
Hybrid Type Checking

KENNETH KNOWLES CORMAC FLANAGAN

University of California at Santa Cruz

Traditional static type systems are effective for verifying basic interface specifications. Dynamically-

checked contracts support more precise specifications, but these are not checked until run time,

resulting in incomplete detection of defects. Hybrid type checking is a synthesis of these two ap-
proaches that enforces precise interface specifications, via static analysis where possible, but also

via dynamic checks where necessary. This paper explores the key ideas and implications of hybrid

type checking, in the context of the λ-calculus extended with contract types, i.e., with dependent
function types and with arbitrary refinements of base types.

Categories and Subject Descriptors: D.3.1 [Programming Languages: Formal Definitions

and Theory]: specification and verification

General Terms: Languages, Theory, Verification

Additional Key Words and Phrases: Type systems, contracts, static checking, dynamic checking

1. MOTIVATION

The construction of reliable software is notoriously difficult, in part because pro-
grammers typically work in the context of a large collection of APIs whose behavior
is only informally and imprecisely specified and understood. Techniques for speci-
fying and verifying software interfaces have been the focus of much prior work.

Static type systems have proven to be effective and practical tools for verifying
basic structural specifications. There are important specifications, however, that
cannot be expressed with structural types. Ongoing research on more powerful type
systems (e.g., [Freeman and Pfenning 1991; Xi and Pfenning 1999; Xi 2000; Davies
and Pfenning 2000; Mandelbaum et al. 2003]) attempts to overcome some of these
restrictions via advanced features such as dependent and refinement types that
can express more logical aspects of interface specifications. Yet these systems are
designed to be statically type safe, and so the specification language is intentionally
restricted to ensure that specifications can always be checked statically.

In contrast, dynamic contract checking [D. L. Parnas 1972; Meyer 1988; Holt
and Cordy 1988; Luckham 1990; Gomes et al. 1996; Kölling and Rosenberg 1997;
Findler and Felleisen 2002; Leavens and Cheon 2005] provides a simple method for
checking and enforcing executable specifications at run-time. Dynamic checking
can easily support precise specifications, such as:

- Subranges: The function printDigit requires an integer in the range [0,9].

- Aliasing restrictions: The function swap requires that its arguments are distinct
reference cells.

- Ordering restrictions: The function binarySearch requires that its argument is
a sorted array.

- Size specifications: The function serializeMatrix takes as input a matrix of
size n by m, and returns a one-dimensional array of size n×m.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · Knowles, Flanagan

- Arbitrary predicates: an interpreter (or code generator) for a typed language (or
intermediate representation [Tarditi et al. 1996]) might naturally require that its
input be well-typed, i.e., that it satisfies the predicate wellTyped : Expr→ Bool.

However, dynamic checking suffers from two limitations. First, it consumes cycles
that could otherwise perform useful computation. More seriously, dynamic checking
provides only limited coverage – specifications are only checked on data values and
code paths of actual executions. Thus, dynamic checking often results in incomplete
and late (possibly post-deployment) detection of defects.

Thus, the twin goals of complete checking and expressive specifications appear
somewhat incompatible.1 Static type checking focuses on complete checking of re-
stricted specifications. Dynamic checking focuses on incomplete checking of expres-
sive specifications. Neither approach in isolation provides an entirely satisfactory
solution for enforcing precise interface specifications.

In this paper, we describe an approach for validating precise interface specifica-
tions using a synthesis of static and dynamic techniques. By checking correctness
properties and detecting defects statically (whenever possible) and dynamically
(only when necessary), this approach of hybrid type checking attempts to combine
the benefits of prior purely-static and purely-dynamic approaches.

We illustrate the key idea of hybrid type checking by considering the type rule
for function application:

E ` t1 : T → T ′ E ` t2 : S E ` S <: T
E ` (t1 t2) : T ′

The antecedent E ` S <: T checks compatibility of the actual and formal parameter
types. If the type checker can prove this subtyping relation, then this application
is well-typed. Conversely, if the type checker can prove that this subtyping relation
does not hold, then the program is rejected. In a conventional, decidable type
system, one of these two cases always holds.

However, once we consider expressive type languages that are not statically de-
cidable, the type checker may encounter situations where its algorithms can neither
prove nor refute the subtype judgment E ` S <: T (particularly within the time
bounds imposed by interactive compilation). A fundamental question in the devel-
opment of expressive type systems is how to deal with such situations where the
compiler cannot statically classify the program as either ill-typed or well-typed:

- Statically rejecting such programs would cause the compiler to reject some pro-
grams that, on deeper analysis, could be shown to be well-typed. This approach
seems a little too brittle for use in practice, since it would be difficult to predict
which programs the compiler would accept.

- Statically accepting such programs (based on the optimistic assumption that the
unproven subtype relations actually hold) may result in specifications being vio-
lated at run time, which is undesirable.

1Complete checking of expressive specifications could be achieved by requiring that each program

be accompanied by a proof (perhaps expressed as type annotations) that the program satisfies its
specification, but manually or interactively writing such proofs is currently rather heavyweight for

widespread use.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Hybrid Type Checking · 3

Ill-typed programs Well-typed programs

Clearly ill-typed Subtle programs Clearly well-typed

Rejected by type checker Accepted Accepted without casts
with casts

Casts Casts
may never

fail fail

Fig. 1. Hybrid type checking on various programs.

Hence, a promising approach is for the compiler to accept such programs on a pro-
visional basis, but to insert sufficient dynamic checks to ensure that specification
violations never occur at run time. Of course, checking that E ` S <: T at run
time is still a difficult problem and would violate the principle of phase distinc-
tion [Cardelli 1988a]. Instead, our hybrid type checking approach transforms the
above application into the code

t1 (〈T / S〉 t2)

where the additional typecast or coercion 〈T / S〉 t2 dynamically checks that the
value produced by t2 is in the domain type T . Note that hybrid type checking
supports precise types, and T could in fact specify a detailed precondition of the
function, for example, that it only accepts prime numbers. In this case, the run-time
cast would involve performing a primality check.

The behavior of hybrid type checking on various kinds of programs is illustrated
in Figure 1. Although every program can be classified as either ill-typed or well-
typed, for expressive type systems it is not always possible to make this classification
statically. However, the compiler can still identify some (hopefully many) clearly
ill-typed programs, which are rejected, and similarly can identify some clearly well-
typed programs, which are accepted unchanged.

For the remaining subtle programs, dynamic type casts are inserted to check any
unverified correctness properties at run time. If the original program is actually
well-typed, these casts are redundant and will never fail. Conversely, if the original
program is ill-typed in a subtle manner that cannot easily be detected at compile
time, the inserted casts may fail. As static analysis technology improves, we expect
that the category of subtle programs in Figure 1 will shrink, as more ill-typed
programs are rejected and more well-typed programs are fully verified at compile
time.

Hybrid type checking provides several desirable characteristics:

(1) It supports precise interface specifications, which facilitate modular develop-
ment of reliable software.

(2) As many defects as possible and practical are detected at compile time (and
we expect this set will increase as static analysis technology evolves).

(3) All well-typed programs are accepted by the checker.
(4) Due to decidability limitations, the hybrid type checker may statically accept

some subtly ill-typed programs, but it will insert sufficient dynamic casts to
guarantee that specification violations are always detected, either statically or
dynamically.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

4 · Knowles, Flanagan

(5) The output of the hybrid type checker is always a well-typed program (and so,
for example, type-directed optimizations are applicable).

(6) If the source program is well-typed, then the inserted casts are guaranteed to
succeed, and so the source and output programs are behaviorally equivalent.

Our proposed specifications extend traditional static types, and so we view hybrid
type checking as an extension of traditional static type checking. In particular,
hybrid type checking supports precise specifications while preserving a key benefit
of static type systems; namely, the ability to detect simple syntactic errors at
compile time.

Hybrid type checking may facilitiate the evolution and adoption of advanced
static analyses, by allowing software engineers to experiment with sophisticated
specification strategies that cannot (yet) be verified statically. Such experiments
can then motivate and direct static analysis research. In particular, if a hybrid type
checker fails to decide (i.e., verify or refute) a subtyping query, it could send that
query back to the compiler writer. Similarly, if a hybrid-typed program fails an
inserted cast 〈T / S〉 v, the value v is a witness that refutes an undecided subtyping
query S <: T , and such witnesses could also be sent back to the compiler writer.
This information would provide concrete and quantifiable motivation for subsequent
improvements in the type checker’s analysis.

Indeed, just as different compilers for the same language may yield object code of
varying quality, we might imagine a variety of hybrid type checkers with different
trade-offs between static and dynamic checks (and between static and dynamic
error messages). Fast interactive hybrid compilers might perform only limited static
analysis to detect obvious type errors, while production compilers could perform
deeper analyses to detect more defects statically and to generate improved code
with fewer dynamic checks.

Hybrid type checking is inspired by prior work on soft typing [Fagan, M. 1990;
Wright and Cartwright 1994; Aiken et al. 1994; Flanagan et al. 1996], but it extends
soft typing by rejecting many ill-typed programs, in the spirit of static type checkers.
The interaction between static typing and dynamic checks has also been studied
in the context of type systems with the type Dynamic [Abadi, M., L. Cardelli, B.
Pierce, and G. Plotkin 1989; Thatte, S. 1990], and in systems that combine dynamic
checks with dependent types [Ou et al. 2004]. Hybrid type checking extends these
ideas to support more precise specifications.

The general approach of hybrid type checking appears applicable to a variety of
programming languages and specification languages. In this paper, we develop this
approach for a fairly expressive dependent type system that is statically undecid-
able. Specifically, we work with an extension of the λ-calculus with contract types,
that is, with dependent function types and arbitrary refinements of base types.

The presentation of our results proceeds as follows. Section 2 introduces our core
calculus, together with its operational semantics and (undecidable) type system.
Section 3 presents a hybrid type checking algorithm for this language, and Section 4
illustrates this algorithm on an example program. Section 5 formalizes the idea
of closing substitutions, a key technical notion in our formalism. Section 6 verifies
correctness properties of the type system and of the hybrid type checking algorithm.
Section 7 formally compares the static and hybrid approaches to type checking.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Hybrid Type Checking · 5

Section 8 relates our approach to other work is this area, and Section 9 outlines
opportunities for future research.

