
Types for Atomicity

Cormac Flanagan Shaz Qadeer

HP Systems Research Center,
1501 Page Mill Road, Palo Alto, CA 94304

ABSTRACT
Ensuring the correctness of multithreaded programs is dif-
ficult, due to the potential for unexpected and nondeter-
ministic interactions between threads. Previous work has
addressed this problem by devising tools for detecting race
conditions, a situation where two threads simultaneously ac-
cess the same data variable, and at least one of the accesses
is a write. However, the absence of race conditions is neither
necessary nor sufficient to ensure the absence of errors due
to unexpected thread interactions.

We propose that a stronger non-interference property is
required, namely the atomicity of code blocks, and we present
a type system for specifying and verifying such atomicity
properties. The type system allows statement blocks and
functions to be annotated with the keyword atomic. If the
program type checks, then the type system guarantees that
for any arbitrarily-interleaved program execution, there is a
corresponding execution with equivalent behavior in which
the instructions of each atomic block executed by a thread
are not interleaved with instructions from other threads.
This property allows programmers to reason about the be-
havior of well-typed programs at a higher level of granular-
ity, where each atomic block is executed “in one step”, thus
significantly simplifying both formal and informal reasoning.

Our type system is sufficient to verify a number of interest-
ing examples. For example, it can prove that many methods
of java.util.Vector are atomic, even though some meth-
ods have benign race conditions, and would be rejected by
earlier type systems for race detection.

Categories and Subject Descriptors
D.1.3 Concurrent Programming, parallel programming; D.2.4
Software/Program Verification

General terms
Reliability, Security, Languages, Verification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TLDI’03, January 18, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-649-8/03/0001 ...$5.00.

1. INTRODUCTION
Ensuring the correctness of multithreaded programs is dif-

ficult, due to the potential for unexpected and nondeter-
ministic interactions between threads. Previous work has
addressed this problem by devising type systems [9, 10] and
other static [11] and dynamic [20] checking tools for de-
tecting race conditions. A race condition occurs when two
threads simultaneously access the same data variable, and
at least one of the accesses is a write.

Unfortunately, the absence of such race conditions is not
sufficient to ensure the absence of errors due to unexpected
thread interactions. To illustrate this point, consider the
following code, in which the data variable x is protected by
the lock l, and t is a thread-local variable:

acquire(l); t := x; release(l);
t := t + 1;
acquire(l); x := t; release(l);

This code does not have any race conditions, a property that
can be easily verified with existing tools. However, executing
this code may not have the expected effect of atomically
incrementing x by 1. For example, if n such code fragments
execute concurrently, the variable x may be incremented by
any number between 1 and n.

We propose that a stronger non-interference property is
required, namely the atomicity of code blocks. If a code
block is atomic, we can safely reason about the program’s
behavior at a higher level of granularity, where the atomic
block is executed “in one step”, even though the scheduler
is free to interleave threads at instruction-level granularity.

The notions of atomicity and race-freedom are closely re-
lated, and both are often achieved in practice using synchro-
nization mechanisms such as mutual-exclusion locks, reader-
writer locks, or semaphores. However, as illustrated in the
example above, race-freedom is not sufficient to prove atom-
icity; nor is it necessary, as we will show later in Section 5.
Thus, even though programmers typically have precise ex-
pectations regarding atomic code fragments, existing race-
detection techniques cannot verify these expectations.

In this paper, we present a type system for verifying atom-
icity of code blocks in multithreaded programs. Statement
blocks and functions in the target program can be anno-
tated with the keyword atomic. Our type system guarantees
that each atomic block in a well-typed program is reducible,
which means that for any (arbitrarily-interleaved) execution,
there is a corresponding execution with equivalent behavior
in which the execution of each atomic block by a thread is
not interleaved with instructions from other threads.

1.1 Motivating example
To illustrate the importance of atomicity, consider a bank

with a single account whose current balance is stored in the
variable balance, which is initially 0. The function deposit

deposits money into the account.

int balance = 0;

void deposit(int amt) {

balance = balance + amt;

}

Suppose that two ATMs simultaneously deposit money into
the account, a situation that is modeled by the following
multithreaded program.

fork { deposit(10); }

fork { deposit(15); }

There is clearly a race on the variable balance. If the two
calls to deposit are interleaved, the final value of balance
may reflect only one of the two deposits to the account.

We can fix this error by introducing a mutual exclusion
lock m and re-coding the function deposit.

Mutex m;

void deposit(int amt) {

acquire(m);

balance = balance + amt;

release(m);

}

This new implementation of deposit is race-free, and
behaves correctly even when called from multiple threads.
However, in general, the absence of races is not sufficient to
ensure the absence of errors due to thread interactions. We
illustrate this point by adding two functions—read balance

to return the current account balance and withdraw to take
money out of the account.

int read_balance() {

int t;

acquire(m);

t = balance;

release(m);

return t;

}

int withdraw(int amt) {

int t = read_balance();

acquire(m);

if (t <= amt) {

balance = 0;

} else {

balance = balance - amt;

t = amt;

}

release(m);

return t;

}

Even though there are no races in the functions shown above,
the function withdraw is not atomic and may not behave
correctly. For example, consider two concurrent transactions
on the account —a withdrawal and a deposit— issued at a
time when the account balance is 10.

fork { withdraw(10); }; // Thread 1

fork { deposit(10); }; // Thread 2

We would expect the account balance to remain 10 after the
program terminates. However, there is an execution that vi-
olates this expectation. Suppose the scheduler first performs
the call to read balance in Thread 1 which returns 10. The
scheduler then switches to Thread 2 and completes the ex-
ecution of this thread ending with balance = 20. Finally,
the scheduler switches back to Thread 1 and completes the
execution setting balance to 0. Even though a race-analysis
tool will report that there are no races in the program shown
above, unexpected interaction between the threads can lead
to incorrect behavior.

The bank account interface provided by the three func-
tions deposit, read balance, and withdraw is intended to
be atomic, a property common to many interfaces in mul-
tithreaded programs. A programmer using an atomic inter-
face should not have to worry about unexpected interactions
between concurrent invocations of the methods of the inter-
face. Our type system provides the means to specify and
verify atomicity properties, thus catching errors such as the
one in withdraw above.

1.2 Types for atomicity
As we have seen, although the notions of atomicity and

race-freedom are closely related, and both are commonly
achieved using locks, race-freedom is neither necessary nor
sufficient for ensuring atomicity. We now present a brief
overview of our type system for checking atomicity.

We allow any function and any code block to be anno-
tated with keyword atomic, meaning that it is intended to
be reducible. A code block is reducible if for any execution
in which this code block has been fully executed, there is
another execution with the same final state in which all ac-
tions of this code block happen consecutively without any
interleaved actions by other threads.

Our type system uses Lipton’s theory of right and left
movers [18], to prove the correctness of atomic annotations.
An action a is a right mover if whenever a is followed by an
action b of a different thread, the actions a and b can be
swapped without changing the resulting state. Similarly, an
action a is a left mover if whenever a follows an action b of a
different thread, the actions a and b can be swapped, again,
without changing the resulting state.

