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Abstract

Reasoning about the correctness of multithreaded programs is
complicated by the potential for unexpected interference between
threads. Previous work on controlling thread interference focused
on verifying race freedom and/or atomicity. Unfortunately, race
freedom is insufficient to prevent unintended thread interference.
The notion of atomic blocks provides more semantic guarantees,
but offers limited benefits for non-atomic code and it requires bi-
modal sequential/multithreaded reasoning (depending on whether
code is inside or outside an atomic block).

This paper proposes an alternative strategy that uses yield anno-
tations to control thread interference, and we present an effect sys-
tem for verifying the correctness of these yield annotations. The ef-
fect system guarantees that for any preemptively-scheduled execu-
tion of a well-formed program, there is a corresponding cooperative
execution with equivalent behavior in which context switches hap-
pen only at yield annotations. This effect system enables coopera-
tive reasoning: the programmer can adopt the simplifying assump-
tion of cooperative scheduling, even though the program still exe-
cutes with preemptive scheduling and/or true concurrency on mul-
ticore processors. Unlike bimodal sequential/multithreaded reason-
ing, cooperative reasoning can be applied to all program code.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—parallel programming; D.2.4
[Software Engineering]: Software/Program Verification—reliability;
F.3.1 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs—specification techniques;
F.3.2 [Logics and Meanings of Programs]: Semantics of Program-
ming Languages—program analysis
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1. Controlling Thread Interference

Multiple threads of control are widely used in software develop-
ment because they help reduce latency and increase throughput on
multicore and multiprocessor machines. Reasoning about the be-
havior and correctness of multithreaded code is difficult, however,
due to the need to consider all possible interleavings of the various
threads. Thus, methods for specifying and controlling the interfer-
ence between threads are crucial to the cost-effective development
of reliable multithreaded software.

Race Freedom Early attempts at controlling thread interference
focused on race conditions, where two threads access a shared vari-
able at the same time, and at least one access is a write. Race free-
dom ensures that thread interference occurs only at certain actions
(those that manipulate volatile variables, locks, semaphores, etc).
By itself, race freedom does not entirely prevent errors due to un-
expected interactions between threads. We illustrate this limitation
via the following code, in which the shared variable x is protected
by the lock m, and t is a thread-local variable:

acquire(m); t = x; release(m);
t =t + 1;

acquire(m); x = t; release(m);

Although this code is race-free, it may not have the expected effect
of incrementing m by 1, due to interference from other threads.
Similar but less obvious errors arise in practice, often via multiple
calls to synchronized methods [19].

Atomicity Motivated by this limitation of race-freedom, much re-
cent work [5, 6, 18-23, 27, 40, 49-52] has used atomic blocks to
specify where thread interference may occur. Programs can use tra-
ditional synchronization idioms (locks, etc.) to ensure that atomic
blocks cannot be influenced by interleaved actions of concurrent
threads. The atomic block annotations in a program are correct if
any execution trace is serializable, that is, equivalent to a serial
trace in which atomic blocks execute contiguously, without inter-
leaved actions of other threads. Atomic blocks are amenable to se-
quential reasoning, which significantly simplifies subsequent cor-
rectness arguments.

Despite the benefits of atomicity, it suffers from two significant
limitations. First, atomicity forces a form of bimodal sequential/-
multithreaded reasoning. To illustrate this point, consider the sim-
ple code fragment':

x++

If sequential reasoning is valid, then this code is a simple increment
operation. If multithreaded reasoning is required, then this code be-
comes a potentially non-atomic read-modify-write sequence (with
no syntactic hints to reflect this sea change from traditional, se-
quential semantics).

!'We assume that x is volatile, to avoid memory model complexities.



In a world of atomic blocks, deciding which semantics is ap-
plicable critically depends on whether x++ occurs inside or outside
an atomic block. Thus, atomic blocks require the programmer to
choose the appropriate mode of reasoning (sequential vs. multi-
threaded) for each program statement, with obvious room for con-
fusion and error.

A second limitation of atomicity is that it provides little help
in reasoning about non-atomic methods, for which the programmer
is still exposed to the full difficulties of multithreaded reasoning
based on instruction-level interleaving. This problem can be par-
tially addressed by declaring parts of a non-atomic method to be
atomic, but this strategy is limited by the static scope of explicit
atomic blocks, as we illustrate below.

Yield Specifications This paper proposes an alternative strategy
for controlling thread interference that addresses these limitations.
Instead of delimiting code blocks where interference is guaranteed
not to occur, we invert the problem and use yield annotations
to specify program points where interference may occur. Our ap-
proach is inspired by prior ideas on cooperative scheduling [4, 7, 9]
and automatic mutual exclusion [29], with the difference that we
use yield entirely as a specification construct. That is, we assume
programs use traditional synchronization constructs (such as locks)
and we verify that the resulting thread interference satisfies these
yield specifications.

The yield annotations in a program are correct if any arbitrarily-
interleaved execution trace is cooperable, that is, equivalent to a
cooperative trace in which context switches happen only at yield
annotations. Thus, although the program can execute with preemp-
tive interleaving (and true concurrency on multicore processors),
yield annotations allow us to adopt the simplifying assumption that
threads execute cooperatively and that thread interference happens
only at yield annotations.

Benefits of Yield Specifications We believe that yield is a promis-
ing non-interference specification because it enables universal co-
operative reasoning, instead of bimodal sequential/multithreaded
reasoning. Sequential reasoning never considers thread interfer-
ence, but is inapplicable to non-atomic methods. Multithreaded rea-
soning is applicable to such methods, but must allow for thread
interference between every pair of instructions. Cooperative rea-
soning simplifies the analysis of non-atomic methods, since thread
interference happens only at yield annotations. Moreover, coopera-
tive reasoning reduces to sequential reasoning for atomic methods,
and so conveniently applies to both atomic and non-atomic meth-
ods.