This paper is an extended version of an earlier conference paper [Flanagan 2006]
that revises some problematic aspects and that provides simpler proofs of cor-
rectness. In particular, our earlier type system was defined via a collection of
mutually-recursive rules for the typing, subtyping, and implication relations, where
the definition of the implication relation refers to the typing relation in a negative
position. Thus, standard monotonicity arguments are not applicable, and so it is
not obvious what non-trivial type systems satisfy these rules. (We note that [Ou
et al. 2004] and [Gronski et al. 2006] use an alternative approach of axiomatizing the
implication relation, but it is still not clear which relations satisfy those axioms.)

This paper circumvents these issues by leveraging a denotational interpretation of
contract types as dynamically-checked contracts on top of the simply-typed lambda
calculus. This approach allows us to define closing substitutions and the implica-
tion relations in a non-circular manner (Section 5), which then provides a solid
foundation for the remainder of the contract type system.

In addition, this paper proves that compilation preserves equivalence via the
proof technique of logical relations, which provides a more elegant approach than
the complex and somewhat brittle bisimulation relation of [Flanagan 2006]. Fi-
nally, [Flanagan 2006] defined the small-step evaluation relation in terms of its
own reflexive-transitive closure. We present a cleaner operational semantics by
adding a syntactic form for a run-time check “in progress”, as described in the
following section.

2. THE LANGUAGE λH

This section introduces an extension of the λ-calculus with contract types, i.e.,
with dependent function types and with precise (and hence undecidable) refinement
types. We refer to this language as λH .

2.1 Syntax of λH

The syntax of λH is summarized in Figure 2. Terms include variables, constants,
functions, applications, and casts. The cast 〈T / S〉 is a function of type S → T ,
and dynamically checks if its argument, statically known to be of type S, is also of
type T (in a manner similar to coercions [Thatte, S. 1990], contracts [Findler 2002;
Findler and Felleisen 2002], and to type casts in languages such as Java [Gosling
et al. 1996]). The cast-in-progress construct 〈T, t, c〉 is introduced during program
evaluation, as discussed in Section 2.2 below.

The λH type language includes dependent function types [Cardelli 1988b], for
which we use the syntax x :S → T of Cayenne [Augustsson 1998]. Here, S is the
domain type of the function and the formal parameter x may occur in the range
type T . We omit x if it does not occur free in T , yielding the standard function
type syntax S → T .

We use B to range over base types, which includes at least Bool and Int. As in
many languages, these base types are fairly coarse and cannot, for example, denote
integer subranges. To overcome this limitation, we introduce refinement types of

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

6 · Knowles, Flanagan

Figure 2: Syntax

v ::= Values:

c constant
λx :S. t abstraction

〈T / S〉 type cast

s, t ::= Terms:

v value
x variable

t t application

〈T, t, c〉 cast in progress

S, T ::= Types:

x :S → T dependent function type
{x :B | t} refinement type

B ::= Base types:
Int base type of integers

Bool base type of booleans

E ::= Environments:

∅ empty environment
E, x : T environment extension

the form

{x :B | t}

Here, the variable x (of type B) can occur within the boolean term or predicate
t. This refinement type denotes the set of constants c of type B that satisfy this
predicate, i.e., for which the term [x 7→c] t evaluates to true, where [x 7→ c] is the
substitution function that replaces x by c in its argument. Thus, {x :B | t} denotes a
subtype of B, and we use a base type B as an abbreviation for the trivial refinement
type {x :B | true}.

These refinement types are inspired by prior work on decidable refinement type
systems [Freeman and Pfenning 1991; Xi and Pfenning 1999; Xi 2000; Davies and
Pfenning 2000; Mandelbaum et al. 2003; Ou et al. 2004]. However, since refine-
ment predicates are arbitrary boolean expressions, every computable subset of the
integers is actually a λH type. Not surprisingly, this expressive power causes type
checking to become undecidable. In particular, subtyping between two refinement
types {x :B | t1} and {x :B | t2} reduces to checking implication between the cor-
responding predicates, which is clearly undecidable. These decidability difficulties
are circumvented by our hybrid type checking algorithm, which we describe in Sec-
tion 3.

The type of each constant is defined by the following function ty : Constant →
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Hybrid Type Checking · 7

Type, and the set Constant is implicitly defined as the domain of this mapping.

true : {b :Bool | b⇔ true}
false : {b :Bool | b⇔ false}
⇔ : b1 :Bool→ b2 :Bool→ {b :Bool | b⇔ (b1 ⇔ b2)}

not : b :Bool→ {b′ :Bool | b⇔ not b}
n : {m :Int |m = n}
+ : n :Int→ m :Int→ {z :Int | z = n+m}

+n : m :Int→ {z :Int | z = n+m}
/ : n :Int→ m :{z :Int | z 6= 0} → {z :Int | z = n+m}
= : n :Int→ m :Int→ {b :Bool | b⇔ (n = m)}

ifT : Bool→ T → T → T
fixT : (T → T)→ T

A basic constant is a constant whose type is a refinement type (i.e. not a function
type). Each basic constant is assigned a singleton type that denotes exactly that
constant. For example, the type of an integer n denotes the singleton set {n}.

A primitive function is a constant of function type. For clarity, we use infix
syntax for applications of some primitive functions (e.g., +, =, ⇔). The types
for primitive functions are quite precise. For example, the type for the primitive
function +:

n :Int→ m :Int→ {z :Int | z = n+m}

exactly specifies that this function performs addition. That is, the term n+m has
the type {z :Int | z = n + m} denoting the singleton set {n + m}. Note that even
though the type of “+” is defined in terms of “+” itself, this does not cause any
problems in our technical development, since the semantics of refinement predicates
is defined in terms of the operational semantics.

The constant fixT is the fixpoint constructor of type T , and enables the definition
of recursive functions. For example, the factorial function can be defined as:

fixInt→Int

λf : (Int→ Int).
λn :Int.

ifInt (n = 0)
1
(n ∗ (f (n− 1)))

Contract types can express many precise specifications, such as the following
(where we assume that Unit, Array, and RefInt are additional base types, and the
primitive function sorted : Array→ Bool identifies sorted arrays.)

- printDigit : {x :Int | 0 ≤ x ∧ x ≤ 9} → Unit.
- swap : x :RefInt→ {y :RefInt |x 6= y} → Unit.
- binarySearch : {a :Array | sorted a} → Int→ Bool.

2.2 Operational Semantics of λH

We next describe the run-time behavior of λH terms, since the semantics of the
type language depends on the operational semantics of terms. The relation s ; t

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

8 · Knowles, Flanagan

Figure 3: Evaluation Rules

Redex Evaluation s −→ t

(λx :S. t) s −→ [x 7→s] t [E-Beta]

c v −→ δ(c, v) [E-Prim]

〈x :T1 → T2 / x :S1 → S2〉 v −→ λx :T1. 〈T2 / [x 7→〈S1 / T1〉 x]S2〉 (v (〈S1 / T1〉 x))

[E-Cast-Fn]

〈{x :B | t} / {x :B | s}〉 c −→ 〈{x :B | t}, [x 7→c] t, c〉 [E-Cast-Begin]

〈{x :B | s}, true, c〉 −→ c [E-Cast-End]

Contextual Evaluation s ; t

C[s] ; C[t] if s −→ t [E-Compat]

Evaluation Contexts C, D

C ::= • | C t | t C | λx :S. C | 〈T, C, c〉 | 〈D, t, c〉 | 〈T /D〉 | 〈D / S〉 | λx :D. t
D ::= x :D → T | x :S → D | {x :B | C}

performs a single evaluation step, and the relation ;∗ is the reflexive-transitive clo-
sure of ;. As shown in Figure 3, the rule [E-Beta] performs standard β-reduction
of function applications, where we use the notation [x 7→s] t to denote the capture-
avoiding replacement of x by s in the term t.

The rule [E-Prim] evaluates applications of primitive functions. This rule is
defined in terms of the partial function:

δ(−,−) : Constant × Term ⇀ Term

which defines the semantics of primitive functions. For example:

δ(not, true) = false
δ(+, 3) = +3

δ(+3, 4) = 7
δ(not, 3) = undefined

δ(ifT , true) = λx :T. λy :T. x
δ(ifT , false) = λx :T. λy :T. y

δ(fixT , t) = t (fixT t)

The operational semantics of casts is a little more complicated. As described by
the rule [E-Cast-Fn], casting a function v of type x :S1 → S2 to the type x :T1 → T2

yields a new function

λx :T1. 〈T2 / [x 7→〈S1 / T1〉 x]S2〉 (v (〈S1 / T1〉 x))

This function is of the desired type x :T1 → T2 ; it takes an argument x of type T1,
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Hybrid Type Checking · 9

casts it to a value of type S1, which is passed to the original function v. The result of
that application has type [x 7→〈S1 / T1〉 x]S2 and is then cast to the desired result
type T2. Thus, higher-order casts are performed a lazy fashion – the new casts are
performed at every application of the resulting function, in a manner reminiscent
of higher-order contracts2 [Findler and Felleisen 2002]. The rules [E-Cast-Begin]
and [E-Cast-End] deal with casting a basic constant c to a base refinement type
{x :B | t}. A cast application

〈{x :B | t} / {x :B | s}〉 c

evaluates via [E-Cast-Begin] to a cast-in-progress 〈{x :B | t}, [x 7→c] t, c〉. The in-
stantiated predicate [x 7→ c] t then evaluates via the closure rule [E-Ctx]. If the
predicate diverges, then the enclosing program also diverges. If the predicate eval-
uates to false, then the cast-in-progress becomes “stuck”, which is called a cast
failure. If the predicate evaluates to true, then c has been dynamically verified to
satisfy the predicate t, and so the cast-in-progress reduces to c via [E-Cast-End].
The first component of the cast-in-progress is an annotation of the target type of
the cast, used during type checking.

Note that these casts involve only predicate checks and creating checking wrap-
pers for functions. Thus, our approach adheres to the principle of phase separa-
tion [Cardelli 1988a], in that there is no type checking of actual program syntax at
run time.

2.3 The λH Type System

We next describe the (undecidable) λH type system via the collection of type judg-
ments and rules shown in Figure 4. The judgment E ` t : T checks that the term
t has type T in environment E; the judgment E ` T checks that T is a well-formed
type in environment E; and the judgment E ` S <: T checks that S is a subtype
of T in environment E.