The type system classifies operations as left or right movers
as follows. The lock acquire operation is a right mover, since
it right-commutes with any immediately following operation
performed by a second thread, including reads and writes of
variables, and acquires and releases of other locks. Note
that the second thread cannot either acquire or release the
lock that was acquired by the first thread. For similar rea-
sons, the lock release operation is a left mover. To determine
whether a variable access (read or write) is a right or left
mover, our type system relies on a race-detection system to
determine if other threads may access that variable at the
same time. If there is no race condition on the variable,
then such simultaneous accesses can not occur, and hence
the variable access is both a right and a left mover.

Suppose a code block contains a sequence of 0 or more
right movers followed by a single atomic action followed by a
sequence of 0 or more left movers. Then an execution where
this code block has been fully executed can be reduced to
another execution with the same resulting state where the

code block is executed atomically without any interleaved
actions by other threads.

To illustrate these ideas, consider a method that acquires
a lock (a right mover action), reads a variable x protected
by that lock (both a left and right mover action), updates
that variable (also a both mover), and then releases the lock
(a left mover action). Suppose the actions of a thread that
calls this method are interleaved with actions E1, E2, E3

of other threads. Then the following diagram implies that
there exists an equivalent execution where the operations
of the method are not interleaved with operations of other
threads; thus the method is atomic.

E1 E3t = xacq s8s′6
x = t+1 s′5s4s3s′2s1

acq E3E2 relt = xE1 x = t+1
s8s7s6s5s4s3s2s1

E2 s′7
rel

For our bank account example, there are no race con-
ditions, and hence our type system infers that the imple-
mentations of deposit and read balance are atomic. The
body of withdraw consists of a call to the atomic function
read balance, followed by an atomic block of code. How-
ever, the sequential composition of two atomic code blocks
is not necessarily atomic. Therefore, the type system is un-
able to prove that the implementation of withdraw is atomic
and reports an error.

2. THE LANGUAGE CAT
We formalize the ideas of this paper in terms of Cat, a

small, imperative, multithreaded language with higher-order
functions and dynamic thread creation. Cat is loosely mod-
eled after Cyclone [16], a type-safe variant of the C program-
ming language, and is essentially a restricted subset of C,
extended with facilities for reasoning about atomicity.

2.1 Syntax
Cat expressions include values, variable reference and as-

signment, primitive and function applications, conditionals,
and while loops. In addition, the expression let x = e1 in e2

allocates a fresh variable x in the heap, and initializes x
with the result of evaluating the expression e1. The vari-
able x is bound within e2, and may be α-renamed in the
usual fashion. We use e1; e2 to abbreviate let x = e1 in e2

whenever x does not occur free in e2. The language sup-
ports multithreaded programming via the construct fork e,
which spawns a new thread for the evaluation of e. Ex-
pressions can be annotated with the keyword atomic; the
type system verifies that such expressions are reducible. The
in-atomic construct is used to model program evaluation
and should not appear in source programs.

Values in Cat include constants, function definitions, and
synchronization locations. The set of constants is left inten-
tionally unspecified, but should include integer constants.
A function definition f(x) e introduces a function named f ,
whose formal parameters x are bound within the body e,
and may be α-renamed in the usual fashion.

Syntax

e ∈ Expr ::= v | xr | xr := e | p(e) | eF (e)
| if e e e | while e e
| let x = e in e | fork e
| atomic e | in-atomic e

v ∈ Value ::= c | m | f(x) e
r ∈ Tag ::= • | ε

x ∈ Var
m ∈ SyncLoc
f ∈ FnName

F ∈ 2FnName

p ∈ Prim
c ∈ Const

Synchronization locations are references to synchroniza-
tion values. Our experience in analyzing systems software
indicates that a variety of synchronization mechanisms are
used in practice. For generality, we leave the set of syn-
chronization values unspecified, but they might include, for
example, mutual exclusion locks, reader-writer locks, sema-
phores, etc. These synchronization values are manipulated
by primitive applications p(e), which might include opera-
tions to allocate, acquire, and release mutual exclusion locks.
In addition, the set of primitives also include arithmetic op-
erations and the assert primitive.

To simplify our presentation, our type system does not
reason about race-conditions, since this topic has been cov-
ered by a variety of previous tools [3, 10, 14]. Instead, we
simply assume that a race detection system has already an-
notated each variable access (read or write) with an conflict
tag , which is • if that access may be involved in a race con-
dition, and is ε otherwise.

In addition, we assume that a program flow analysis has
been used to annotate each function call eF (e) with a call
tag F denoting the set of functions that may be invoked by
that call. Finally, given that our goal is static detection of
software defects, it would also be appropriate to run a con-
ventional type checker to catch, for example, applications of
arithmetic operations to non-numeric arguments. Factoring
out all these separate issues allows us to develop a more ele-
gant type system that focuses on the task at hand, namely,
checking the correctness of atomicity annotations.

2.2 Semantics
A program state is a 3-tuple consisting of a heap H , which
is a partial map from variables to values, a synchronization
heap M , which is a partial map from synchronization loca-
tions to synchronization values, and a sequence T of threads.
Each thread is either an expression or wrong. A thread be-
comes wrong if a primitive operation is applied to incorrect
arguments. An evaluation context is used to identify the
next part of an expression to be executed. An evaluation
context E is an expression with a “hole” [] in place of the
next sub-expression to be evaluated, and E[e] denotes the
operation of filling the hole in E with the expression e.

The transition relation →i performs a single step of thread
i. The notation H [x := v] denotes a new heap that is iden-
tical to H except that it maps x to v. The in-atomic con-
struct records that execution is proceeding inside an atomic
block, and should only appear in an evaluation context po-
sitions.

The meaning of a primitive operation p is defined using
the partial function Ip, which takes a sequence of argument

Semantics

State space
P ∈ ProgState = Heap × SyncHeap × ThreadSeq
H ∈ Heap = Var −→◦ Value
M ∈ SyncHeap = SyncLoc −→◦ SyncValue
T ∈ ThreadSeq = (Expr ∪ {wrong})∗

Evaluation contexts
E ::= []

| xr := E
| p(v, E, e)
| EF (e)
| vF (v, E, e)
| if E e e
| let x = E in e
| in-atomic E

Transition relations
→i,→,→→ ⊆ ProgState × ProgState

Transition rules (where i = |T | + 1)

H, M, T.E[while e1 e2].T ′ →i H, M, T.E[if e1 {e2; while e1 e2} 0].T ′
H, M, T.E[if v e1 e2].T ′ →i H, M, T.E[e1].T ′ if v �= 0
H, M, T.E[if 0 e1 e2].T ′ →i H, M, T.E[e2].T ′

H, M, T.E[let x = v in e].T ′ →i H[x := v], M, T.E[e].T ′ if x �∈ dom(H)
H, M, T.E[xr].T ′ →i H, M, T.E[H(x)].T ′

H, M, T.E[xr := v].T ′ →i H[x := v], M, T.E[v].T ′
H, M, T.E[p(v)].T ′ →i H, M ′, T.E[v′].T ′ if Ip(v, M) = 〈v′, M ′〉
H, M, T.E[p(v)].T ′ →i H, M, T.wrong.T ′ if Ip(v, M) = wrong