Under cooperative reasoning, the problematic operation x++
mentioned above always represents an atomic increment operation.
If x is concurrently manipulated by other threads, then the code
must explicitly reflect its non-atomic read-modify-write nature:

{ int t = x; yield; x = t+1; }

We conjecture that including explicit yield specifications in a
program’s source code could provide benefits during code evolu-
tion, since these specifications provide a valuable reminder of ex-
actly where thread interference may occur, and where the “natural”
expectation of sequential semantics is violated. In addition, they
allow tools to detect when additional (and possibly unintentional)
thread interference is introduced.

Yield Effects 1In this paper, we address the problem of statically
verifying if yield annotations are correct, that is, if every program
trace is equivalent to a cooperative trace. We present our static
analysis as an effect system [33, 34], where the effect of a program
expression summarizes how the evaluation of that expression may
interfere with concurrent actions of other threads.

In order to facilitate comparisons with earlier work on atomicity,
our presentation follows that of [20], with the key addition that we
now verify cooperability in addition to serializability. This presen-
tation formalizes our results in terms of an idealized language, but
prior work produced expressive type and effect systems for verify-
ing atomic specifications in Java programs [5, 19-21, 23, 40, 49],
and we believe that such techniques could be adapted, mutatis mu-
tandis, to also verify yield specifications.

A Motivating Example We illustrate the utility of yield annota-
tions via the code fragment shown in Figure 1 (a). At a high level,
this code performs the update x = £ (x) on the integer shared vari-
able x. However, to avoid holding the lock m protecting x during the
computation of f (x), the code first reads x into a local variable y,
computes f (y), and then acquires the lock to perform the update
of x. If x has changed since it was first read, then the update must
be retried, looping until done is true. For performance reasons, the
lock m is held for all writes to x, but not for all reads.

The yield annotation explicates that interleaved steps of other
threads may cause thread interference, but this interference appears
as if it happens only at the start of the loop, at the yield annotation.
Thus, cooperative reasoning only needs to consider one point of
thread interference, in contrast to multithreaded reasoning, which
needs to consider thread interference at all points in the code.

In comparison, atomic blocks provide a less satisfactory specifi-
cation construct, due to the awkward interaction between the static
scope of atomic blocks and other program constructs such as while
loops. The method update_x is not atomic, and so atomic blocks
need to be inserted selectively into the method body instead.

In a first attempt, the loop body is declared as atomic , as shown
in Figure 1(b), but this annotation suggests thread interference is
possible outside that atomic block, for example, during the evalua-
tion of the loop condition.

Figure 1(c) attempts to remedy this problem by adding two addi-
tional atomic blocks, but the resulting code remains unsatisfactory:
the additional atomic blocks clutter the code, and yet still permit
thread interference at points where no interference is intended, such
as on entry to the while loop. In summary, atomic blocks are in-
adequate for specifying thread interference in non-atomic methods
such as update_x.

Atomic and Yield An atomic method is simply one that can never
execute a yield annotation. Our effect system exploits this con-
nection to also verify atomicity specifications, in a manner similar
to [1]. Indeed, we believe that atomic and yield are compatible
and complementary specification idioms.

e Yield is primarily a “code-level” specification that explicates
where thread interference may occur.

e Atomic is most useful as an “interface-level” specification that
clarifies that a method’s implementation does not include yield
annotations, and so is not vulnerable to thread interference. In
contrast, a non-atomic method may permit interfering actions
of other threads.

We illustrate the complementary nature of these specification id-
ioms further by the example in Section 5.2.

Outline The presentation of our results proceeds as follows. Sec-
tion 2 introduces an effect language for reasoning about coopera-
ble and serializable traces. Section 3 presents an idealized, multi-
threaded language, and Section 4 formalizes our effect system for
this language. Section 5 illustrates the benefits of our effect sys-
tem via two code development examples. Section 6 verifies the cor-
rectness properties of preservation, cooperability, and serializabil-
ity. Section 7 and 8 discuss related and future work, and Section 9
concludes.



IFigure 1: A Comparison of Yield vs. Atomic Specifications: Code performs update x = f(x) via transactional-retry

void update_x() {

boolean done = false;

int y = x; int y = x;

while ( 'done ) {
yield;
int fy = £(y);
acquire(m);

atomic {

void update_x() {

boolean done = false;

while ( !done ) {

int fy = £(y);
acquire(m) ;

void update_x() {

boolean done;
int y;
atomic {
done = false;
y =%

}

while ( atomic { !done } ) {
atomic {
int fy = £(y);
acquire(m) ;

if (x ==y) { if (x == y) { if (x ==y) {
x = fy; x = fy; x = fy;
done = true; done = true; done = true;

} else { } else { } elfe {
y=x y =% vou

} } ¥

release(m); release(m); ) release(m);

}
} } L7
¥ ¥

(a) Using yield annotations

(b) Using one atomic block annotation

(c) Using three atomic block annotations

2. Effects for Cooperability and Serializability
2.1 The Theory of Reduction

We use the theory of right and left movers, first proposed by
Lipton [32], to verify yield annotations. An action a is a right
mover if for any execution where the action a performed by one
thread is immediately followed by an action b of a different thread,
the actions a and b can be swapped without changing the resulting
state S3, as shown below.
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Each lock acquire is a right mover, since if it is followed by an
action b of a second thread, then b can neither acquire nor release
the lock, and hence the acquire action can be moved to the right of
b without changing the resulting state.

Similarly, an action b is a left mover if whenever b immediately
follows an action a of a different thread, the actions a and b can
be swapped, again without changing the resulting state. Every lock
release is a left mover, since the preceding action b of a different
thread can never influence the state of the lock, and so the two
actions commute.