The rules defining these judgments are mostly straightforward. The rule [T-App]
for applications differs somewhat from the rule presented in the introduction be-
cause it supports dependent function types, and because the subtyping relation is
factored out into the separate subsumption rule [T-Sub]. The rule [T-Cast] en-
sures for a cast 〈T / S〉 that S and T are refinements of the same simple type using
the auxiliary function b−c which erases dependent function types and refinements,
defined as follows:

b{x :B | t}c def= B

bx :S → T c def= bSc → bT c

The rule [T-Checking] ensures casts-in-progress are well-typed. For a cast-in-
progress 〈{x :B | t}, s, c〉, the condition that s⇒ [x 7→c] t ensures that the instanti-
ated predicate s is at least as strong as t, so if s ;∗ true then [x 7→ c] t ;∗ true
as well. We assume that variables are bound at most once in an environment.

2Higher-order contracts assign blame in a sophisticated fashion. Although blame assignment is
compatible with our system (see e.g. [Gronski and Flanagan 2007]), for clarity we ignore issues of

blame in this presentation.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

10 · Knowles, Flanagan

Figure 4: Type Rules

Type rules E ` t : T

(x : T) ∈ E
E ` x : T

[T-Var]

E ` c : ty(c)
[T-Const]

E ` S E, x : S ` t : T

E ` (λx :S. t) : (x :S → T)
[T-Fun]

E ` t1 : (x :S → T) E ` t2 : S

E ` t1 t2 : [x 7→ t2]T
[T-App]

E ` S E ` T bSc = bT c
E ` 〈T / S〉 : S → T

[T-Cast]

E ` {x :B | t} E ` c : B E ` s : Bool

E ` s⇒ [x 7→c] t

E ` 〈{x :B | t}, s, c〉 : {x :B | t}
[T-Checking]

E ` t : S E ` S <: T E ` T
E ` t : T

[T-Sub]

Well-formed types E ` T

E ` S E, x : S ` T
E ` x :S → T

[WT-Arrow]

E, x : B ` t : Bool

E ` {x :B | t}
[WT-Base]

Subtyping E ` S <: T

E ` T1 <: S1 E, x : T1 ` S2 <: T2

E ` (x :S1 → S2) <: (x :T1 → T2)
[S-Arrow]

E, x : B ` s⇒ t

E ` {x :B | s} <: {x :B | t}
[S-Base]

Implication E ` s⇒ t

∀σ. if ` σ : E and σ(s) ;∗ true then σ(t) ;∗ true

E ` s⇒ t
[Imp]

Closing Substitution ` σ : E

defined in Section 5

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Hybrid Type Checking · 11

As customary, we apply implicit α-renaming of bound variables to maintain this
assumption and to ensure substitutions are capture-avoiding.

The novel aspects of this system arise from its support of subtyping between
refinement types. Recall that a type {x :B | t} denotes the set of constants c of type
B for which [x 7→c] t evaluates to true. Accordingly, the subtyping judgement

E ` {x :B | s} <: {x :B | t}

holds when s implies t under the assumption in E. As an example, the subtyping
relation:

∅ ` {x :Int |x > 0} <: {x :Int |x ≥ 0}

follows from the validity of the implication:

x : Int ` (x > 0)⇒ (x ≥ 0)

We use two auxiliary judgments to define subtyping between refinement types.
The implication judgment E ` s ⇒ t holds if, for all closing substitutions σ,
if the term σ(s) evaluates to true then σ(t) also evaluates to true. Intuitively, a
substitution σ (from variables to terms) is a closing substitution for the environment
E if σ(x) has type E(x) for each x ∈ dom(E). Formalizing this notion of closing
substitutions in a well-defined manner is somewhat involved, so we defer this issue
to Section 5.

Of course, checking implication between arbitrary predicates is undecidable,
which motivates the development of the hybrid type checking algorithm in the
following section.

3. HYBRID TYPE CHECKING FOR λH

We now describe how to perform hybrid type checking. We work in the specific
context of the language λH , but have also demonstrated that the general approach
extends to other languages with similarly expressive type systems [Gronski et al.
2006].

Hybrid type checking relies on an algorithm for conservatively approximating
implication between predicates. We assume that for any conjectured implication
E ` s⇒ t, this algorithm returns one of three possible results, which we denote as
follows:

—The judgment E `
√

alg s⇒ t means the algorithm finds a proof that E ` s⇒ t.

—The judgment E `×alg s⇒ t means the algorithm finds a proof that E 6` s⇒ t.

—The judgment E `?
alg s ⇒ t means the algorithm terminates without either

discovering a proof of either E ` s⇒ t or E 6` s⇒ t.

We lift this 3-valued algorithmic implication judgment E `aalg s ⇒ t (where
a ∈ {

√
,×, ?}) to a 3-valued algorithmic subtyping judgment:

E `aalg S <: T

as shown in Figure 5. The subtyping judgment between base refinement types
reduces to a corresponding implication judgment, via the rule [SA-Base]. Subtyping
between function types reduces to subtyping between corresponding contravariant

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

12 · Knowles, Flanagan

Figure 5: Cast insertion Rules

Cast insertion on terms E ` s ↪→ t : T

(x : T) ∈ E
E ` x ↪→ x : T

[C-Var]

E ` c ↪→ c : ty(c)
[C-Const]

E ` S1 ↪→ T1 E, x : T1 ` s ↪→ t : T2

E ` (λx :S1. s) ↪→ (λx :T1. t) : (x :T1 → T2)
[C-Fun]

E ` s1 ↪→ t1 : (x :T1 → T2) E ` s2 ↪→ t2 ↓ T1

E ` s1 s2 ↪→ t1 t2 : [x 7→ t2]T2
[C-App]

Cast insertion and checking E ` s ↪→ t ↓ T

E ` s ↪→ t : S E `
√

alg S <: T

E ` s ↪→ t ↓ T
[CC-Ok]

E ` s ↪→ t : S E `?alg S <: T

E ` s ↪→ 〈T / S〉 t ↓ T
[CC-Chk]

Cast insertion on types E ` S ↪→ T

E ` S1 ↪→ T1 E, x : T1 ` S2 ↪→ T2

E ` (x :S1 → S2) ↪→ (x :T1 → T2)
[C-Arrow]

E, x : B ` s ↪→ t : {y :Bool | t′}
E ` {x :B | s} ↪→ {x :B | t}

[C-Base]

Subtyping Algorithm E `a
alg S <: T

E `b
alg T1 <: S1 E, x : T1 `c

alg S2 <: T2 a = b⊗ c
E `a

alg (x :S1 → S2) <: (x :T1 → T2)
[SA-Arrow]

E, x : B `a
alg s⇒ t a ∈ {

√
,×, ?}

E `a
alg {x :B | s} <: {x :B | t}

[SA-Base]

Implication Algorithm E `a
alg s⇒ t

pluggable algorithm

domain and covariant range types, via the rule [SA-Arrow]. This rule uses the
following conjunction operation ⊗ between three-valued results:

⊗
√

? ×
√ √

? ×
? ? ? ×
× × × ×

If the appropriate subtyping relation holds between the domain and range compo-
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Hybrid Type Checking · 13

nents (i.e., b = c =
√

), then the subtyping relation holds between the function
types (i.e., a =

√
). If the appropriate subtyping relation does not hold between

either the domain or range components (i.e., b = × or c = ×), then the subtyping
relation does not hold between the function types (i.e., a = ×). Otherwise, in the
uncertain case, subtyping may hold between the function types (i.e., a = ?). Thus,
like the implication algorithm, the subtyping algorithm need not return a definite
answer in all cases.

Hybrid type checking uses this subtyping algorithm to type check the source
program, and to simultaneously insert dynamic casts to compensate for any indefi-
nite answers returned by the subtyping algorithm. We characterize this process of
simultaneous type checking and cast insertion via the cast insertion judgment :

E ` s ↪→ t : T

Here, the environment E provides bindings for free variables, s is the original source
program, t is a modified version of the original program with additional casts, and
T is the inferred type for t. Since types contain terms, we extend this cast insertion
process to types via the judgment E ` S ↪→ T . Some of the cast insertion rules
rely on the auxiliary cast insertion and checking judgment:

E ` s ↪→ t ↓ T

This judgment takes as input an environment E, a source term s, and a desired
result type T , and checks that s is converted by cast insertion to a term t of this
type. For simplicity, we do not allow casts in source programs; they are inserted
only by the cast insertion algorithm.

The rules defining these judgments are shown in Figure 5. Most of the rules are
straightforward. The rules [C-Var] and [C-Const] say that variable references and
constants do not require additional casts. The rule [C-Fun] inserts casts into an
abstraction λx :S1. s by first inserting casts into the type S1 to yield T1 and then
processing s to yield a term t of type T2; the resulting abstraction λx :T1. t has type
x :T1 → T2. The rule [C-App] for an application s1 s2 processes s1 to a term t1 of
type x :T1 → T2 then invokes the cast insertion and checking judgement to convert
s2 into a term t2 of the appropriate argument type T1.

The two rules defining the cast insertion and checking judgment E ` s ↪→ u ↓ T
demonstrate the key idea of hybrid type checking. Both rules start by processing s
to a term t of some type S. The crucial question is then whether this type S is a
subtype of the expected type T :

—If the subtyping algorithm succeeds in proving that S is a subtype of T (i.e.,
E `

√

alg S <: T), then t is clearly of the desired type T , and so the rule [CC-Ok]
returns t.

—If the subtyping algorithm can show that S is not a subtype of T (i.e., E `×alg
S <: T), then the program is rejected since no rule is applicable.

—Otherwise, in the uncertain case where E `?
alg S <: T , the rule [CC-Chk] inserts

the type cast 〈T / S〉 to dynamically ensure that values returned by t are actually
of the desired type T .

These rules for cast insertion and checking illustrate the key benefit of hybrid type
checking – specific static analysis problem instances (such as E ` S <: T) that are

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

14 · Knowles, Flanagan

undecidable or computationally intractable can be avoided in a convenient manner
simply by inserting appropriate dynamic checks. Of course, we should not abuse
this facility, and so ideally the subtyping algorithm should yield a precise answer
in most cases. However, the critical contribution of hybrid type checking is that it
avoids the very strict requirement of demanding a precise answer for all (arbitrarily
complicated) subtyping questions.

Cast insertion on types is straightforward. The rule [C-Arrow] inserts casts
in the domain and codomain of a function type x : S → T and reassembles the
components. The rule [C-Base] inserts casts into the refinement s of a base type
{x :B | s}, producing t (whose type should be a subtype of Bool), and then yielding
the base refinement type {x :B | t}.