H, M, T.E[(f(x) e)F (v)].T ′ →i H[x := v], M, T.E[e].T ′ if x ∩ dom(H) = ∅
H, M, T.E[atomic e].T ′ →i H, M, T.E[in-atomic e].T ′

H, M, T.E[in-atomic v].T ′ →i H, M, T.E[v].T ′
H, M, T.E[fork e].T ′ →i H, M, T.E[0].T ′.e

H, M, T → P ′ if H, M, T →i P ′

H, M, T →→ P ′ if H, M, T →i P ′ and
Tj does not contain in-atomic for j �= i

values, a synchronization heap, and an integer identifying
the current thread, and returns a pair of a return value and
a (possibly modified) synchronization heap. In addition,
if the primitive is applied to incorrect arguments, Ip may
instead return wrong:

Ip :(Const ∪ SyncLoc)∗ × SyncHeap × Int −→◦
((Const ∪ SyncLoc) × SyncHeap) ∪ {wrong}

For example, the semantics of assert, addition and opera-
tions to allocate, acquire, and release locks, might be defined
as follows (where ε is the empty sequence and m.n is a se-
quence of length two):

Iassert(v, M, tid) ={ 〈0, M〉 if v �= 0
wrong if v = 0

I+(m.n, M, tid) =
〈m + n, M〉

Inew lock(ε, M, tid) =
〈m, M [m := 〈lock, 0〉]〉 if m �∈ dom(M)

Iacquire(m, M [m := 〈lock, 0〉], tid) =
〈m, M [m := 〈lock, tid〉]〉

Irelease(m, M, tid) ={ 〈m, M [m := 〈lock, 0〉]〉 if M(m) = 〈lock, tid〉
wrong otherwise

An assert goes wrong if its argument is 0, and otherwise
terminates normally without modifying the heap. Addition
is a pure primitive operation, and does not modify the syn-
chronization heap. The new lock operation returns a syn-
chronization location m that refers to a newly-allocated lock
containing 0, indicating that is not held by any thread. The
acquire operation acquires a lock, provided the lock is not
held by another thread. If the lock is held by some thread,
then the acquire operation blocks, and execution can only
proceed on the other threads. The release operation never
blocks; if the current thread holds the lock then the lock is
released, and otherwise the release operation goes wrong.

The fine-grain transition relation → performs a single step
of an arbitrarily chosen thread. We use →+ and →∗ to
denote the transitive and reflexive-transitive closure of →,
respectively. The coarse-grain transition relation →→ is sim-
ilar to →, with the additional restriction that a thread can-
not perform a step if another thread is inside an in-atomic

block. Thus →→ does not interleave the execution of an
atomic block with instructions from other threads.

We use the operational semantics to formalize the mean-
ing of the conflict tags and call tags. An expression e is
about to read x if e ≡ E[xr]. Similarly, e is about to write
x if e ≡ E[xr := v]. The conflict tags in a program P are
correct if whenever P →∗ H, M, T :

1. if Ti ≡ E[xε], then no other thread in T is about to
write x, and

2. if Ti ≡ E[xε := v], then no other thread in T is about
to read or write x.

Similarly, the call tags in P are correct if whenever P →∗

H, M, T and Ti ≡ E[(f(x) e)F (v)], then f ∈ F .

3. CAT TYPE SYSTEM
Traditional type systems reason about the set of values

produced by particular expressions, and focus on ensuring

that primitives are only applied to appropriate values. Race-
free type systems [3, 10, 14] check an additional property,
namely that the appropriate protecting lock is held when-
ever a shared variable is accessed. Our type system focuses
on an additional important correctness property: ensuring
that all blocks and functions marked atomic are in fact re-
ducible.

In general, an expression is reducible if it consists of 0 or
more steps that right-commute with steps of other threads,
followed by at most one atomic step, that need not commute
with steps of other threads, followed by 0 or more steps that
left-commute with steps of other threads. The type sys-
tem assigns to each expression an atomicity , which identi-
fies whether the evaluation of the expression right-commutes
with operations of other threads (R); left-commutes with op-
erations of other threads (L); both right- and left-commutes
(B); can be viewed as a single atomic action (A); or whether
none of these properties hold ().

a, b, c ∈ Atomicity = {B, L, R, A,	}
Atomicities are ordered by B � a � A � 	 for a ∈ {L, R},
as illustrated below. Let
 denote the join operator based on
this ordering. If atomicities a1 and a2 reflect the behavior of
expressions e1 and e2 respectively, then the sequential com-
position a1; a2 reflects the behavior of e1; e2, and is defined
by the following table.

RL

A

�

B

; B L R A 	
B B L R A 	
R R A R A 	
L L L 	 	 	
A A A 	 	 	
	 	 	 	 	 	

Similarly, if atomicity a reflects the behavior of e, then the
iterative closure a∗ reflects the behavior of executing e mul-
tiple times, and is defined by:

B∗ = B

R∗ = R

L∗ = L

A∗ = 	
	∗ = 	

Note that (1) sequential composition is associative and B
is the left and right identity of this operation, (2) iterative
closure is idempotent, and (3) both sequential composition
and iterative closure distribute over joins.

A type environment Γ maps function names and primi-
tives to corresponding atomicities. Our type system checks
that the atomicity of the implementation of a function f is
Γ(f). However, the type system assumes that the atomici-
ties of primitives are correct. We now formalize our assump-
tion on primitive atomicities.

A primitive p right-commutes with a primitive q if for all
i and j such that i �= j, the following conditions hold:

1. If Ip(v, M, i) = 〈v′, M ′〉 and Iq(u, M ′, j) = 〈u′, M ′′〉,
then there is M ′′′ such that Iq(u, M, j) = 〈u′, M ′′′〉
and Ip(v, M ′′′, i) = 〈v′, M ′′〉.

Type System

Γ � e : a
[exp const]

Γ � c : B

[exp syncloc]

Γ � m : B

[exp fun]
Γ � e : Γ(f)

Γ � f(x) e : B

[exp prim]
Γ � ei : ai

Γ � p(e) : (a1; . . . ; an; Γ(p))

[exp read]

Γ � xε : B

[exp read race]

Γ � x• : A

[exp assign]
Γ � e : a

Γ � xε := e : (a; B)

[exp assign race]
Γ � e : a

Γ � x• := e : (a; A)

[exp let]
Γ � e1 : a1 Γ � e2 : a2

Γ � let x = e1 in e2 : (a1; a2)

[exp if]
Γ � e : a Γ � ei : bi

Γ � if e e1 e2 : (a; (b1 � b2))

[exp while]
Γ � e1 : a1 Γ � e2 : a2

Γ � while e1 e2 : (a1; (a2; a1)∗)

[exp invoke]
Γ � e : a Γ � ei : ai

Γ � eF (e) : (a; a1; . . . ; an; (�f∈F Γ(f)))

[exp fork]
Γ � e : a

Γ � fork e : A

[exp atomic]
Γ � e : a a A

Γ � atomic e : a

[exp inatomic]
Γ � e : a a A

Γ � in-atomic e : a

[wrong]

Γ � wrong : B

Γ � P
[prog]

∀x ∈ dom(H). Γ � H(x) : B Γ � Ti : ai

∀e.(Ti contains in-atomic e ⇒ ∃E. Ti = E[in-atomic e])