Finally, consider an access (read or write) to a shared variable.
If that access is racy (i.e., involved in a simultaneous access race
condition), then it is neither a left nor a right mover. Conversely, if
the access is not racy, then it is both a left and a right mover.

We use the term epoch to refer to the sequence of actions exe-
cuted by a thread between two successive yield annotations. Con-
sider an epoch that contains a sequence of right movers followed by
a single atomic action followed by a sequence of left movers. Then
an execution where this epoch has been fully executed can be re-
duced [32], by commuting out interleaved actions of other threads,

to another execution with the same resulting state where the epoch
is executed contiguously.

2.2 Cooperability Effects

To capture Lipton’s theory of left and right movers, together
with yield annotations, we introduce the following language of
cooperative effects:

¢ == R|L|B|NJ|Y
with the following meaning:

e The effect R describes right mover actions such as lock ac-
quires.

o The effect L describes left mover actions such as lock releases.

e The effect B describes both mover actions that are both left and
right movers, such as race-free accesses.

e N describes non mover actions that are neither left nor right
movers, such as racy accesses.

e Finally, the effect Y describes yield annotations.

Two traces are equivalent if one can be obtained from the other
by repeatedly swapping adjacent actions according to their right
and left mover properties. An execution trace is cooperative if
context switches only happen at yield annotations, and a trace is
cooperable if it is equivalent to a cooperative trace.

Our strategy for proving that a trace is cooperable is to demon-
strate that every thread consists of reducible epochs separated by
yield annotations, as illustrated by the following DFA. If we ig-
nore the two bottom yield transitions, this DFA simply describes
reducible epochs. The yield annotations then have the effect of re-
setting this “reducibility” DFA at the start of each new epoch.
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Our effect system is essentially a compositional analysis for
verifying that the actions of each thread satisfy this DFA. The
effect of a term summarizes the sequence of actions that may be
performed by that term, and how that sequence of actions affects
the acceptance of the entire thread by this DFA.

From this DFA, we derive the cooperative effect ordering:

YCBCcLCN forc € {L,R}

as illustrated below. For example, Y C B, since for any effect

sequence « and (3, if «.B.[3 is accepted by this DFA then «.Y.0 is
also accepted. Let LI denote the join operator based on this ordering.

N
N/
|

Y

Terms in source programs can be composed via sequential com-
position and iteration. We develop analogous sequential composi-
tion (c1; ¢2) and iterative composition (¢*) operations on effects, as
defined in the following tables.

ci;c2| Y B R L N c|c”
Y Y Y Y L L Y | B
B Y B R L N B | B
R R R R N N R | R
L Yy L - L - L | L
N R N - N - N | -

Note that these operations are partial, and are undefined at en-
tries marked “-”. For example, two racy read actions (with effect N)
cannot be sequentially composed, since «.N.N.(3 is never accepted
by the DFA, and so the sequential composition N;N is undefined.
If the racy reads are separated by a yield annotation, then the effect
composition is N;Y;N, which is defined and evaluates to N.

2.3 Serializability Effects

The serializability effect of a program term simply summarizes
whether that term may execute a yield operation:

s = A|C

Here, A denotes atomic (yield free) terms, and C denotes compound
terms that may execute a yield on some code paths.? These effects
are ordered by A T ¢, with associated join operation LI. For
consistency, we also define sequential and iterative composition

operators:
def
S1; 82 = s1Uso
def
¥ = s

2 These effects correspond to the NoYields and Yields effects in [1].

2.4 Combined Effects

We now combine these serializability and cooperative effects into
a combined effect k, that allows us to simultaneously verify coop-
erability and serializability properties:

Kk == (s,c)

We introduce the following pointwise operations on combined ef-
fects:

iff s1C seande; C oo
def

(s1,c1) T (s2,c2
(s1,c1) U (s2,c2
<517cl> <527C

(s,¢)

For brevity, we often abbreviate a combined effect such as (C, N)
to simply CN. Note that the two components in the combined
effect (A, Y) contradict each other regarding the presence of yields.
Unsurprisingly, this combined effect is never used in our system,
resulting in combined effects forming the following nine-element

TN
ST

N1

Unlike prior effect systems for atomicity [20], the introduction
of yields results in a join-semilattice rather than a complete lattice,
since the minimal elements AB and CY are incomparable. Further-
more, in the above lattice, the rightmost five elements (C, -) can all
be seen as refinements of the single top element “T” from [20].

Note that sequential composition is monotonic and associative,

<81 Ll sa2,c1 U 02>
def
= <81;82701;C2>

def (s*,c*)

* o~~~ ~—

(k1 TR A (k2 CRy) =
k1; (k25 k3) =

(k15 K2) E (KY;K5)
(51,.‘{2) R3

AB is the left and right identity for sequential composition,

AB; K K
K;AB = K

iterative composition is monotonic and idempotent,

kCK = K'CkK*
(H*)* — I{/*

and sequential composition distributes over joins.

(k1 k2) U (K15 K3)
(k13 k3) U (K25 K3)

k1; (ke URsg) =
(k1 UK2); ks =

3. The Language CAY

We formalize our effect system and its correctness properties in
the context of the idealized language CAY, a restricted subset of C
extended with atomic and yield annotations. CAY is a small, im-
perative, multithreaded language with higher-order functions and
dynamic thread creation. CAY follows the syntax and semantic pre-
sentation of the CAT language [20], extending it with yield anno-
tations and with a notion of cooperative execution.



3.1 Syntax

The syntax and semantics of CAY are summarized in Figure 2. The
language supports multithreaded programming via the construct
fork ¢, which spawns a new thread for the evaluation of ¢, and
by providing both atomic blocks and yield annotations.