Note that checking that a type is well-formed is actually a cast insertion process
that returns a well-formed type (possibly with added casts). Thus, we only perform
cast insertion on types where necessary, when we encounter (possibly ill-formed)
types on λ-abstractions in the source program. In particular, the cast insertion
rules do not explicitly check that the environment is well-formed, since that would
involve repeatedly processing all types in that environment. Instead, the rules
assume that the environment is well-formed; this assumption is explicit in the
correctness theorems later in the paper.

4. AN EXAMPLE

To illustrate the behavior of the cast insertion algorithm, consider a function
serializeMatrix that serializes an n by m matrix into an array of size n × m.
We extend the language λH with two additional base types:

—Array, the type of one dimensional arrays containing integers.

—Matrix, the type of two dimensional matrices, again containing integers.

The following primitive functions return the size of an array; create a new array of
the given size; and return the width and height of a matrix, respectively:

asize : a :Array→ Int
newArray : n :Int→ {a :Array | asize a = n}

matrixWidth : a :Matrix→ Int
matrixHeight : a :Matrix→ Int

We introduce the following type abbreviations to denote arrays of size n and ma-
trices of size n by m:

Arrayn
def= {a :Array | (asize a = n)}

Matrixn,m
def= {a :Matrix |

(
matrixWidth a = n
∧ matrixHeight a = m

)
}

The shorthand t as T ensures that the term t has type T by passing t as an
argument to the identity function of type T → T :

t as T
def= (λx :T. x) t

We now define the function serializeMatrix as:
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Hybrid Type Checking · 15(
λn :Int. λm :Int. λa :Matrixn,m.
let r = newArray e in . . . ; r

)
as T

The elided term . . . initializes the new array r with the contents of the matrix a,
and we will consider several possibilities for the size expression e. The type T is
the specification of serializeMatrix:

T
def= (n :Int→ m :Int→ Matrixn,m → Arrayn×m)

For this declaration to type check, the inferred type Arraye of the function’s
body must be a subtype of the declared return type:

n : Int, m : Int ` Arraye <: Arrayn×m

Checking this subtype relation reduces to checking the implication:

n : Int, m : Int, r : Array ` (asize r = e)
⇒ (asize r = (n×m))

which in turn reduces to checking the equality:

∀n,m ∈ Int. e = n×m

The implication checking algorithm might use an automatic theorem prover (e.g., [Detlefs
et al. 2005; Blei et al. 2000]) to verify or refute such conjectured equalities.

We now consider three possibilities for the expression e.

(1) If e is the expression n × m, the equality is trivially true, and no additional
casts are inserted (even when using a rather weak theorem prover).

(2) If e is m×n (i.e., the order of the multiplicands is reversed), and the underlying
theorem prover can verify

∀n,m ∈ Int. m× n = n×m

then again no casts are necessary. Note that a theorem prover that is not
complete for arbitrary multiplication might still have a specific axiom about
the commutativity of multiplication.
If the theorem prover is too limited to verify this equality, the hybrid type
checker will still accept this program. However, to compensate for the limita-
tions of the theorem prover, the hybrid type checker will insert a redundant
cast, yielding the function (where we have elided the source type of the cast):(

〈T / . . .〉
(
λn :Int. λm :Int. λa :Matrixn,m.
let r = newArray e in . . . ; r

))
as T

This term can be optimized, via [E-Beta] and [E-Cast-Fn] steps and via re-
moval of clearly redundant 〈Int / Int〉 casts, to:

λn :Int. λm :Int. λa :Matrixn,m.
let r = newArray (m× n) in

. . . ;
〈Arrayn×m / Arraym×n〉 r

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

16 · Knowles, Flanagan

The remaining cast checks that the result value r is of the declared return type
Arrayn×m, which reduces to dynamically checking that the predicate:

asize r = n×m

evaluates to true, which it does.
(3) Finally, if e is erroneously m × m, the function is ill-typed. By performing

random or directed [Godefroid et al. 2005] testing of several values for n and
m until it finds a counterexample, the theorem prover might reasonably refute
the conjectured equality:

∀n,m ∈ Int. m×m = n×m

In this case, the hybrid type checker reports a static type error.
Conversely, if the theorem prover is too limited to refute the conjectured equal-
ity, then the hybrid type checker will produce (after optimization) the program:

λn :Int. λm :Int. λa :Matrixn,m.
let r = newArray (m×m) in

. . . ;
〈Arrayn×m / Arraym×m〉 r

If this function is ever called with arguments for which m ×m 6= n ×m, then
the cast will detect the type error.

Note that prior work on practical dependent types [Xi and Pfenning 1999] could
not handle these cases, since the type T uses non-linear arithmetic expressions. In
contrast, case 2 of this example demonstrates that even fairly partial techniques
for reasoning about complex specifications (e.g., commutativity of multiplication,
random testing of equalities) can facilitate static detection of defects. Furthermore,
even though catching errors at compile time is ideal, catching errors at run time (as
in case 3) is still an improvement over not detecting these errors at all, and getting
subsequent crashes or incorrect results.

5. CLOSING SUBSTITUTIONS

We now define the closing substitution relation, deferred from Section 2.3, which
lies at the heart of our type system. One approach is to define closing substitutions
in terms of the typing judgement, as follows [Flanagan 2006]:

∀x ∈ dom(E), ` σ(x) : E(x)
` σ : E

But this approach leads to a cyclic definition between the typing, subtyping, impli-
cation, and closing substitution judgements. Moreover, the implication rule [Imp]
from Figure 4 refers to the closing substitution relation in a negative position.
Thus, standard monotonicity arguments are not sufficient to show that the result-
ing collection of mutually-recursive type rules are actually well-defined, and it is
not obvious if there are interesting type systems that satisfy these rules.

An alternative approach to defining implication is to axiomatize its logic [Denney
1998; Ou et al. 2004; Gronski et al. 2006], but the underlying problem remains, in
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Hybrid Type Checking · 17

that it is still not obvious if there are interesting implication relations (and hence
type systems) that satisfy these axioms.

To provide a solid foundation for contract types, we “bootstrap” the type system
by using a denotational interpretation of contract types. A contract type has a
natural interpretation as a dynamic contract on top of the simply-typed lambda
calculus, and we formalize this connection as follows. First, we extend the b−c
function defined in Section 2.3 to terms. For each term t, erasing all refinements
and eliminating casts yields a term btc of the simply-typed lambda calculus.

bcc def= c

bxc def= x

bλx :S. tc def= λx :bSc. btc
bt1 t2c

def= bt1c bt2c
b〈T / S〉c def= λx :bSc. x
b〈T, t, c〉c def= c

Next, we give each type T an interpretation [[T]] (defined by induction on bT c)
that is the set of terms t such that btc is of type bT c and t obeys the contractual
aspect of T .

[[{x :B | s}]] def= {t | s̀tlc btc : B ∧ (t ;∗ c implies [x 7→c] s ;∗ true)}
[[x :S → T]] def= {t | s̀tlc btc : bSc → bT c ∧ ∀s ∈ [[S]], t s ∈ [[[x 7→s]T]]}

Here, we use s̀tlc to denote the standard typing relation for the simply-typed lambda
calculus. A refined base type {x : B | s} is interpreted as the set of closed terms
t of type B for which the predicate s holds, in the sense that whenever t ;∗ c
for some constant c, then [x 7→ c] s ;∗ true. Note that we cannot insist on the
simpler requirement that [x 7→ t] s ;∗ true because that would forbid assigning
types to divergent terms. For example, any type T is populated by at least the
divergent term fixT (λx :T. x). In other terminology, contract types specify partial
correctness, not total correctness.

A dependent function type x :S → T is interpreted as the set of closed terms of
simple type bSc → bT c that give output in [[[x 7→s]T]] whenever their input s is in
[[S]].

Based on this notion of semantic typing, we are now in a position to define closing
substitutions while avoiding circularity problems. The following rule [Subst] judges
that a substitution σ : V ar → Term is a closing substition for environment E if
for all bindings (x : T) ∈ E we have σ(x) ∈ σ(T); in this case we write ` σ : E.

∀x ∈ dom(E), σ(x) ∈ [[σ(E(x))]]
` σ : E

[Subst]

6. CORRECTNESS

Having completed the formal definition of our type system, we now proceed to
study the correctness properties that are guaranteed by hybrid type checking. We

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

18 · Knowles, Flanagan

begin with the type system, which provides the specification for our hybrid cast
insertion algorithm.

6.1 Correctness of the Type System

We prove soundness of our type system by the syntactic method via progress and
preservation (or subject reduction) theorems [Wright and Felleisen 1994]. The
preservation theorem includes a requirement that the environment E is well-formed
(` E), a notion that is defined in Figure 6. Note that the type rules do not refer
to this judgment directly in order to yield a closer correspondence with the cast
insertion rules. For the remainder of this section, we elide this condition and assume
all environments are well-formed.

As usual, a term is considered to be in normal form if it does not reduce to any
subsequent term, and a value v is either a λ-abstraction, a type cast, or a constant.
We assume that the function ty maps each constant to an appropriate type, in the
following sense:

Assumption 1 (Types of Constants). For each c ∈ Constant:

(1) The type of c is closed and well-formed, i.e. ∅ ` ty(c).
(2) If c is a primitive function then it cannot get stuck and its behavior is compatible

with its type, i.e. if ∅ ` c v : T then δ(c, v) is defined and ∅ ` δ(c, v) : T
(3) If c is a basic constant then it is a member of its type, which is a singleton type,

i.e.if ty(c) = {x :B | t} then [x 7→c] t ;∗ true and ∀c′ 6= c. [x 7→c′] t 6;∗ true.

The central lemma for proving preservation is the so-called substitution lemma,
which states that a variable of a certain type may be soundly replaced by any term
of the same type. Because we define closing substitutions semantically, our proof
of the substitution lemma is nonstandard and connects the semantic relation with
our formal type system.

First, we define the semantic subtyping relation E ` S ⊆ T and the semantic
typing relation E ` t ∈ T induced by our semantic notion of types, following [Frisch
et al. 2002]:

E ` S ⊆ T def= ∀σ, ` σ : E implies [[σ(S)]] ⊆ [[σ(T)]]

E ` t ∈ T def= ∀σ, ` σ : E implies σ(t) ∈ [[σ(T)]]

Our formal subtype system is sound with respect to this model:

Lemma 2.