Γ � H, M, T1 . . . Tn

2. If Ip(v, M, i) = wrong and Iq(u, M, j) = 〈u′, M ′〉,
then Ip(v, M ′, i) = wrong.

3. If Ip(v, M, i) = 〈v′, M ′〉 and Iq(u, M ′, j) = wrong,
then Iq(u, M, j) = wrong.

The primitive p left-commutes with the primitive q if q right-
commutes with p. A type environment is valid if the atom-
icity Γ(p) of each primitive p is correct, in that the following
two properties hold:

1. If Γ(p) � R, then p right-commutes with any primi-
tive q.

2. If Γ(p) � L, then p left-commutes with any primitive q.

For example, these two properties are satisfied by the fol-
lowing atomicities:

Γ(assert) = B

Γ(+) = B

Γ(new lock) = B

Γ(acquire) = R

Γ(release) = L

Note that since primitive operations only read or write the
synchronization heap, and not the regular heap, they triv-
ially commute with all non-primitive operations, which only
read or write the regular heap.

The core of our type system is a set of rules for reasoning
about the type judgment

Γ � e : a ,

which states that expression e has atomicity a. The type
rules defining these judgments are mostly straightforward.
The atomicity of a constant is B, since the “evaluation” of
a constant does not interfere with other threads.

[exp const]

Γ � c : B

The rule [exp let] states that the atomicity of a let ex-
pression let x = e1 in e2 is the composition a1; a2 of the
atomicities of e1 and e2.

[exp let]
Γ � e1 : a1 Γ � e2 : a2

Γ � let x = e1 in e2 : (a1; a2)

The rule [exp while] for while e1 e2 determines the atomic-
ities a1 and a2 of e1 and e2, and states that the atomicity of
the while loop is a1; (a2; a1)

∗, reflecting the iterative nature
of the while loop.

[exp while]
Γ � e1 : a1 Γ � e2 : a2

Γ � while e1 e2 : (a1; (a2; a1)∗)

The atomicity of a primitive application p(e) is the sequen-
tial composition of the atomicities of the argument expres-
sions e, followed by the atomicity Γ(p) of p.

[exp prim]
Γ � ei : ai

Γ � p(e) : (a1; . . . ; an; Γ(p))

The atomicity of a variable read xr depends on the conflict
tag r. If r = ε, then this read commutes (in both directions)
with steps of other threads, and so has atomicity B.

[exp read]

Γ � xε : B

If r = •, then this read has atomicity A, indicating that it is
an atomic action that may not commute with steps of other
threads.

[exp read race]

Γ � x• : A

The type rules for a variable write are similar. Finally, the
atomicity of the body of an atomic construct is required to
be at most A.

4. CORRECTNESS OF TYPE SYSTEM
Our type system guarantees that in any well-typed pro-

gram, each atomic block is reducible. Our proof of this result
depends on the following theorem, which is inspired by the
reduction theorem of Cohen and Lamport [6].

We start by introducing some additional notation. For
any state predicate X ⊆ ProgState and transition relation
Y ⊆ ProgState ×ProgState , by X/Y we mean the transition
relation obtained by restricting Y to pairs whose first com-
ponent is in X. Similarly, by Y \X we mean the restriction
of Y to pairs whose second component is in X.

The composition Y ◦ Z of two transition relations Y and
Z is the set of all transitions (p, r) such that there is a state
q and transitions (p, q) ∈ Y and (q, r) ∈ Z. A transition
relation Y right-commutes with a transition relation Z if
Y ◦Z ⊆ Z ◦Y , and Y left-commutes with Z if Z ◦Y ⊆ Y ◦Z.

Theorem 1 (Reduction). For all i, let Ri, Li, and
Wi be sets of states, and ⇀i be a transition relation. Suppose
for all i,

1. Ri, Li, and Wi are pairwise disjoint,

2. (Li/⇀i\Ri) is false,

and for all j �= i,

3. ⇀i and ⇀j are disjoint,

4. (⇀i\Ri) right-commutes with ⇀j,

5. (Li/⇀i) left-commutes with ⇀j,

6. if p ⇀i q, then Rj(p) ⇔ Rj(q), Lj(p) ⇔ Lj(q), and
Wj(p) ⇔ Wj(q).

Let Ni = ¬(Ri∨Li), N = ∀i. Ni, W = ∃i. Wi, ⇀= ∃i. ⇀i,
and ⇀⇀= ∃i. (∀j �= i. Nj)/⇀i. Suppose p ∈ N and p ⇀∗ q.
Then the following statements are true.

1. If q ∈ N , then p ⇀⇀∗ q.

2. If q ∈ W and ∀i. q �∈ Li, then p ⇀⇀∗ q′ and q′ ∈ W.

Proof. See appendix.

Let Γ be a fixed type environment. We define the atom-
icity α(e) of an expression e to be a if Γ � e : a. An ex-
amination of the type rules shows that α is a well-defined
partial function. Recall that our type system checks that an
atomic block consists of a sequence of left movers followed
by an atomic action followed by a sequence of right movers.
For each thread i, we begin by classifying each well-typed
state according to whether thread i is (1) not currently ex-
ecuting an atomic block, (2) executing the “right-mover”
part of some atomic block (before the atomic action), or (3)
executing the “left-mover” part of some atomic block (after
the atomic action).

WT = {〈H, M, T 〉 | Γ � 〈H,M, T 〉}
Ni = WT ∩ {〈H, M, T 〉 | |T | < i ∨ Ti �≡ E[in-atomic e]}
Wi = WT ∩ {〈H,M, T 〉 | Ti ≡ wrong}
Ri = WT ∩ {〈H, M, T 〉 | Ti ≡ E[in-atomic e] ∧ α(e) �� L}
Li = WT ∩ {〈H, M, T 〉 | Ti ≡ E[in-atomic e] ∧ α(e) � L}
By the following subject reduction theorem, every state

reachable from an initial, well-typed state is well-typed.

Theorem 2 (Subject Reduction). Let P be a pro-
gram with correct call tags and let Γ a type environment. If
Γ � P , and P → P ′, then Γ � P ′.

Proof. By case analysis on the transition rule for P →
P ′.

Using Theorem 1 and Theorem 2, we now have the neces-
sary machinery to prove two fundamental correctness prop-
erties of our type system. First, we show that if program ex-
ecution starts from a initial, well-typed state P and reaches
a subsequent state Q, where no thread in P or Q is inside
an in-atomic block, then Q can also be reached from P
according to the coarser transition relation →→ where each
atomic block is executed atomically, and is not interleaved
with steps from other threads.

The second property of our type system allows us to check
program assertions at the coarse level and conclude that
the assertions will hold at the concrete level as well. We
call a program state bad if a thread (having misapplied a
primitive) is wrong in that state. We show that if program
execution starts from a well-typed state P and reaches a bad
state, then there is an execution from P according to the
coarser transition relation →→ that ends in a bad state. The
proof of this property requires that once an atomic block
has committed , i.e., reached a stage where all subsequent
operations are left movers, then it must be able to terminate.
A program P is nonblocking if whenever P →∗ Q and Li(Q),
then Q →∗

i Q′ such that ¬Li(Q
′).