CAY includes variable reference and assignment, primitive and
function applications, conditionals, and while loops. We use the
notation 7 to denote a sequence of terms. The term let z =
t1 in to allocates a fresh variable z in the heap, and initializes
x with the result of evaluating ¢;. The variable x is bound within
t2, and may be a-renamed in the usual fashion. We use ¢1;¢2 to
abbreviate let x = t; in t2 when z is not free in ¢».

Values in CAY include constants, function definitions, and syn-
chronization locations. The set of constants is left unspecified but
should include integers. A function definition f(7Z ) ¢ introduces a
function named f, whose formal parameters T are bound within
the body ¢, and may be a-renamed in the usual fashion.

Synchronization locations are references to synchronization val-
ues. For generality, we leave the set of synchronization values un-
specified, but they might include, for example, mutual exclusion
locks, reader-writer locks, semaphores, etc. These synchroniza-
tion values are manipulated by primitive applications p(7 ), which
might include operations to allocate, acquire, and release mutual
exclusion locks. In addition, the set of primitives also include arith-
metic operations and the assert primitive.

For clarity, our effect system treats race detection and flow
analysis as orthogonal to our central concern. We assume that
a separate race detector (e.g., [10, 17, 25]) has annotated each
variable access with an conflict tag. This tag is e if that access may
be involved in a race condition, and is € otherwise. In addition, we
assume a flow analysis has annotated each function call ' (7 ) with
a call tag F' denoting the set of functions that may be invoked by
that call. Function names are used only to encode the results of
this flow analysis; they are not considered variable in the program.
This modularization allows our effect system to focus on the task
at hand, namely verifying the correctness of yield and atomic
annotations.

3.2 Semantics

A program state is a 3-tuple containing a heap H (a partial map
from variables to values), a synchronization heap M (a partial map
from synchronization locations to synchronization values), and a
sequence 1" of threads. The —e— arrow denotes a partial map. Each
thread is either a term or wrong. A thread becomes wrong if a
primitive operation is applied to incorrect arguments. An evaluation
context E is a term with a “hole” [ ] in place of the next sub-term
to be evaluated, and E|[t] denotes the operation of filling the hole in
E with the term ¢.

The transition relation —; performs a single step of thread .
The notation H[z := v] denotes a new heap that is identical
to H except that it maps = to v. A yield operation is a nop
in the semantics, reflecting its nature as a purely specification-
level construct. The in-atomic construct records that execution
is proceeding inside an atomic block, and should only appear in an
evaluation context position. A fork operation adds a new thread
to the program, prefixed with yield, which signifies that context
switches may occur before the forked thread starts execution.

The meaning of a primitive operation p is defined using the par-
tial function Z,, that takes (1) a sequence of argument values, (2)
a synchronization heap, and (3) an integer identifying the current
thread, and returns a pair of a return value and a (possibly modi-
fied) synchronization heap. If the primitive is applied to incorrect
arguments, Z,, may instead return wrong:

Zp :(Const U SyncLoc)* x SyncHeap x Int —o—
((Const U SyncLoc) x SyncHeap) U {wrong}

We illustrate how 7, models the semantics of assert, addition,
and operations to allocate, acquire, and release locks as follows
(where € is the empty sequence and m.n is a sequence of length
two):

Tassert (v, M, tid) =
(0, M) ifv#0
wrong ifv =0
Zi(m.n, M, tid) =

(m +n, M)
InewLock(€7 M7 tZd) =

(m, M[m := (lock, 0)]) ifm & dom(M)
ZTacquire (M, M[m := (lock, 0)], tid) =

(m, M[m := (lock, tid)])

Irelease (my My t'Ld
{ (m, M[m := (lock,0)]) if M(m) = (Llock, tid)

~—

wrong otherwise

An assert goes wrong if its argument is O, and otherwise
terminates normally. Addition does not modify the synchroniza-
tion heap. The newLock operation returns a synchronization loca-
tion m that refers to a newly-allocated lock (perhaps chosen non-
deterministically) containing 0, indicating that is not held by any
thread. The acquire operation acquires a lock, provided the lock is
not held by any thread; and otherwise blocks, in which case execu-
tion must proceed on other threads. The release operation never
blocks; if the current thread holds the lock then the lock is released,
and otherwise release goes wrong.

We define three transition relations over program states, reflect-
ing different scheduling policies:

e The preemptive transition relation —,, performs a single step of
an arbitrarily chosen thread.

The serial transition relation — is similar to —,, with the
additional restriction that a thread cannot perform a step if
another thread is inside an in-atomic block. Thus — 5 does not
interleave the execution of an atomic block with instructions
from other threads.

e The cooperative transition relation — is also similar to —,
with the restriction that context switches only happen at par-
ticular yield points. More specifically, a thread ¢ is yielding if
either:

1. it has not started execution (|T| < 1);

2. if the system is single-threaded (|T'| = 1);

3. if the next operation is yield (T; = E[yield]); or
4. if the thread has gone wrong (7; = wrong).

A thread can only perform a cooperative step if all other threads
are yielding.

Note that the evaluation rule for the expression fork ¢ creates a
new thread (yield;t) that is initially yielding, in order to permit
cooperative execution to continue on the original forking thread.

We use —1 and —* to denote the transitive and reflexive-
transitive closure of a transition relation —, respectively.