(1) If E ` S <: T then E ` S ⊆ T
(2) If E ` t : T then E ` t ∈ T

Proof.

(1) By induction on the derivation of E ` S <: T . If S and T are refined base
types, then semantic and formal subtyping have identical definitions. If S and
T are function types, then the result follows by induction.

(2) By induction on the derivation of E ` t : T . In the case for [T-Sub] we invoke
part (1).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Hybrid Type Checking · 19

Figure 6: Well-formed Environments

Well-formed environment ` E

` ∅
[We-Empty]

` E E ` T
` E, x : T

[We-Ext]

The formal substitution lemma now follows from the connection between the
formal and semantic relations.

Lemma 3 (Substitution). Suppose E ` s : S,

(1) If E, x : S, F ` T <: U then E, [x 7→s]F ` [x 7→s]T <: [x 7→s]U
(2) If E, x : S, F ` t : T then E, [x 7→s]F ` [x 7→s] t : [x 7→s]T
(3) If E, x : S, F ` T then E, [x 7→s]F ` [x 7→s]T

Proof.
(1) By induction on the derivation of E, x : S, F ` T <: U . In the case of

[S-Base], T = {y :B | t1} and U = {y :B | t2} and we have E, x : S, F, y : B ` t1 ⇒
t2. By Lemma 2(2), E ` s ∈ S so E, [x 7→ s]F, y : B ` [x 7→s] t1 ⇒ [x 7→ s] t2 is
immediate.

(2) and (3) By mutual induction on the derivations of E, x : S, F ` t : T and
E, x : S, F ` T , invoking part (1) in the case of [T-Sub].

Theorem 4 (Preservation). If E ` s : T and s ; t then E ` t : T

Proof. By induction on the typing derivation E ` s : T , invoking Lemma 3
when evaluation proceeds via [E-Beta].

The progress property of our type system includes the caveat that type casts
may fail. A failed cast is one that casts a constant to a refinement type with an
incompatible predicate.

Theorem 5 (Progress). Every well-typed, closed normal form is either a value
or contains a failed cast.

Proof. By induction of the derivation showing that the normal form is well-
typed.

6.2 Type Correctness of Cast Insertion

Since hybrid type checking relies on necessarily incomplete algorithms for subtyping
and implication, we next investigate what correctness properties are guaranteed by
this cast insertion process.

We assume the 3-valued algorithm for checking implication between boolean
terms is sound in the following sense:

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

20 · Knowles, Flanagan

Assumption 6 (Soundness of E `aalg s⇒ t). Suppose ` E.

(1) If E `
√

alg s⇒ t then E ` s⇒ t.

(2) If E `×alg s⇒ t then E 6` s⇒ t.

Note that this algorithm does not need to be complete (indeed, an extremely
naive algorithm could simply return E `?

alg s ⇒ t in all cases). A consequence
of the soundness of the implication algorithm is that the algorithmic subtyping
judgment E `alg S <: T is also sound.

Lemma 7 (Soundness of E `aalg S <: T). Suppose ` E.

(1) If E `
√

alg S <: T then E ` S <: T .

(2) If E `×alg S <: T then E 6` S <: T .

Proof. By induction on derivations using Assumption 6.

Because algorithmic subtyping is sound, the hybrid cast insertion algorithm gen-
erates only well-typed programs:

Theorem 8 (Compilation Soundness). Suppose ` E.

(1) If E ` t ↪→ t′ : T then E ` t′ : T .
(2) If E ` t ↪→ t′ ↓ T and E ` T then E ` t′ : T .
(3) If E ` T ↪→ T ′ then E ` T ′.

Proof. By induction on cast insertion derivations.

Since the generated code is well-typed, standard type-directed optimization tech-
niques are applicable. Furthermore, the generated code includes all the type speci-
fications present in the original program, and so by the Preservation Theorem these
specifications will never be violated at run time. Any attempt to violate a specifica-
tion is detected via a combination of static checking (where possible) and dynamic
checking (when necessary).

6.3 Behavioral Correctness of Cast Insertion

We now prove that cast insertion does not change the behavior of well-typed pro-
grams, in the sense that the original and compiled programs are equivalent in any
well-typed context. Our proof is based on the technique of logical relations [Stat-
man 1985]. The logical relation we use is extensional equivalence of well-typed
terms under reduction, written E ` s ∼ t : T and defined in Figure 7. (As we
shall see below, extensional equivalence implies the traditional notion of contextual
equivalence.)

Two terms t1 and t2 of base type are (extensionally) equivalent if, for any closing
substitution σ, whenever σ(t1) evaluates to a constant c so does σ(t2), and vice
versa. Two functions t1 and t2 of type x : S → T are equivalent if they yield
equivalent output when given equivalent arguments s1 and s2.

A question that immediately arises is whether these two applications t1 s1 and
t2 s2 should have type [x 7→s1]T or [x 7→s2]T . In some sense it does not matter,
since s1 and s2 are extensionally equivalent by assumption. However, it significantly
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Hybrid Type Checking · 21

Figure 7: Extensional Equivalence Under Reduction

E ` t1 ∼ t2 : T (defined by induction on bT c)

E ` t1 ∼ t2 : {x :B | p} ⇔ E ` t1 ∈ {x :B | p}
E ` t2 ∈ {x :B | p}
∀σ such that ` σ : E, (σ(t1) ;∗ c)⇔ (σ(t2) ;∗ c)

E ` t1 ∼ t2 : (x :S → T) ⇔ ∀s1, s2 such that E ` s1 ∼ s2 : S,

E ` t1 s1 ∼ t2 s2 : [x 7→s1]T f [x 7→s2]T

S f T

{x :B | p}f {x :B | q} = {x :B | p ∧ q}

(x :S1 → S2) f (x :T1 → T2) = x : (S1 f T1)→ (S2 f T2)

simplifies our proof structure to require that t1 s1 and t2 s2 are extensionally
equivalent at type

[x 7→s1]T f [x 7→s2]T

where we combine both types via the wedge product (f) defined in Figure 7. For
base types, wedge product is type intersection, i.e., conjunction of refinement pred-
icates. For function types, the wedge product is covariant in both the function
domain and the range. Though this covariance may seem surprising, we we only
ever combine equivalent types with the wedge product, so co- or contravariance is
a formality: If the wedge product were made more “intuitively” contravariant the
[T-App] case of Theorem 12 would not be possible to prove as stated.

To work fluidly with this wedge product, we note that it is a commutative and
associative operator with respect to the equivalence closure of subtyping, and it
distributes through subtyping.

Lemma 9 (Wedge Product Subtyping). Assuming the underlying shapes of
all mentioned types are equal, and each type is well-formed in the environment,

(1) E ` S f T <: T f S

(2) E ` S f (T f U) <: (S f T) f U

(3) If E ` S1 <: T1 and E ` S2 <: T2 then E ` S1 f S2 <: T1 f T2

Proof. By induction on the underlying shape of the types.

We assume that primitive functions do not violate extensionality, and so each
primitive function c is extensionally equivalent to itself, i.e., ∅ ` c ∼ c : ty(c).
Next, equivalence is preserved under subtyping, allowing free manipulation of f in
the type assigned to an equivalence.

Lemma 10 Extensional equivalence under subtyping. If E ` s ∼ t : S
and E ` S <: T then E ` s ∼ t : T

Proof. By induction on bSc (which equals bT c)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

22 · Knowles, Flanagan

Case S = {x :B | p}: In this case, s and t are also semantically members of T , by
definition of subtyping between base types, and have the same reducts.

Case S = x :S1 → S2 and T = x :T1 → T2.
By inversion,

E ` T1 <: S1 and E, x : T1 ` S2 <: T2

Fix a and b such that E ` a ∼ b : T1. By induction, E ` a ∼ b : S1.
By definition,

E ` s a ∼ t b : [x 7→a]S2 f [x 7→b]S2

By the Substitution Lemma 3,

E ` [x 7→a]S2 <: [x 7→a]T2 and E ` [x 7→b]S2 <: [x 7→b]T2

By Lemma 9(3),

E ` [x 7→a]S2 f [x 7→b]S2 <: [x 7→a]T2 f [x 7→b]T2

By induction,

E ` s a ∼ t b : [x 7→a]T2 f [x 7→b]T2

Hence E ` s ∼ t : (x :T1 → T2)

Next, we show that extensional equivalence of reducts implies extensional equiv-
alence of the original terms.

Lemma 11 Extensional equivalence under reduction. If E ` s ∼ t : T
and s′ ;∗ s and t′ ;∗ t then E ` s′ ∼ t′ : T

Proof. By induction on bT c.
Case T = {x :B | p}: If s ;∗ c then s′ ;∗ s ;∗ c; likewise for t and t′.

Case T = x :T1 → T2: Fix a, b such that

E ` a ∼ b : T1.

By definition

E ` s a ∼ t b : [x 7→a]T2 f [x 7→b]T2

By applying an evaluation context,

s′ a ;∗ s a and t′ b ;∗ t b

By induction,

E ` s′ a ∼ t′ b : [x 7→a]T2 f [x 7→b]T2

Hence, E ` s′ ∼ t′ : (x :T1 → T2).

To prove the fundamental soundness theorem for extensional equivalence, we
extend the notion extensional equivalence to closing substitutions.

` σ ∼ γ : E def= ∀x ∈ dom(E), ∅ ` σ(x) ∼ γ(x) : (σ f γ)(E(x))
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Hybrid Type Checking · 23

For convenience, we overload the wedge product operator for closing substitutions,
so (σ f γ) maps a type T to the wedge product of all possible choices of which
variables to use from σ and which from γ.

(σ f γ)(T) def=
k

A∈P(dom(σ))

(σ|A ◦ γ|dom(σ)\A)(T)

Theorem 12 Soundness of extensional equivalence. If E ` t : T then
for any closing substitutions σ and γ such that ` σ ∼ γ : E, we have

∅ ` σ(t) ∼ γ(t) : (σ f γ)(T)

Proof. By induction on the height of the derivation of E ` t : T .

Case [T-Var]. By inversion, (x : T) ∈ E, so by definition of equivalent substitu-
tions ∅ ` σ(x) ∼ γ(x) : (σ f γ)(T)

Case [T-Prim] By the above assumption on constants.