Theorem 3 (Correctness). Let P be a program with
correct conflict and call tags and let Γ be a valid type envi-
ronment such that Γ � P . Suppose ∀i. Ni(P) and P →∗ Q.
Then the following statements are true.

1. If ∀i. Ni(Q), then P →→∗ Q.

2. If P is nonblocking and ∃i. Wi(Q), then P →→∗ Q′ and
∃i. Wi(Q

′).

Proof Sketch. Using Theorem 2, we show in the appendix
that for all thread indices i,

1. Ri and Li are disjoint,

2. (Li/→i\Ri) is false,

and for all thread indices j �= i,

3. →i and →j are disjoint,

4. (→i\Ri) right-commutes with →j ,

5. (Li/→i) left-commutes with →j ,

6. if P →i Q, then Rj(P) ⇔ Rj(Q), Lj(P) ⇔ Lj(Q),
and Wj(P) ⇔ Wj(Q).

Suppose P and Q are states such that ∀i. Ni(P) and P →∗

Q. We use Theorem 1 by substituting the set Wi for Wi,
the set Ri for Ri, the set Li for Li, the relation →i for ⇀i,
the relation →→ for ⇀⇀, the state P for p, and the state Q
for q.

1. Since ∀i. Ni(Q), we get from the first part of Theo-
rem 1 that P →→∗ Q.

2. We show that for any state S, if ∃j. Wj(S) then S →∗

S′ such that ∃j. Wj(S
′) and ∀i. ¬Li(S

′). For any state
S, let l(S) = {i | Li(S)}. We do the proof by induction
on |l(S)|. If |l(S)| = 0, the hypothesis is trivially true.
If |l(S)| > 0, pick i ∈ l(S). Since P is nonblocking,
we have S →∗

i S′′ such that ¬Li(S
′′). We also have

that j ∈ l(S) iff j ∈ l(S′′) for all j �= i. Therefore
l(S′′) = l(S) \ {i}. Suppose Wj(S) for some thread
j. Since Li(S), we have i �= j and therefore Wj(S

′′)
as well. Thus, we also get that ∃j. Wj(S

′′). By the
induction hypothesis, there is S′ such that S′′ →∗ S′,
∃j. Wj(S

′), and ∀i. ¬Li(S
′). Therefore, we have S →∗

S′.

Since ∃j.Wj(Q), we use the result proved in the previ-
ous paragraph to conclude that Q →∗ Q′′, ∃j. Wj(Q

′′),
and ∀i. ¬Li(Q

′′). We now apply the second part of
Theorem 1 to get a state Q′ such that ∃j. Wj(Q

′) and
P →→∗ Q′.

5. AN APPLICATION
To illustrate the benefits of our type system, we now con-

sider its application to java.util.Vector (from JDK 1.1),
a widely-used Java library class. Throughout this section
we use Java syntax; extending our type system from Cat to
Java is the topic of a related paper [12].

The methods in Vector are all intended to be atomic. The
atomicity of a method is typically ensured by acquiring the
lock of the object on method entry and releasing it on exit.
Java provides a convenient way to perform these lock oper-
ations by adding the synchronized modifier to the method
definition. In older versions of Java, the synchronized mod-
ifier was retained in the interface documentation produced
by javadoc. However, synchronized is merely an imple-
mentation detail; in fact, it is not even necessary for achiev-
ing atomicity, as we will show later in this section. Our
type system provides the keyword atomic which allows the
atomicity of a method to be documented independent of the
particular technique used to achieve atomicity.

In addition to better documenting the interface, our type
system catches defects where a method is intended to be
atomic, but may not be. For example, the following method
from Vector includes an unsynchronized access to the field
elementCount, which may later result in an exception inside
the two-argument version of lastIndexOf:

public final int lastIndexOf(Object elem) {
return lastIndexOf(elemε, elementCount•-1);

}

Our earlier race condition checker [10] detected this bug, but
would pass the following fix, since it is technically free of race
conditions, even though the same error may still occur:

public final int lastIndexOf(Object elem) {
int c;
synchronized (this) { cε = elementCountε; }
return lastIndexOf(elemε, cε-1);

}

In contrast, the type system of this paper would reject
this fix, since the method is not atomic, thus encouraging
the programmer to produce the correct (and atomic) imple-
mentation:

synchronized public final int lastIndexOf(Object elem) {
return lastIndexOf(elemε, elementCountε-1);

}

Finally, we consider the implementation of the size()

method:

public final int size() {
return elementCount•;

}

This method is unsynchronized, and may read elementCount

when other threads are about to write it, as reflected in
the conflict tag •. Yet, since the method contains a sin-
gle step (the read of elementCount), it is still atomic. The
unsynchronized read of elementCount does complicate the
atomicity argument for other methods, which we illustrate
by considering an extension of Vector with the following
method:

public final void synchronized removeLastElement() {
elementCount• = elementCountε-1;

}

Since removeLastElement() is synchronized, the read of
the field elementCount has conflict tag ε, but the write to
elementCount has a conflict, due to the unsynchronized (and
hence possibly concurrent) read in size(). Yet, since the
body of removeLastElement() contains a single atomic ac-
tion (the write of elementCount) preceded by several opera-
tions that commute with steps of other threads, the method
is atomic, a property that can be verified by our type system.

Thus, our type system has sufficient power to specify and
verify fundamental properties concerning the behavior and
correctness of Vector. In particular, our type language al-
lows us to formally document a crucial property of the pub-
lic interface to Vector, which is that many methods can be
considered to execute atomically. In addition, our type sys-
tem is capable of verifying the atomicity of these methods,
despite subtle optimizations such as those in the size()

method. Thus, the client programmer can rely on these
atomicity properties, and safely reason about the behavior
of a multithreaded program based on the assumption that
each atomic method achieves its (informal) sequential spec-
ification in one step.

Our type system also revealed that certain Vector meth-
ods are not atomic. The unsynchronized method capacity()

returns the length of the underlying array used to represent
a Vector. Because of the two accessor methods capacity()
and size(), a thread may observe two distinct changes in
the state of a Vector whenever a concurrent thread calls
addElement(x). First, the result of capacity() may double,
if the underlying array is full and needs to be replaced with
a larger array. Second, the result of size() increases by one,
reflecting the additional element in the Vector. Thus, be-
cause the synchronization discipline of Vector is optimized
for performance, it does not provide the atomicity guaran-
tee for addElement that would be desirable. We note that
addElement is atomic provided the client code does not call
capacity(); extending our current type system to verify
such conditional atomicity properties is a topic for future
work.

6. RELATED WORK
Lipton [18] first proposed reduction as a way to reason

about concurrent programs without considering all possi-
ble interleavings. He focused primarily on checking dead-
lock freedom. Doeppner [8], Back [2], and Lamport and
Schneider [17] extended this work to allow proofs of gen-
eral safety properties. Cohen and Lamport [6] extended re-
duction to allow proofs of liveness properties. Misra [19]
has proposed a reduction theorem for programs built with
monitors [15] communicating via procedure calls. Bruen-
ing [4] and Stoller [22] have used reduction to improve the
efficiency of model checking. Recently, we used reduction
for checking concise functional specifications of interfaces in
multithreaded programs [13].