IFigure 2: CAY Syntax and Semantics

Syntax

Evaluation contexts

State space

Transition relations

s =3I a8 s

MM MMMMMM

EvalCtxt

NI T
MMMM

Term =

Value
Tag
Prim
Var
SyncLoc
FnName

oFnName

Const

ProgState

Heap
SyncHeap
ThreadSeq

vz |z =t

| p(E) | eF (1)

| ifttt|whilett|letxz =tint|forkt
| atomict|in-atomict

| yield

clm| f(z)t

oe

acquire | release | - --

[]|lxr=FE

p(7, B, )| EF(T) | v"(T,E, 1)
if Ett|letz = FEint
in-atomic F

Heap x SyncHeap x ThreadSeq
Var —e— Value

SyncLoc —e~ SyncValue

(Ezpr U {wrong})*

—i,—p,—s;,—c < ProgState x ProgState

Thread i transition relation —; (where ¢ = |T'| + 1)

H, M, T.E[z,].T’
H,M,T.E

efssfissfissfiscsefsecissfisaas
SEXKXKKREREER

Preemptive transition relation —

Serial transition relation — g

Cooperative transition relation — .

TE
TE
T.E
TE
TE
T.E
TE
TE
T.E
TE

TE

= v]. T’
p(v)).T’
p(v)]. T

[(f(7) 07 (9)].7"
ifvity t2].T’

if 0ty tg].T/
while t1 tg].T/
let z = v int].T'
fork t].T'

atomic t].7”
[in-atomic v].T”
[yield]. T’

— H, M, T.E[H(2).T'

— Hlz :=v], M, T.E[v].T'

. H, M, T.E[J|.T' if Tp(T, M, i) = (v, M)
— H, M, T.wrong. T’ ifZ,(v,M,i) = wrong
—~; H[T :=71], M, T.E[t].T’ if T N dom(H) = 0
— H, M, T.E[t].T' if v #0

— H, M, T.E[tg}.T/

— H, M, T.E[if t1 (tg; while t1 tz) 0].T’

—; Hlz :=v], M, T.E[t].T' ifz & dom(H)

—; H, M, T.E[0].T".(yield;t)

— H, M, T.E[in-atomic t].T"

—; H, M, T.E[v].T'

. H, M, T.E[0].T'

—, P it H, M, T —; P'

—s P’ if H, M,T —; P’ and T} does not contain in-atomic for j # 4
—e P if H, M, T —; P’ and Tj is yielding for j # ¢




4. An Effect System for Cooperability and
Serializability

We now develop an effect system [33, 34] to verify cooperability
and serializability of CAY programs. This effect system uses an en-
vironment I" to map function names to corresponding effect spec-
ifications, which are then checked via assume-guarantee reason-
ing. The environment also maps primitives to corresponding effect
specifications. For the primitives mentioned in the previous section,
appropriate effect specifications are:

I'(assert) = AB
I'(+) = AB
I'(newLock) = AB
I'(acquire) = AR
I'(release) = AL

The core of our system is a collection of rules for reasoning
about the effect judgment:

I'Ht:k

which states that term ¢ has effect s in environment I". The rules
defining this judgement are shown in Figure 3, and are mostly
straightforward, since much of the novelty of our system is encap-
sulated in the effect language and its composition operators.

The rule [CONST] says that the effect of a constant is AB,
since the “evaluation” of a constant is atomic (A), as it performs
no yield operations, and is a both mover (B), as its evaluation
does not interfere with other threads. A similar rule applies for
synchronization locations.

The effect of a variable read z, depends on the conflict tag
r. If r = ¢, then this read commutes (in both directions) with
steps of other threads, and so has effect AB, via the rule [READ].
If » = e, then this read has effect AN, indicating that it is an
atomic action that may not commute with steps of other threads:
see [READ RACE]. The rules for variable writes are similar.

The effect of 1let x = ¢; in t3 is the composition x1; k2 of the
effects of t1 and to. The rule [WHILE] for while t; ¢ determines
the effects x1 and k2 of ¢1 and t2, and summarizes the effect of the
while loop as k1; (k2; k1)", reflecting its iterative nature.

The rule [FUN] for a function definition f(T) ¢ checks that
the effect of the function body ¢ must be at most I'(f). The
rule [INVOKE] for a function application ¢* (7) computes the join
UserD(f) of all possible callees (via the call tag F') when com-
puting the overall effect of the function call. Thus, function speci-
fications are checked via assume-guarantee reasoning.

Interestingly, the effect of a fork operation is AL, since this
operation could be immediately followed (but not preceded) by a
conflicting operation of the newly created thread in a preemptive
execution. The effect of yield is CY, reflecting that it is a yield
operation and hence compound (that is, not atomic). The effect of
the body of an atomic block must be at most AN.

The effect of a primitive application p(%) is the sequential
composition of the effects of the argument terms %, followed by
the effects I'(p) of p.

Finally, the judgement I' - P checks if a program state P is
well-formed, by checking that all threads and all heap values are
well-formed, and that in-atomic only occurs in evaluation context
positions.

5. Two Applications
5.1 Yield as a Code-Level Specification

We now consider how our effect system might help during the
development of the code from Figure 1. The programmer’s goal
is to develop a simple function update_x that updates the shared

Figure 3: Effect System for Cooperability and Serializability
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variable x according to the function £, as illustrated by this initial
implementation:

void update_x() {
Xe = f(Xo);

}

This initial implementation is rejected by our effect system because
the two races on x (annotated by a race detector) are not separated
by a yield. Protecting the shared variable x by the lock m fixes the
problem:

void update_x() {
acquire(m);
xe = £(x); // no races
release (m);

}

The revised code is now accepted by our effect system. Unfortu-
nately, it may not provide adequate performance due to lock con-
tention, particularly if the computation f (x) takes a long time. A
naive attempt to improve performance is to avoid holding the lock
m while calling £:

void update_x() {
int fx = £(Xe);
acquire(m) ;
Xe = fx;
release(m);

}

This code is rejected, since it requires a yield to explicate where
thread interference may occur:

void update_x() {
int fx = f(Xe);
yield;
acquire(m);
Xe = £fx;
release(m);