Case [T-App] By inversion,

t = s1 s2 T = [x 7→s2]S2

E ` s1 : (x :S1 → S2) E ` s2 : S1

Fix σ and γ. By induction,

∅ ` σ(s1) ∼ γ(s1) : (σ f γ)(x :S1 → S2)
∅ ` σ(s2) ∼ γ(s2) : (σ f γ)(S1)

By definition,

∅ ` σ(s1) σ(s2) ∼ γ(s1) γ(s2) : [x 7→σ(s2)] (σ f γ)(S2)
f [x 7→γ(s2)] (σ f γ)(S2)

which simplifies to

∅ ` σ(s1 s2) ∼ γ(s1 s2) : (σ f γ)([x 7→s2]S2)

Case [T-Lam] By inversion,

t = λx :S1. s T = x :S1 → S2 E, x : S1 ` s : S2

Fix σ and γ, then fix a and b such that ∅ ` a ∼ b : (σ f γ)(S1). Then we have

` (σ ◦ [x 7→a]) ∼ (γ ◦ [x 7→b]) : (E, x : S1)

By induction,

∅ ` (σ ◦ [x 7→a]) s ∼ (γ ◦ [x 7→b]) s : ((σ ◦ [x 7→a]) f (γ ◦ [x 7→b]))(S2)

By Lemma 11, we perform β-expansion and rearrange some substitutions to yield

∅ ` σ(λx :S1. s) a ∼ γ(λx :S1. s) b : [x 7→a] (σ f γ)(S2)
f [x 7→b] (σ f γ)(S2)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

24 · Knowles, Flanagan

which simplifies to, by definition,

∅ ` σ(λx :S1. s) ∼ γ(λx :S1. s) : (σ f γ)(x :S1 → S2)

Case [T-Cast] There are two cases to consider.

SubCase t = 〈{x :B | q} / {x :B | p}〉 T = {x :B | p} → {x :B | q}

Fix a and b such that ∅ ` a ∼ b : (σ f γ)({x :B | p}).

By definition of equivalence at base type, a and b either diverge or both ter-
minate at a constant c. Since base type casts are strict in their argument, the
divergent case is trivial, so assume

a ;∗ c b ;∗ c

Consider the evaluation of σ([x 7→ c] q) and γ([x 7→ c] q). The typing of q is a
subderivation, and ` σ ◦ [x 7→c] ∼ γ ◦ [x 7→c] : (E, x : B) so by induction

∅ ` σ([x 7→c] q) ∼ γ([x 7→c] q) : Bool

By definition of logical equivalence at base type, these two boolean terms eval-
uate to the same truth-value or diverge together. So either both casts fail
(divergence) or both succeed, evaluating to c, proving this case of the lemma.
SubCase t = 〈x :T1 → T2 / x :S1 → S2〉 T = (x :S1 → S2)→ (x :T1 → T2)

Fix σ and γ and also f and g such that ∅ ` f ∼ g : (σ f γ)(x :S1 → S2).

We need to show that

∅ ` σ(〈x :T1 → T2 / x :S1 → S2〉) g
∼ γ(〈x :T1 → T2 / x :S1 → S2〉) f : (σ f γ)(x :T1 → T2)

Now fix a and b such that ∅ ` a ∼ b : (σ f γ)(T1) and by Lemma 11 it suffices
to show equivalence of the following reducts of the casts:

∅ ` σ(〈T2 / [x 7→〈S1 / T1〉 a]S2〉) (f (σ(〈S1 / T1〉) a)
∼ γ(〈T2 / [x 7→〈S1 / T1〉 b]S2〉) (g (γ(〈S1 / T1〉) b) : [x 7→a] (σ f γ)(T2)

f [x 7→b] (σ f γ)(T2)

By induction (recalling that induction is over the height of the derivations, since
these casts were not initially subterms),

∅ ` σ(〈S1 / T1〉) ∼ γ(〈S1 / T1〉) : (σ f γ)(T1 → S1)

so (noting that the function type is non-dependent)

∅ ` σ(〈S1 / T1〉) a ∼ γ(〈S1 / T1〉) b : (σ f γ)(S1)

continuing, by combining substitutions

∅ ` f (σ(〈S1 / T1〉) a) ∼ g (γ(〈S1 / T1〉) b)
: ((σ ◦ [x 7→〈S1 / T1〉 a]) f (γ ◦ [x 7→〈S1 / T1〉 b])) (S2)

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Hybrid Type Checking · 25

Also by induction,

∅ ` (σ ◦ [x 7→a])(〈T2 / [x 7→〈S1 / T1〉 x]S2〉)
∼ (γ ◦ [x 7→b])(〈T2 / [x 7→〈S1 / T1〉 x]S2〉)
: ((σ ◦ [x 7→a]) f (γ ◦ [x 7→b])) ([x 7→〈S1 / T1〉 x]S2 → T2)

so noting these equivalences:

((σ ◦ [x 7→a]) f (γ ◦ [x 7→b])) ([x 7→〈S1 / T1〉 x]S2)
≡ ((σ ◦ [x 7→〈S1 / T1〉 a]) f (γ ◦ [x 7→〈S1 / T1〉 b])) (S2)

((σ ◦ [x 7→a]) f (γ ◦ [x 7→b])) (T2)
≡ [x 7→a] (σ f γ)(T2) f [x 7→b] (σ f γ)(T2)

we gain exactly the conclusion desired.

Case [T-Sub] By inversion,

E ` t : S E ` S <: T

Fix σ and γ, and by induction,

∅ ` σ(t) ∼ γ(t) : (σ f γ)(S)

Applying the substitution lemma and distributing f through the subtyping,

∅ ` (σ f γ)(S) <: (σ f γ)(T)

Thus by Lemma 10 we conclude with

∅ ` σ(s) ∼ γ(s) : (σ f γ)(T)

As a corollary, we have contextual equivalence of related terms.

Corollary 13. If E ` s ∼ t : T then for any context C such that ∅ ` C[s] : B
and ∅ ` C[t] : B, we have that C[s] ;∗ c ⇔ C[t] ;∗ c.

Proof. Apply soundness of extensional equivalence to the typing x : T ` C[x] :
B with the related substitutions ` [x 7→s] ∼ [x 7→ t] : (x : T).

To complete the proof that insertion of upcasts never changes the behavior of a
program, we prove that upcast from a subtype S to a supertype T is extensionally
(and hence contextually) equivalent to the appropriately-typed identity function.

Theorem 14. If E ` S <: T then E ` 〈T / S〉 ∼ (λx :S. x) : (S → T)

Proof. By induction on the height of S (which equals the height of T since they
must have the same shape).

Suppose S = {x :B | t1} and T = {x :B | t2}. Then to test equivalence of 〈T / S〉
and (λx :S. x), we apply them to two terms t3 and t4 such that E ` t3 ∼ t4 : S.
For any closing substitution σ, we are guaranteed that σ(t3) ;∗ c if and only
if σ(t4) ;∗ c, so it suffices to consider applying the cast to constants. By the
semantic definition of implication and the assumption that constants are assigned
appropriate types, σ([x 7→ c] t2) ;∗ true so the cast succeeds, behaving as the
identity function on c.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

26 · Knowles, Flanagan

Now suppose S = x :S1 → S2 and T = x : T1 → T2. Applying the cast 〈T / S〉
to a function s of type S, yields λx :T1. 〈T2 / [x 7→〈S1 / T1〉 x]S2〉 (s (〈S1 / T1〉 x)).
For an argument t of type T1, we have by induction that 〈S1 / T1〉 t is equivalent to
t and 〈[x 7→ t]T2 / [x 7→ t]S2〉 (s t) is equivalent to s t, hence the cast is behaviorally
equivalent to the identity function.

Since cast insertion only inserts upcasts on well-typed programs, it follows that
cast insertion preserves extensional and contextual equivalence for such programs.

Corollary 15.

(1) If E ` t : T and E ` t ↪→ t′ : T , then E ` t ∼ t′ : T
(2) If E ` T and E ` T ↪→ T ′, then E ` T <: T ′ and E ` T ′ <: T

Proof. By mutual induction on the derivations of E ` t : T and E ` T . In
each case, because algorithmic subtyping can only return ? or

√
, the output of cast

insertion is simply the input with redundant casts inserted. By Theorem 14 these
are all equivalent to identity functions.

It follows that cast insertion accepts all well-typed programs. Since casts are
inserted into types during this process, part (2) of Corollary 15 is crucial to ensuring
that the meaning of well-formed types does not change.

Theorem 16 (Compilation Completeness). Suppose ` E and that s and T
contain no casts.

(1) If E ` s : S then ∃t, T such that E ` s ↪→ t : T .
(2) If E ` S then ∃T such that E ` S ↪→ T .

Proof. By induction on the derivations.

7. STATIC CHECKING VS. HYBRID CHECKING

Given the proven benefits of traditional, purely-static type systems, an important
question that arises is how hybrid type checkers relate to static type checkers.

To study this question, suppose we are given a static type checker that targets a
restricted subset of λH for which type checking is statically decidable. Specifically,
suppose D is a subset of Term such that for all t1, t2 ∈ D and for all singleton
environments x : B, the judgment x : B ` t1 ⇒ t2 is decidable. We introduce a
statically-decidable language λS that is obtained from λH by only permitting D
predicates in refinement types. We also assume all types in λS are closed, to avoid
the complications of substituting arbitrary terms into refinement predicates via the
rule [T-App] (and hence the above environment x : B suffices). It then follows that
subtyping and type checking for λS are decidable, and we denote this type checking
judgment as E `S t : T .

As an extreme, we could take D = {true}, in which case the λS type language
is essentially the simply typed λ-calculus:

T ::= B | T → T

However, to yield a more general argument, we assume only that D is a subset of
Term for which implication is decidable.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Hybrid Type Checking · 27

Clearly, the hybrid implication algorithm can give precise answers on (decidable)
D-terms, and so we assume that for all t1, t2 ∈ D and for all environments x : B,
the judgment x : B `aalg t1 ⇒ t2 holds for some a ∈ {

√
,×}. Under this assumption,

hybrid type checking behaves identically to static type checking on (well-typed or
ill-typed) λS programs.

Theorem 17. For all λS terms t, λS environments E, and λS types T , the
following three statements are equivalent:

(1) E `S t : T
(2) E ` t : T
(3) E ` t ↪→ t : T

Proof. The hybrid implication algorithm is complete on D-terms, and hence
the hybrid subtyping algorithm is complete for λS types. The proof then follows
by induction on typing derivations.