A number of tools have been developed for detecting race
conditions, both statically and dynamically. The Race Con-
dition Checker [10] uses a type system to catch race condi-
tions in Java programs. This approach has been extended [3]
and adapted to other languages [14]. Other static race detec-
tion tools include Warlock [21], for ANSI C programs, and
ESC/Java [11], which catches a variety of software defects in
addition to race conditions. Vault [7] is a system designed to
check resource management protocols, and lock-based syn-
chronization can be considered to be such a protocol. Aiken
and Gay [1] also investigate static race detection, in the
context of SPMD programs. Eraser [20] detects race condi-
tions and deadlocks dynamically, rather than statically. The
Eraser algorithm has been extended to object-oriented lan-
guages [23] and for improved precision and performance [5].

Thus, reduction have already been studied in depth, as
have type systems for preventing race conditions. The goal
of this paper is to combine these existing techniques in a
type system that provides an effective means of checking
atomicity properties of multithreaded programs.

7. CONCLUSION
Reasoning about the correctness of multithreaded pro-

grams, either formally or informally, is difficult, due to the
potential for subtle interactions between threads. However,
the knowledge that in certain atomic code fragments such
interactions do not occur significantly simplifies such cor-
rectness arguments. Programmers often intend that certain
functions should be atomic, and document this intention by
stating that these functions are “synchronized” or “thread-
safe”. However, programmers currently have little support
for formally documenting or verifying these atomicity prop-
erties.

This paper shows that such atomicity properties can be
specified and verified in a natural manner using an extended
type system. Our type system guarantees that, in any well-
typed program, each atomic block can be safely considered
to execute in one step. This guarantee enables the pro-
grammer to safely reason about the program’s behavior in a
significantly simpler manner, at a higher level of granularity.

For sequential languages, standard type systems provide a
means for expressing and checking fundamental correctness
properties. We hope that type systems such as ours will play
a similar role for reasoning about atomicity, a fundamental
correctness property of multithreaded programs.

Acknowledgments
We thank Martin Abadi and the anonymous reviewers for
valuable feedback that helped us to improve the paper.

8. REFERENCES
[1] A. Aiken and D. Gay. Barrier inference. In Proceedings

of the 25th Symposium on Principles of Programming
Languages, pages 243–354, 1998.

[2] R.-J. Back. A method for refining atomicity in parallel
algorithms. In PARLE 89: Parallel Architectures and
Languages Europe, Lecture Notes in Computer Science
366, pages 199–216. Springer-Verlag, 1989.

[3] C. Boyapati and M. Rinard. A parameterized type
system for race-free Java programs. In Proceedings of
the 16th Annual Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 56–69, 2001.

[4] D. Bruening. Systematic testing of multithreaded Java
programs. Master’s thesis, Massachusetts Institute of
Technology, 1999.

[5] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan,
V. Sarkar, and M. Sridharan. Efficient and precise
datarace detection for multithreaded object-oriented
programs. In Proceedings of the Conference on
Programming Language Design and Implementation,
pages 258–269, 2002.

[6] E. Cohen and L. Lamport. Reduction in TLA. In
International Conference on Concurrency Theory,
pages 317–331, 1998.

[7] R. DeLine and M. Fähndrich. Enforcing high-level
protocols in low-level software. In Proceedings of the
Conference on Programming Language Design and
Implementation, pages 59–69, 2001.

[8] T. Doeppner, Jr. Parallel program correctness through
refinement. In Proceedings of the 4th Symposium on
Principles of Programming Languages, pages 155–169,
1977.

[9] C. Flanagan and M. Abadi. Types for safe locking. In
Proceedings of European Symposium on Programming,
pages 91–108, 1999.

[10] C. Flanagan and S. Freund. Type-based race detection
for Java. In Proceedings of the Conference on
Programming Language Design and Implementation,
pages 219–232, 2000.

[11] C. Flanagan, K. Leino, M. Lillibridge, G. Nelson,
J. Saxe, and R. Stata. Extended static checking for
Java. In Proceedings of the Conference on
Programming Language Design and Implementation,
pages 234–245, 2002.

[12] C. Flanagan and S. Qadeer. Types for atomic
interfaces. Submitted for publication, 2002.

[13] S. Freund and S. Qadeer. Checking concise
specifications for multithreaded software. Submitted
for publication, 2002.

[14] D. Grossman. Type-safe multithreading in Cyclone. In
Proceedings of the Workshop on Types in Language
Design and Implementation, 2003.

[15] C. Hoare. Monitors: an operating systems structuring
concept. Communications of the ACM,
17(10):549–557, 1974.

[16] T. Jim, G. Morrisett, D. Grossman, M. Hicks,

J. Cheney, and Y. Wang. Cyclone: A safe dialect of C.
In USENIX Technical Conference Proceedings, pages
275–288, 2002.

[17] L. Lamport and F. Schneider. Pretending atomicity.
Research Report 44, DEC Systems Research Center,
130 Lytton Ave, Palo Alto, CA 94301, USA, 1989.

[18] R. Lipton. Reduction: A method of proving properties
of parallel programs. In Communications of the ACM,
volume 18:12, pages 717–721, 1975.

[19] J. Misra. A Discipline of Multiprogramming:
Programming Theory for Distributed Applications.
Springer-Verlag, 2001.

[20] S. Savage, M. Burrows, C. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector
for multithreaded programs. ACM Transactions on
Computer Systems, 15(4):391–411, 1997.

[21] N. Sterling. WARLOCK — a static data race analysis
tool. In USENIX Technical Conference Proceedings,
pages 97–106, Winter 1993.

[22] S. Stoller. Model-checking multi-threaded distributed
Java programs. In Proceedings of the 7th International
SPIN Workshop on Model Checking and Software
Verification, Lecture Notes in Computer Science 1885,
pages 224–244. Springer-Verlag, 2000.

[23] C. von Praun and T. Gross. Object-race detection. In
Proceedings of the 16th Annual Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, pages 78–82, 2001.

APPENDIX

A. PROOFS

Theorem 1 For all i, let Ri, Li, and Wi be sets of states,
and ⇀i be a transition relation. Suppose for all i,

1. Ri, Li, and Wi are pairwise disjoint,

2. (Li/⇀i\Ri) is false,

and for all j �= i,

3. ⇀i and ⇀j are disjoint,

4. (⇀i\Ri) right-commutes with ⇀j,

5. (Li/⇀i) left-commutes with ⇀j ,

6. if p ⇀i q, then Rj(p) ⇔ Rj(q), Lj(p) ⇔ Lj(q), and
Wj(p) ⇔ Wj(q).

Let Ni = ¬(Ri∨Li), N = ∀i. Ni, W = ∃i. Wi, ⇀= ∃i. ⇀i,
and ⇀⇀= ∃i. (∀j �= i. Nj)/⇀i. Suppose p ∈ N and p ⇀∗ q.
Then the following statements are true.