}

This yield annotation highlights the problem that another thread
could change the value of x between the read and write. Fixing
this problem requires a re-design using a loop that iterates until
x has not changed during the computation of £, where the yield
annotation accentuates the programmer’s expectation that other
threads might change x during this computation:

void update_x() {

boolean done = false;
int y = Xe;
while (!'done) {

yield;

int fy = £(y);

if (xe == y) {

Xe = fy;

This code is rejected by our effect system, since there are additional
points of thread interference not documented via yield annotations,
such as between the comparison operation (x == y) and the sub-
sequent update of x. To avoid this potential thread interference, the
programmer adds additional synchronization:

void update_x() {
boolean done = false;
int y = Xe;
while (!'done) {
yield;
int fy = £(y);
acquire(m);
if (xe == y) {
Xe = fy;
done = true;
} else {
Y = Xe;
}
release(m);
}
}

In this final version of update_x, the lock m is held for all writes
to x, but not for all reads. Hence, as illustrated by the conflict tags,
the write to x may be in a race with a concurrent read. Similarly,
the first read of x without the lock held may race with a concurrent
write. However, subsequent reads of x while holding the lock are
race-free.

Based on these conflict tags, this final version of update_x is
accepted by the effect system, and so can be assumed to execute co-
operatively. Informal cooperative reasoning then argues that thread
interference at the yield annotation is benign, since it simply causes
the loop to retry.

In summary, this short development example illustrates the
kinds of benefits we hope our effect system might provide by high-
lighting exactly where thread interference (and hence heisenbugs)
may occur. In particular, this example shows how our effect system
is helpful for non-atomic methods (such as update_x) that are not
well-served by existing tools that focus exclusively on atomicity.

5.2 Atomic as an Interface-Level Specification

To illustrate the compatible and complementary nature of atomic
and yield specifications, we consider the implementation of a
linked list of Nodes. We assume a primitive operation newNode
of type Int X Node — Node that allocates and initializes a new
Node. The effect specification for newNode is AB.

The following function add adds a new element onto the linked
list 1ist, which is protected by the lock m. Since each access to
list is race-free, the effect of add is (AR; AL) = AN, an atomic
non-mover; we annotate each function definition with its effect.

Node 1list;
Lock m;

AN void add(int v) {
acquire(m) ;
list. = newNode(v, list.)
release(m);

}

‘We next consider two functions, add2 and add2s, each of which
adds two elements to 1ist, but with different synchronization poli-
cies. In particular, add2s guarantees that the two new elements are
adjacent in the resulting list. The function add2 does not provide
this guarantee, essentially because the yield between the two calls
to add allows other threads to interpose other elements into the list.

CN void add2(int v, int w) {
add (v) ;
yield;
add (w) ;

}



AN void add2s(int v, int w) {
acquire(m);
list. = newNode(v, list.);
list. = newNode(w, list.);
release(m);

This key difference between add2 and add2s is captured by
their effects, CN and AN, respectively, and in particular by the se-
rializability component of these effects. The serializability effect
C (compound) for add2 means that multiple epochs may execute
inside this function, and implies thread interference may compli-
cate correctness reasoning in the calling context. In contrast, the
serializability effect A (atomic) for add2s implies that add2s is
free of interference from other threads. The absence of such thread
interference points may greatly simplify correctness arguments by
enabling serial reasoning at the call site.

6. Verifying Cooperability and Serializability
As a first step in verifying the correctness of our effect system, we
formalize our assumptions about the conflict tags, the call tags, and
the type environment.

A term ¢ is about to read x if t = E[x,|. Similarly, ¢ is about
to write x if t = E[x, := v]. The conflict tags in a program P are
correct if whenever P —; H, M, T"

1. If T; = E|z], then no other thread in 7" is about to write x.

2. If T; = E[ze := v], then no other thread in 7" is about to read
or write x.

Similarly, the call tags in P are correct if whenever P —, H, M, T
and T; = E[(f(Z) t)7(7)], then f € F.

A primitive p right commutes with a primitive q if for for all ¢
and j such that ¢ # j:

1. if Z,(7, My,i) = <’U/,M2> and Zy(u, Ma,j) = <UI,M3>
then there exists My such that Z,(u, M1, 5) = (u', M) and
Ip(v, My, i) = (v, Ms);

2. ifZ,(v, M1,i) = wrong and Z,(u, M, j) = (u', M>) then
Z,(T, Ma,1) = wrong;

3. if Z, (v, My,i) = (v', M2) and Zy (@, Ma, j) = wrong then
Z,(w, My, j) = wrong.

A type environment is valid if the effects of primitives are
correct, in that the following two properties hold:

1. If I'(p) C R then p right commutes with any primitive g.
2. If I'(p) C L then any primitive ¢ right commutes with p.

By the following preservation theorem, every state reachable
from an initial, well-formed state via preemptive execution is well-
formed.

THEOREM 1 (Preservation). Let P be a program with correct call
tags and let T a type environment. If ' = P and P —, P’ then
r+rpr.

Our effect system guarantees that for any well-formed program,
any preemptive execution is equivalent to some cooperative execu-
tion. Our proof of this correctness guarantee relies on the following
reduction theorem [20], which is phrased in terms of a generic tran-
sition system.

We first present some notation for stating the reduction theorem.
For any state predicate® X C ProgState and transition relation

3 For notational convenience, this section exploits the isomorphism between
sets and predicates.

Z C ProgState x ProgState, by X/Z we mean the transition
relation obtained by restricting Z to pairs whose first component
is in X. Similarly, by Z\ X we mean the restriction of Z to pairs
whose second component is in X. We use Y o Z to denote the
composition of two transition relations Y and Z.