Thus, to a λS programmer, a hybrid type checker behaves exactly like a traditional
static type checker.

We now compare static and hybrid type checking from the perspective of a λH

programmer. To enable this comparison, we need to map expressive λH types into
the more restrictive λS types, and in particular to map arbitrary boolean predicates
into D predicates. We assume the computable function

γ : Term → D

performs this mapping. The function erase then maps λH refinement types to λS

refinement types by using γ to abstract boolean terms:

erase({x :B | t}) def= {x :B | γ(t)}

We extend erase in a compatible manner to map λH types, terms, and environments
to corresponding λS types, terms, and environments. Thus, for any λH program
P , this function yields the corresponding λS program erase(P).

As might be expected, the erase function must lose information, and we now
explore the consequences of this information loss for programs with complex speci-
fications. As an extreme example, let Haltn,m denote a closed formula that encodes
“Turing machine m eventually halts on input n”. Suppose that γ maps Haltn,m to
false for all n and m, and consider the collection of programs Pn,m, which includes
both well-typed and ill-typed programs:

Pn,m
def= (λx :{x :Int |Haltn,m}. x) 1

Decidability arguments show that the hybrid type checker will accept some ill-typed
program Pn,m based on its inability to statically prove that Haltn,m = false. In
contrast, the static type checker will reject (the erased version of) Pn,m. Hence:

The static type checker statically rejects (the erased version of) an ill-
typed program that the hybrid type checker accepts.

Thus, the static type checker performs better in this situation.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

28 · Knowles, Flanagan

Conversely, this particular static type checker will also reject (the erased version
of) many well-typed programs Pn,m that the hybrid type checker accepts. The
following theorem generalizes this argument, and shows that for any computable
mapping γ there exists some program P such that hybrid type checking of P per-
forms better than static type checking of erase(P).

Theorem 18. For any computable mapping γ either:

(1) the static type checker rejects the erased version of some well-typed λH program,
or

(2) the static type checker accepts the erased version of some ill-typed λH program
for which the hybrid type checker would statically detect the error.

Proof. Let E be the environment x : Int.
By reduction from the halting problem, the judgment E ` t ⇒ false for

arbitrary boolean terms t is undecidable. However, the implication judgment
E ` γ(t) ⇒ γ(false) is decidable. Hence these two judgments are not equiva-
lent, i.e.:

{t | (E ` t⇒ false)} 6= {t | (E ` γ(t)⇒ γ(false))}

It follows that there must exists some witness w that is in one of these sets but not
the other, and so one of the following two cases must hold.

(1) Suppose:

E ` w ⇒ false
E 6` γ(w)⇒ γ(false)

We construct as a counter-example the program P1:

P1
def= λx :{x :Int |w}. (x as {x :Int | false})

From the assumption E ` w ⇒ false the subtyping judgment

∅ ` {x :Int |w} <: {x :Int | false}

holds. Hence, P1 is well-typed, and (by Lemma 16) is accepted by the hybrid
type checker. However, from the assumption E 6` γ(w)⇒ γ(false) the erased
version of the subtyping judgment does not hold:

∅ 6` erase({x :Int |w}) <: erase({x :Int | false})

Hence erase(P1) is ill-typed and rejected by the static type checker.
(2) Conversely, suppose:

E 6` w ⇒ false
E ` γ(w)⇒ γ(false)

From the first supposition and by the definition of the implication judgment,
there exists integers n and m such that

[x 7→n]w ;m true

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Hybrid Type Checking · 29

We now construct as a counter-example the program P2:

P2
def= λx :{x :Int |w}. (x as {x :Int | false ∧ (n = m)})

In the program P2, the term n = m has no semantic meaning since it is con-
joined with false. The purpose of this term is to serve only as a “hint” to
the following rule for refuting implications (which we assume is included in the
reasoning performed by the implication algorithm). In this rule, the integers
a and b serve as hints, and take the place of randomly generated values for
testing if t ever evaluates to true.

[x 7→a] t ;b true

E `×alg t⇒ (false ∧ a = b)

This rule enables the implication algorithm to conclude that:

E `×alg w ⇒ false ∧ (n = m)

Hence, the subtyping algorithm can conclude:

`×alg {x :Int |w} <: {x :Int | false ∧ (n = m)}

Therefore, the hybrid type checker rejects P2, which by Lemma 16 is therefore
ill-typed.

∀P, T. 6` P2 ↪→ P : T

We next consider how the static type checker behaves on the program erase(P2).
We consider two cases, depending on whether the following implication judge-
ment holds:

E ` γ(false)⇒ γ(false ∧ (n = m))

(a) If this judgment holds then by the transitivity of implication and the as-
sumption E ` γ(w)⇒ γ(false) we have that:

E ` γ(w)⇒ γ(false ∧ (n = m))

Hence the subtyping judgement

∅ ` {x :Int | γ(w)} <: {x :Int | γ(false ∧ (n = m))}

holds and the program erase(P2) is accepted by the static type checker:

∅ ` erase(P2) : {x :Int | γ(w)} → {x :Int | γ(false ∧ (n = m))}

(b) If the above judgment does not hold then consider as a counter-example
the program P3:

P3
def= λx :{x :Int |false}. (x as {x :Int | false ∧ (n=m)})

This program is well-typed, from the subtype judgment:

∅ ` {x :Int | false} <: {x :Int | false ∧ (n = m)}

However, the erased version of this subtype judgment does not hold:

∅ 6` erase({x :Int |false}) <: erase({x :Int | false ∧(n=m)})
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

30 · Knowles, Flanagan

Hence, erase(P3) is rejected by the static type checker:

∀T. ∅ 6`S erase(P3) : T

8. RELATED WORK

Much prior work has focused on dynamic checking of expressive specifications, or
contracts [D. L. Parnas 1972; Meyer 1988; Holt and Cordy 1988; Luckham 1990;
Gomes et al. 1996; Kölling and Rosenberg 1997; Findler and Felleisen 2002; Leav-
ens and Cheon 2005; Blume and McAllester 2006]. An entire design philosophy,
Contract Oriented Design, has been based on dynamically-checked specifications.
Hybrid type checking embraces precise specifications, but extends prior purely-
dynamic techniques to verify (or detect violations of) expressive specifications stat-
ically, wherever possible.

The programming language Eiffel [Meyer 1988] supports a notion of hybrid spec-
ifications by providing both statically-checked types as well as dynamically-checked
contracts. Having separate (static and dynamic) specification languages is some-
what awkward, since it requires the programmer to factor each specification into
its static and dynamic components. Furthermore, the factoring is too rigid, since
the specification needs to be manually refactored to exploit improvements in static
checking technology.

Other authors have considered pragmatic combinations of both static and dy-
namic checking. Abadi, Cardelli, Pierce and Plotkin [Abadi, M., L. Cardelli, B.
Pierce, and G. Plotkin 1989] extended a static type system with a type Dynamic
that could be explicitly cast to and from any other type (with appropriate run-time
checks). Henglein characterized the completion process of inserting the necessary co-
ercions, and presented a rewriting system for generating minimal completions [Hen-
glein 1994]. Thatte developed a similar system in which the necessary casts are
implicit [Thatte, S. 1990]. These systems are intended to support looser type speci-
fications. In contrast, our work uses similar, automatically-inserted casts to support
more precise type specifications. An interesting avenue for further exploration is
the combination of both approaches to support a large range of specifications, from
Dynamic at one end to precise hybrid-checked specifications at the other.

Research on advanced type systems has influenced our choice of how to express
program invariants. In particular, Freeman and Pfenning [Freeman and Pfenning
1991] extended ML with another form of refinement types. They do not support
arbitrary refinement predicates, since their system provides both decidable type
checking and type inference. Xi and Pfenning have explored the practical appli-
cation of dependent types in an extension of ML called Dependent ML [Xi and
Pfenning 1999; Xi 2000]. Decidability of type checking is preserved by appropri-
ately restricting which terms can appear in types. Despite these restrictions, a
number of interesting examples can be expressed in Dependent ML.

Ou, Tan, Mandelbaum, and Walker developed a type system similar to ours that
combines dynamic checks with refinement and dependent types [Ou et al. 2004].
Unlike hybrid type checking approach, their type system restricts refinement pred-
icates to ensure decidability, and it supports mutable data. In addition, whereas
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Hybrid Type Checking · 31

hybrid type checking uses dynamic checks to circumvent decidability limitations,
their system uses dynamic checks to permit interoperability between precisely typed
code fragments (that use refinement types) and more coarsely typed code fragments
(that do not), and so it permits the introduction of refinement predicates into a
large program in an incremental manner.

There has been much recent work on alternative forms of hybrid and gradual type
systems. Siek and Taha independently developed a system of gradual typing [Siek
and Taha 2006; 2007] that combines dynamic and static typing via casts similar to
ours. However, they do not address refinement predicates, and so they avoid much
of the complexities of hybrid type checking.

Gronski et al [Gronski et al. 2006] developed a prototype language that used hy-
brid type checking to blend refinement types with dynamic typing, records, variants,
and first-class types. Their experiments show that for many common examples, the
number of inserted casts is small or none.

Wadler and Findler prove that the more precisely typed portion of a program
cannot be blamed for a runtime failure [Wadler and Findler 2007]. This technique
may furnish yet another proof of behavioral correctness for hybrid type checking,
as it ensures that any redundant cast cannot fail at run time.

Refinement types, in addition to causing a burden in terms of challenging proof
obligations, impose an annotation burden on the programmer. Knowles and Flana-
gan [Knowles and Flanagan 2007] present a theoretical closed-form solution to the
type inference problem for general refinement types. Rondon et al [Rondon et al.
2008] have subsequently developed an implementation for OCaml using abstract
interpretation to find approximations to these closed-form solutions.

The static checking tool ESC/Java [Flanagan et al. 2002] checks expressive JML
specifications [Burdy et al. 2003; Leavens and Cheon 2005] using the Simplify auto-
matic theorem prover [Detlefs et al. 2005]. However, Simplify does not distinguish
between failing to prove a theorem and finding a counter-example that refutes the
theorem, and so ESC/Java’s error messages may be caused either by incorrect pro-
grams or by limitations in its theorem prover.