1. If q ∈ N , then p ⇀⇀∗ q.

2. If q ∈ W and ∀i. q �∈ Li, then p ⇀⇀∗ q′ and q′ ∈ W.

Proof. We will prove the theorem by induction. Our
induction hypothesis is:

If p ∈ N and p ⇀∗ q, then there exist k, l ≥ 0 and
a transition sequence

p = p1 ⇀+
t(1)

p2 ⇀+
t(2)

p3 · · · pk ⇀+
t(k)

pk+1

= q1 ⇀+
u(1) q2 ⇀+

u(2) q3 · · · ql ⇀+
u(l) ql+1 = q

with the following properties:

• for all 1 ≤ j ≤ k, if pj = pj,1 ⇀t(j) · · · ⇀t(j)

pj,x = pj+1, then

1. pj,1 ∈ Nt(j),

2. pj,2, . . . , pj,x−1 ∈ Rt(j) ∨ Lt(j), and

3. pj,x ∈ Lt(j) ∨Nt(j).

• for all 1 ≤ j ≤ l, if qj = qj,1 ⇀u(j) · · · ⇀u(j)

qj,x = qj+1, then

1. qj,1 ∈ Nu(j), and

2. qj,2, . . . , qj,x ∈ Ru(j).

We first show that this induction hypothesis implies the
theorem. Suppose p ∈ N and p ⇀∗ q.

1. Suppose q ∈ N . Then l = 0 and pk+1 = q1 = q. We
show by induction that pj ∈ N for all j ≤ k + 1. We
prove that if j ≤ k and pj+1 ∈ N , then pj ∈ N . Sup-
pose pj+1 ∈ N . Since pj ⇀+

t(j) pj+1, we have pj ∈ Ni

for all i �= t(j). We also know that pj ∈ Nt(j). There-
fore pj ∈ N . It is now easy to show that every transi-
tion in p = p1 ⇀+

t(1) p2 ⇀+
t(2) p3 · · · pk ⇀+

t(k) pk+1 = q

satisfies ⇀⇀. Therefore p ⇀⇀∗ q.

2. Suppose q ∈ W and ∀i. q �∈ Li. We show by induction
qj ∈ W and ∀i. qj �∈ Li for all 1 ≤ j ≤ l + 1. For the
base case, we have ql+1 = q. For the inductive case,
suppose qj+1 ∈ W and ∀i. qj+1 �∈ Li. Then qj �∈ Li

for all i �= u(j) and qj ∈ Nu(j). Therefore ∀i. qj �∈
Li. Moreover, since qj+1 ∈ Ru(j), qj+1 ∈ Wi for some
i �= uj. Therefore qj ∈ Wi ⊆ W. Therefore, we get
pk+1 = q1 ∈ W and ∀i. pk+1 �∈ Li.

We again use induction to show that ∀i. pj �∈ Li for
all 1 ≤ j ≤ k + 1. The induction proceeds exactly
as the induction argument in the last paragraph. Fi-
nally, we use induction to show that pj ∈ N for all
1 ≤ j ≤ k + 1. For the base case, we have p1 =
p ∈ N . Suppose pj ∈ N . Then pj+1 ∈ Ni for all
i �= t(j). From the induction hypothesis, we know
that pj+1 ∈ Nt(j) ∨ Lt(j). We have also shown that
∀i. pj+1 �∈ Li. Therefore pj+1 ∈ Nt(j) and we conclude
that pj+1 ∈ N . Therefore, we get pk+1 ∈ N . Let
q′ = pk+1. It is now easy to show that every transi-
tion in p = p1 ⇀+

t(1)
p2 ⇀+

t(2)
p3 · · · pk ⇀+

t(k)
pk+1 = q′

satisfies ⇀⇀. Therefore p ⇀⇀∗ q′ and we have already
shown that q′ = pk+1 ∈ W.

Now we prove the induction hypothesis by induction over
the length of the execution p ⇀∗ q. The base case where
p = q is trivial as we can choose k = l = 0. Otherwise
suppose p ∈ N and p ⇀∗ q ⇀i q′. Then the induction
hypothesis holds for p ⇀∗ q. We do a case analysis on q.

• q ∈ Ni. We show the following two statements by mu-
tual induction:

– qj ∈ Ni for all 1 ≤ j ≤ l + 1

– i �= u(j) for all 1 ≤ j ≤ l

For the base case, we have ql+1 = q ∈ Ni. There
are two inductive cases. Suppose qj+1 ∈ Ni. Since
qj+1 ∈ Ru(j), we have i �= u(j). Therefore qj ∈ Ni. In
particular, we get that pk+1 = q1 ∈ Ni.

Since u(1), . . . , u(l) are all different from i, we commute
all the actions performed by these threads to the right
of the action by thread i to get the execution sequence

p = p1 ⇀+
t(1) p2 ⇀+

t(2) p3 · · · pk ⇀+
t(k) pk+1

⇀i q′1 ⇀+
u(1) q′2 ⇀+

u(2) q′3 · · · q′l ⇀+
u(l) q′l+1 = q′ .

• q ∈ Li. Again, we show by induction that qj ∈ Ni

for all 1 ≤ j ≤ l + 1 and i �= u(j) for all 1 ≤ j ≤ l.
The proof proceeds exactly as in the last case. We
have that pk+1 = q1 ∈ Ni. There must be some j
such that t(j) = i. Otherwise p = p1 ∈ Ni, which
is a contradiction. Consider the greatest j such that
t(j) = l. Then t(j + 1), . . . , t(k) and u(1), . . . , u(l) are
all different from i. We commute the action performed
by thread i to the left of all actions performed by these
threads to get the execution sequence

p = p1 ⇀+
t(1) p2 · · · pj ⇀+

t(j)

p′
j+1 ⇀+

t(j+1) p′
j+2 · · · p′

k ⇀+
t(k) p′

k+1

= q′1 ⇀+
u(1) q′2 ⇀+

u(2) q′3 · · · q′l ⇀+
u(l) q′l+1 = q′ .

Since q ∈ Li, we have q′ ∈ Li ∨ Ni. Therefore q′j+1 ∈
Li ∨Ni.

• q ∈ Ri. We first prove by contradiction that u(1), . . . , u(l)
are all distinct from each other. Suppose 1 ≤ a, b ≤ l
are such that u(a) = u(b) and u(j) �= u(a) for all
a < j < b. Then we know that qa+1 ∈ Ru(a). Therefore
qb ∈ Ru(a) which is a contradiction since qb ∈ Nu(b).

We now prove by contradiction that i = u(j) for some
j such that 1 ≤ j ≤ l. If not, then pk+1 = q1 ∈ Ri. We
now perform a case analysis.

1. Suppose there is no j′ such that t(j′) = i. Then
p = p1 ∈ Ri which is a contradiction since p ∈ N .

2. Suppose j′ is the greatest such that t(j′) = i. Then
pj′+1 ∈ Ri, which is a contradiction since pj′+1 ∈
Lt(j′) ∨Nt(j′).

Therefore u(1), . . . , u(j), u(j+1), . . . , u(l) are all differ-
ent from i. We first commute the actions performed by
u(j + 1), . . . , u(l) to the right of the action performed
by i to get the execution sequence

p = p1 ⇀+
t(1)

p2 ⇀+
t(2)

p3 · · · pk ⇀+
t(k)

pk+1

= q1 ⇀+
u(1) q2 · · · qj ⇀+

u(j) q′j+1 · · · q′l ⇀+
u(l) q′l+1 = q′ .