X/Z ¥ {(ab)eZ|ac X}
22X Y fab)eZ|beXx}
YoZ ¥ {(a,c)| 3. (a,b) €Y and (b,c) € Z}

For two transition relations Y, Z C ProgState x ProgState, if
Z oY CY oZ then we say that Y right-commutes with Z, and
also that Z left-commutes with Y.

THEOREM 2 (Reduction Theorem). For all i, let Ri, Li, and W;
be sets of states, and —; be a transition relation. Suppose for all i,

1. Ri, Li, and W; are pairwise disjoint,
2. (Li/—i\Rs) is false,

and for all j # 1,

3. — and — are disjoint,

4. (—i\R.i) right-commutes with — ;,

5. (Li/—4) left-commutes with — ;,

6.if p —i g then R;(p) < R;(q), Li(p) < L;(q), and
Wi(p) < W;(q).

LetM = —|(Ri V [,z), N = Vi. M, W =3 W;, == Ji. —,
and —= Ji. (Vj #i. Nj)/—i. Suppose p € N and p —* q.
Then the following statements are true.

1. Ifqg €N, thenp —" q.
2. Ifg e WandVi.q & L;, thenp —* ¢ and ¢ € W.

PROOE: See [20].

6.1 Verifying Cooperability

We now consider how to instantiate the reduction theorem for our
setting. We begin by introducing the set WF of well-formed states
and the set N; of states where thread ¢ is yielding (not in an
epoch). The set NV describes yielding states in which all threads
are yielding:

WE = {(H, M, T) | T+ (H, M, T)}
Ni = WFN{{H,M,T)|T;is yielding}
N = WFN{{H,M,T)|Vi.T;is yielding}

Each epoch must consist of a collection of right movers, fol-
lowed by at most one non mover (which we call the commit point
of the epoch), followed by a collection of left movers. To apply the
reduction theorem, we must determine if each thread 7’ is currently
in the right-mover or left-mover part of an epoch. If I' = T; : (s, ¢)
where ¢ C L, then thread ¢ has passed its commit point, and subse-
quent operations of thread ¢ (up to the next yield) must commute to
the left to join with previous operations by that thread. Conversely,
if ¢ £ L, then this epoch has not committed, subsequent operations
of thread < may commute to the right to join with future operations
by that thread.



Based on this intuition, we characterize whether each thread 7 is
in the left-mover L; or right-mover R; part of an epoch as follows:

Li=WFNn{(H,M,T)|TFT;:(s,c)andcC L} \ N;
Ri= WFN{{H,M,T)|TFT:(s,c)and c Z L} \ N;

Using Theorem 1 and Theorem 2, we now have the necessary
machinery to prove two fundamental correctness properties of our
effect system. First, we consider any preemptive execution from
a well-formed state P to a subsequent state Q). If P and Q) are
both yielding then () can also be reached from P via a cooperative
execution.

The second property of our effect system allows us to check
program assertions on cooperative executions and conclude that the
assertions will hold on preemptive executions as well. The set W;
describes states where thread 7 has gone wrong by misapplying a
primitive, and a program state is bad if any thread has gone wrong:

W, = WFN{(H,M,T)|T; = wrong}

We show that if a preemptive execution from a well-formed state
P reaches a bad state (), then there is a cooperative execution from
P that also ends in a bad state. The proof of this property requires
that once an epoch has reached its commit point, then it must be
able to finish. A program P is nonblocking if whenever P —, Q
and L;(Q), then there exists Q’ such that Q —7 Q' and —L;(Q").

THEOREM 3 (Cooperability). Let P be a program with correct

conflict and call tags and let 1" be a valid type environment such
that T = P. Suppose N (P) and P —, Q. Then:

L IFN(Q) then P —7 Q.
2. If P is nonblocking and Q) is bad then there exists Q' such that
P —* Q" and Q' is bad.

PROOF. Suppose P and () are states such that N (P) and P —,
Q. We apply the Reduction Theorem (Theorem 2) by substituting
the set WW; for W;, the set R; for R;, the set L; for L;, the relation
—; for —;, the relation —. for —, the state P for p, and the
state () for g. This substitution satisfies the six preconditions of
the Theorem 2. From this instantiation of the Reduction Theorem,
we prove Theorem 3 as follows.

1. Since N(Q) by assumption, we get from the first part of the
Reduction Theorem that P —} Q.

2. We show that for any program state S, if S is bad then there ex-

ists state S’ such that S —, S” and S’ is bad and Vi. —L;(S").
For any state S, let £(S) = {i | Li(S)}. The proof is by
induction on [£(S)|. If [£(S)| = 0, the hypothesis is trivially
true. Now assume that [£(S)| > 0, and pick some thread
1€ L(S).
Since P is nonblocking, we have a state S” such that S —; S”
and —L;(S"). We also have that j € £(S) iff j € £(S")
and also W;(S) iff W;(S"”) for all j # i.Therefore £(S") =
2(S) \ {i} and also 3j. W;(S"). By the induction hypothesis,
there is a state S” such that S” —; S’, 3j. W;(S5’), and
Vi. =L (S"). Therefore, we have S — S’: a bad state moving
to another bad state.

Since @ is bad by assumption, we use the previous paragraph’s
result to conclude that there exists a state Q" such that Q —
Q" and Q" is bad and Vi. =L;(Q"). We may now apply the
second part of the Reduction Theorem: there exists a state Q’
such that Q" is bad and P —} Q’.

6.2 Verifying Serializability

A program may have both yield annotations and atomic block
annotations. We show that every cooperative execution is also a
serial execution: that is, atomic block annotations are satisfied by a
cooperative execution.

THEOREM 4 (Cooperative Traces are Serial). IfI' = P and P —.
Q then P —; Q.