The limitations of purely-static and purely-dynamic approaches have also moti-
vated other work on hybrid analyses. For example, CCured [Necula et al. 2002] is a
sophisticated hybrid analysis for preventing the ubiqutous array bounds violations
in the C programming language. Unlike our proposed approach, it does not detect
errors statically - instead, the static analysis is used to optimize the run-time anal-
ysis. Specialized hybrid analyses have been proposed for other problems as well,
such as data race condition checking [von Praun and Gross 2001; O’Callahan and
Choi 2003; Agarwal and Stoller 2004].

Prior work (e.g. [Breazu-Tannen et al. 1991]) introduced and studied implicit
coercions in type systems. Note that there are no implicit coercions in the λH type
system itself, but only in the cast insertion algorithm, and so we do not need a
coherence theorem for λH , but instead reason about the connection between the
type system and cast insertion algorithm.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

32 · Knowles, Flanagan

9. CONCLUSIONS AND FUTURE WORK

Precise specifications are essential for modular software development. Hybrid type
checking suggests an interesting approach for providing high coverage checking of
precise specifications. This paper explores hybrid type checking in the idealized
context of the λ-calculus, and highlights some of the key principles and implications
of hybrid type checking.

In terms of software deployment, an important topic is recovery methods for post-
deployment cast failures; transactional roll-back mechanisms [Haines et al. 1994;
Vitek et al. 2004] may be useful in this regard. Hybrid type checking may also
allow precise types to be preserved during the compilation and distribution pro-
cess, via techniques such as proof-carrying code [Necula 1997] and typed assembly
language [Morrisett et al. 1999].

Since the introduction of hybrid type checking, several important practical as-
pects have been explored, such as type inference [Knowles and Flanagan 2007;
Rondon et al. 2008], space efficiency [Herman et al. 2007], and interaction with
realistic programming features such as records, variants, and objects [Gronski et al.
2006]. The most pressing topic that remains to be investigated is the effectiveness
of contract types, and hybrid type checking in particular, in large-scale realistic
software development.

Acknowledgements Thanks to Matthias Felleisen, Stephen Freund, Robby Find-
ler, Mart́ın Abadi, Shriram Krishnamurthi, David Walker, Aaron Tomb, and Jessica
Gronski for valuable feedback on this paper. This work was supported by the Na-
tional Science Foundation under Grants CCR-0341179 and CCR-0707885, and by
a Fellowship from the Sloan Foundation.

REFERENCES

D. L. Parnas. 1972. A technique for software module specification with examples. Communi-

cations of the ACM 15(5), 330–336.

Abadi, M., L. Cardelli, B. Pierce, and G. Plotkin. 1989. Dynamic typing in a statically-typed

language. In Symposium on Principles of Programming Languages. 213–227.

Agarwal, R. and Stoller, S. D. 2004. Type inference for parameterized race-free Java. In
Conference on Verification, Model Checking, and Abstract Interpretation. 149–160.

Aiken, A., Wimmers, E. L., and Lakshman, T. K. 1994. Soft typing with conditional types. In
Symposium on Principles of Programming Languages. 163–173.

Augustsson, L. 1998. Cayenne — a language with dependent types. In Proceedings of the ACM
International Conference on Functional Programming. 239–250.

Blei, D., Harrelson, C., Jhala, R., Majumdar, R., Necula, G. C., Rahul, S. P.,
Weimer, W., and Weitz, D. 2000. Vampyre. Information available from

http://www-cad.eecs.berkeley.edu/~rupak/Vampyre/.

Blume, M. and McAllester, D. 2006. Sound and complete models for contracts. Journal of
Functional Programming 16, 375 – 414.

Breazu-Tannen, V., Coquand, T., Gunter, C. A., and Scedrov, A. 1991. Inheritance as

implicit coercion. Inf. Comput. 93, 1, 172–221.

Burdy, L., Cheon, Y., Cok, D., Ernst, M., Kiniry, J., Leavens, G., Leino, K., and Poll, E.
2003. An overview of JML tools and applications.

Cardelli, L. 1988a. Phase distinctions in type theory. Manuscript.

Cardelli, L. 1988b. Typechecking dependent types and subtypes. In Lecture notes in computer
science on Foundations of logic and functional programming. 45–57.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

Hybrid Type Checking · 33

Davies, R. and Pfenning, F. 2000. Intersection types and computational effects. In ICFP ’00:

fifth ACM SIGPLAN international conference on Functional programming. 198–208.

Denney, E. 1998. Refinement types for specification. In Proceedings of the IFIP International

Conference on Programming Concepts and Methods. Vol. 125. Chapman & Hall, 148–166.

Detlefs, D., Nelson, G., and Saxe, J. B. 2005. Simplify: a theorem prover for program checking.

J. ACM 52, 3, 365–473.

Fagan, M. 1990. Soft typing. Ph.D. thesis, Rice University.

Findler, R. B. 2002. Behavioral software contracts. Ph.D. thesis, Rice University.

Findler, R. B. and Felleisen, M. 2002. Contracts for higher-order functions. In Proceedings of

the International Conference on Functional Programming. 48–59.

Flanagan, C. 2006. Hybrid type checking. In Symposium on Principles of Programming Lan-

guages. 245 – 256.

Flanagan, C., Flatt, M., Krishnamurthi, S., Weirich, S., and Felleisen, M. 1996. Finding

bugs in the web of program invariants. In Conference on Programming Language Design and
Implementation. 23–32.

Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson, G., Saxe, J. B., and Stata, R.

2002. Extended static checking for Java. In Conference on Programming Language Design and
Implementation. 234–245.

Freeman, T. and Pfenning, F. 1991. Refinement types for ML. In Conference on Programming

Language Design and Implementation. 268–277.

Frisch, A., Castagna, G., and Benzaken, V. 2002. Semantic subtyping. 137–146.

Godefroid, P., Klarlund, N., and Sen, K. 2005. DART: Directed automated random testing.

In Conference on Programming Language Design and Implementation.

Gomes, B., Stoutamire, D., Vaysman, B., and Klawitter, H. 1996. A language manual for

Sather 1.1.

Gosling, J., Joy, B., and Steele, G. 1996. The Java Language Specification. Addison-Wesley.

Gronski, J. and Flanagan, C. 2007. Unifying hybrid types and contracts. In Trends in Func-

tional Programming.

Gronski, J., Knowles, K., Tomb, A., Freund, S. N., and Flanagan, C. 2006. Sage: Practical
hybrid checking for expressive types and specifications. In Proceedings of the Workshop on

Scheme and Functional Programming. 93–104.

Haines, N., Kindred, D., Morrisett, J. G., Nettles, S., and Wing, J. M. 1994. Composing
first-class transactions. In ACM Transactions on Programming Languages and Systems. Vol.

16(6). 1719–1736.

Henglein, F. 1994. Dynamic typing: Syntax and proof theory. Science of Computer Program-
ming 22, 3, 197–230.

Herman, D., Tomb, A., and Flanagan, C. 2007. Space-efficient gradual typing. In Trends in

Functional Programming. 404–419.

Holt, R. C. and Cordy, J. R. 1988. The Turing programming language. Communications of
the ACM 31, 1310–1424.

Knowles, K. and Flanagan, C. 2007. Type reconstruction for general refinement types. In

European Symposium on Programming.

Kölling, M. and Rosenberg, J. 1997. Blue: Language specification, version 0.94.

Leavens, G. T. and Cheon, Y. 2005. Design by contract with JML. avaiable at

http://www.cs.iastate.edu/~leavens/JML/.

Luckham, D. 1990. Programming with specifications. Texts and Monographs in Computer
Science.

Mandelbaum, Y., Walker, D., and Harper, R. 2003. An effective theory of type refinements.

In International Conference on Functional Programming. ACM Press, New York, NY, USA,

213–225.

Meyer, B. 1988. Object-oriented Software Construction. Prentice Hall.

Morrisett, G., Walker, D., Crary, K., and Glew, N. 1999. From System F to typed assembly

language. ACM Transactions on Programming Languages and Systems 21, 3, 527–568.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

34 · Knowles, Flanagan

Necula, G. C. 1997. Proof-carrying code. In Symposium on Principles of Programming Lan-

guages.

Necula, G. C., McPeak, S., and Weimer, W. 2002. CCured: type-safe retrofitting of legacy
code. In Symposium on Principles of Programming Languages. 128–139.

O’Callahan, R. and Choi, J.-D. 2003. Hybrid dynamic data race detection. In Symposium on

Principles and Practice of Parallel Programming. 167–178.

Ou, X., Tan, G., Mandelbaum, Y., and Walker, D. 2004. Dynamic typing with dependent
types. In Proceedings of the IFIP International Conference on Theoretical Computer Science.

437–450.

Rondon, P. M., Kawaguchi, M., and Jhala, R. 2008. Liquid types. In Conference on Program-

ming Language Design and Implementation.

Siek, J. and Taha, W. 2007. Gradual typing for objects. 2–27.

Siek, J. G. and Taha, W. 2006. Gradual typing for functional languages. In Proceedings of the

Workshop on Scheme and Functional Programming.

Statman, R. 1985. Logical relations and the typed lambda-calculus. Information and Con-

trol 65, 2/3, 85–97.

Tarditi, D., Morrisett, G., Cheng, P., Stone, C., Harper, R., and Lee, P. 1996. TIL: A

type-directed optimizing compiler for ML. ACM SIGPLAN Notices 31, 5, 181–192.

Thatte, S. 1990. Quasi-static typing. In Symposium on Principles of Programming Languages.

Vitek, J., Jagannathan, S., Welc, A., and Hosking, A. L. 2004. A semantic framework for

designer transactions. In European Symposium on Programming. 249–263.

von Praun, C. and Gross, T. 2001. Object race detection. In Conference on Object-Oriented

Programming, Systems, Languages and Applications. 70–82.

Wadler, P. and Findler, R. B. 2007. Well-typed programs can’t be blamed. In Proceedings of

the Workshop on Scheme and Functional Programming.

Wright, A. and Cartwright, R. 1994. A practical soft type system for scheme. In Conference
on Lisp and Functional Programming. 250–262.

Wright, A. and Felleisen, M. 1994. A syntactic approach to type soundness. Info. Com-

put. 115, 1, 38–94.

Xi, H. 2000. Imperative programming with dependent types. In LICS 2000. 375–387.

Xi, H. and Pfenning, F. 1999. Dependent types in practical programming. In POPL ’99: 26th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages. ACM Press,

214–227.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Month 20YY.

