems, Vol. <vol>, No. <no>, <month> 1999.