PROOE. The proof proceeds by contradiction. Let P = (H, M, T)
and suppose that P —. @ because P —; (@, and also that
P /5 Q because T; contains in-atomic for some j # .

From the rule [PROG], we have that 7; = E[in-atomic ]
for some E,t. From P —. (), we have that 7} is yielding. Thus
T; = E[in-atomic E'[yield]].

From the rule [YIELD], we have I' - yield : CY. Because 7
is well formed, we have T' - E'[yield] : x, where CY C k.

From the antecedent in the rule [INATOMIC], T} is ill-formed,
contradicting our assumption that I" = P.

7. Related Work

Lipton [32] proposed reduction as a way to reason about concurrent
programs without considering all interleavings. He focused primar-
ily on reasoning about deadlocks. Doeppner [14], Back [8], and
Lamport and Schneider [31] extended this work to allow proofs of
general safety properties.

A number of tools have been developed for detecting race con-
ditions, both statically and dynamically. Our previous work on
rccjava [3] uses a type system to catch race conditions in Java
programs. This approach has been extended [5, 10, 11] and adapted
to other languages [25]. Many other static race detectors have been
developed, including Warlock [44], Locksmith [39], Chord [36],
and [16, 36, 48]. Eraser [41] detects race conditions dynamically,
and this approach has been refined to eliminate false positives, re-
duce overhead, and handle additional synchronization idioms, as
in [37, 46], or combined with happens-before reasoning [38, 53].
Other approaches have combined dynamic analysis with a global
static analysis to improve precision and performance [12, 15, 47].

A variety of tools have been developed to check for atomic-
ity violations, both statically and dynamically. The Atomizer [18]
uses Lipton’s theory of reduction [32] to check whether steps of
each transaction conform to a pattern guaranteed to be serializ-
able. Wang and Stoller developed an alternative block-based al-
gorithm [51] and also more precise commit-node algorithms [50].
Prior work has developed expressive type and effect systems for
verifying atomic specifications in Java programs [5, 19-21, 23, 40,
49]; we believe these ideas could be adapted to also verify yield
annotations.

Our yield effect system was inspired by work on automatic
mutual exclusion, a recently proposed concurrency programming
model based on having mutual exclusion by default [1, 2, 29]. A
key difference is that automatic mutual exclusion enforces a yield
annotation at run time, while our effect system uses static analy-
sis to check that yield annotations provide equivalent cooperative
execution.

Several recent studies have focused on lightweight transac-
tions [26, 30, 42] and automatic generation of synchronization
code from high-level specifications [13, 28, 35, 45]. Much of this
work is orthogonal to ours, and while these approaches offer a
promising alternative to explicit concurrency control, we believe
that a combination of the two approaches will be the most effective
programming model for the foreseeable future.



8. Discussion and Future Work

This paper proposes yield as a specification of where thread
interference may occur, and presents some preliminary technical
results. A number of open issues remain for future work.

One immediate question is how well this effect system would
scale to larger programs, assuming we had appropriately precise
flow and race condition information for those programs. A limita-
tion of our current system is that it cannot capture situations where
the effect of a program expression is context- or state-dependent, as
happens with re-entrant lock acquires, which are essentially nops.

More generally, we would like a combined type-and-effect sys-
tem that incorporates control-flow, race condition, and cooperabil-
ity reasoning. Prior work has developed similar type-and-effect sys-
tems focused on verifying atomicity in class-based languages such
as Java [5, 19-21, 23, 40, 49]. These system include a variety of
features to handle large-scale programs, such as conditional effects
(to handle re-entrant locking), dependent classes parameterized by
locks, type and effect inference, etc. We expect that similar tech-
niques could be developed for verifying yield annotations. Expe-
rience with such systems suggests that type checking (and possi-
bly type inference) would likely scale to large programs, but may
encounter some difficulty in verifying some less common synchro-
nization idioms.

Prior work has explored dynamically verifying and/or inferring
atomicity specifications. An interesting idea is to use similar tech-
niques to dynamically infer and insert yield specifications into the
source code of large multithreaded software systems. Such an infer-
ence system would encounter some heuristic design choices about
where to place yield annotations. As one example, should a yield
annotation at a call boundary be inserted into the caller or callee?

Nonetheless, these automatically inferred yield specifications
could provide a valuable reminder to the programmer during on-
going code maintenance of exactly where thread interference may
occur, and where the “natural” expectation of sequential seman-
tics is violated. Keeping yield annotations in source code would
also allow (static or dynamic) tools to highlight when additional
and possibly unintentional thread interference is introduced during
maintenance activities.

Yield annotations could also improve the efficiency of model
checkers and other code verification tools, by enabling them to
consider fewer interleavings. Although partial-order methods [24]
already play a similar role, programmer-specified yield annotations
might provide tighter bounds on thread interference.

9. Conclusion

Multithreading is increasingly used to improve performance and
scalability of programs on today’s multicore machines. However,
reasoning about multithreaded programs is a difficult endeavor,
due to the explosive number of thread interleavings that must be
considered for program correctness.

Atomicity is a specification which identifies code blocks that are
serializable, that is, equivalent to a serial execution. Although the
benefits of atomicity have been explored in prior work, we argue
that atomicity has shortcomings which limit its utility. Specifically,
atomicity forces two distinct modes of reasoning (sequential/mul-
tithreaded) on the programmer, and still exposes the full difficulty
of reasoning about concurrency outside of atomic blocks.

We believe that yield annotations offer a complementary ap-
proach that provides a single, universal mode of cooperative rea-
soning throughout the program. This paper introduces a static ef-
fect system which guarantees that any preemptive execution of a
well-formed program is guaranteed to behave equivalently to some
cooperative execution. We hope that our effect system helps to re-
duce the difficulty of reasoning about multithreaded programs.
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