If q′j+1 ∈ Ru(j) then we are done. Otherwise, we com-
mute actions performed by threads u(1), . . . , u(j − 1)
to the right of all actions performed by thread u(j) to
get the execution sequence

p = p1 ⇀+
t(1) p2 ⇀+

t(2) p3 · · · pk ⇀+
t(k) pk+1

= q′1 ⇀+
u′(1) q′2 · · · q′j ⇀+

u′(j) q′j+1 · · · q′l ⇀+
u′(l) q′l+1 = q′

where u′(1) = u(j), u′(2) = u(1), . . . , u′(j) = u(j −
1), u′(j + 1) = u(j + 1), . . . , u′(l) = u(l).

Since either q ∈ Ni or q ∈ Ri or q ∈ Li, our case analysis
and the proof is complete.

Theorem 3 Let P be a program with correct conflict and
call tags and let Γ be a valid type environment such that
Γ � P . Suppose ∀i. Ni(P) and P →∗ Q. Then the following
statements are true.

1. If ∀i. Ni(Q), then P →→∗ Q.

2. If P is nonblocking and ∃i. Wi(Q), then P →→∗ Q′ and
∃i. Wi(Q

′).

Proof. We show that for all thread indices i,

1. Ri, Li, and Wi are pairwise disjoint,

2. (Li/→i\Ri) is false,

and for all thread indices j �= i,

3. →i and →j are disjoint,

4. (→i\Ri) right-commutes with →j ,

5. (Li/→i) left-commutes with →j ,

6. if P →i Q, then Rj(P) ⇔ Rj(Q), Lj(P) ⇔ Lj(Q), and
Wj(P) ⇔ Wj(Q).

The proofs for the seven statements given above follow:

1. By the definition of Ri, Li, and Wi.

2. Suppose P1 →i P2 where P1 ∈ Li and P2 ∈ Ri. The
proof follows by a straightforward case analysis on the
transition rule for P1 →i P2.

3. The transition relation →i changes the expression rep-
resenting thread i but leaves the expressions of all other
threads unchanged. Therefore →i and →j are disjoint
for all i �= j.

4. Suppose P1 →i P2 →j P3 where i �= j and P2 ∈ Ri.
We proceed by case analysis on the rule for P1 →i P2.

(a) [Variable read] We have P1 = H, M, T such that
Ti ≡ E[xr], and P2 = H, M, T [i �→ E[H(x)]]. Since
P2 ∈ Ri, we have E ≡ E′[in-atomic E′′] and
α(E′′[H(x)]) �� L. Therefore P1 ∈ Ri ∨ Li and
from part (5) of this theorem we get P1 ∈ Ri.
From the subject reduction theorem, we know that
α(E′′[xr]) � A and α(E′′[H(x)]) � A. Therefore,
we get α(E′′[xr]) ∈ {R, A} and α(E′′[H(x)]) ∈
{R, A}. From Lemma 1, we have α(E′′[xr]) =
α(xr); α(E′′[H(x)]). The only way to satisfy this
equation is to have α(xr) = B. Therefore r =
ε. Since the conflict tag is correct and the other
thread j is not about to read or write x, so →i

right-commutes with →j .

(b) [Variable write] Similar.

(c) [Primitive application] In this case P1 = H,M, T
where Ti ≡ E[in-atomic E′[p(v)]]. Again, by sim-
ilar reasoning, α(p(v)) � R, and hence Γ(p) � R.
Hence, the application of p right-commutes with
any primitive application of thread j (which are the
only steps that modify the synchronization heap),
so →i right-commutes with →j .

(d) [Fork] In this case P1 = H,M, T such that Ti ≡
E[in-atomic E′[fork e]] and P2 = H, M, T [i �→
E[in-atomic E′[0]]. From the subject reduction
theorem, we know that α(E′[fork e]) � A. From
Lemma 1, we know that

α(E′[fork e]) = α(fork e); α(E′[0]) = A; α(E′[0]).

Therefore, we must have α(E′[0]) � L. Therefore
P2 ∈ Li and we have a contradiction.

(e) [Other rules] If P1 →i P2 by any of while, if, let,
call, atomic, or in-atomic, then these rules do not
modify the heap or the synchronization heap, and
so →i right-commutes with →j .

5. Suppose P1 →j P2 →i P3 where i �= j and P2 ∈ Li. A
straightforward case analysis on the rule for P2 →i P3

will yield the desired result.

(a) [Variable read] In this case P2 = H,M, T such
that Ti ≡ E[xr] and P3 = H,M, T [i �→ E[H(x)].
Since P2 ∈ Li, we have E ≡ E′[in-atomic E′′],

and α(E′′[xr]) � L. We also have P3 ∈ Li and
α(E′′[H(x)]) � L. By Lemma 1, we have

α(E′′[xr]) = α(xr); α(E′′[H(x)]).

Therefore α(xr) � L, and so r = ε. Since the
conflict tags are correct, the other thread j is not
about to read or write x, so →i left-commutes with
→j .

(b) [Variable write] Similar.

(c) [Primitive application] In this case P2 = H,M, T
where Ti ≡ E[in-atomic E′[p(v)]]. Again, by sim-
ilar reasoning, α(p(v)) � L, and hence Γ(p) � L.
Hence, the application of p left-commutes with any
primitive application of thread j (which are the
only steps that modify the synchronization heap),
so →i left-commutes with →j .

(d) [Fork] In this case P2 = H,M, T such that Ti ≡
E[in-atomic E′[fork e]] and P3 = H,M, T [i �→
E[in-atomic E′[0]]. From the subject reduction
theorem, we know that α(E′[fork e]) � A. From
Lemma 1, we know that

α(E′[fork e]) = α(fork e); α(E′[0]) = A;α(E′[0]).

Therefore α(E′[fork e]) �� L. Therefore P2 �∈ Li

and we have a contradiction.

(e) [Other rules] If P2 →i P3 by any of while, if, let,
call, atomic, or in-atomic, then these rules do not
modify the heap or the synchronization heap, and
so →i left-commutes with →j .

6. Suppose P →i Q. If this step is not a fork step, then
threads other than i do not change in going from P to
Q. Therefore Rj(P) iff Rj(Q), Lj(P) iff Lj(Q), and
Wj(P) iff Wj(Q).

If this step forks a new thread j, then P = H,M, T and
Ti = E[fork e] where e does not contain in-atomic,
since it does not occur in an evaluation context posi-
tion. Let j be the newly forked thread. Then Nj(P) (by
the definition of Nj) and Nj(Q). Furthermore, since
threads other than i or j do not change in going from
P to Q, we have that Rj(P) iff Rj(Q), Lj(P) iff Lj(Q),
and Wj(P) iff Wj(Q).

The remainder of the proof follows the proof sketch of this
theorem in Section 4.

Lemma 1. For all evaluation contexts E and expressions
e, if α(E[e]) is defined, then

1. α(e) is defined, and

2. for all values v such that α(v) is defined, the atomicity
α(E[v]) is defined and α(E[e]) = α(e); α(E[v]).

Proof. By induction on the derivation Γ � E[e] : a.

