
Unifying Hybrid Types and Contracts

Jessica Gronski and Cormac Flanagan

University of California Santa Cruz

Abstract

Contract systems and hybrid type systems provide two alternative approaches for en-
forcing precisely-defined interface specifications, with complementary advantages:
contract systems excel at blame assignment, whereas hybrid type systems support
type-based static analysis.
We unify these two approaches by demonstrating that hybrid type checking is suffi-
ciently expressive to encode higher-order contracts with proper blame assignment. In
particular, a contract obligation that enforces both sides of a contract is decomposed
into two type casts that each enforce one side of the contract. This expressiveness re-
sult provides several benefits, including allowing one of these casts to be lifted from
variable references to variable definitions, resulting in improved contract coverage
and removing the need for privileged contract obligations.

1 INTRODUCTION

The development of large software systems requires a modular development strat-
egy where software modules communicate via well-understood interfaces. Ideally,
these interfaces should be formally specified and mechanically enforced in order
to detect, isolate, and localize software errors. Static type systems and dynamic
contract systems [6] are two complementary approaches for enforcing software in-
terfaces. Recent work on hybrid type checking [7] combines these two approaches,
providing both the expressiveness benefits of contract systems while still verifying
or refuting many properties at compile time, much like traditional type systems.

A key feature of modern contract systems is that they excel at blame assign-
ment. Each contract obligation contains the labels of both modules that are party
to that contract, so that the appropriate module can be blamed for any contract vio-
lation. Blame assignment works correctly even in the presence of complex control
and data-flow operations involving higher-order functions, callbacks, etc. In large
software systems, this ability to not only detect but also to localize software errors
is extremely important.

For hybrid type systems, however, the analogous type cast operation contains
only one module label (instead of two). This difference suggests that hybrid type
systems are weaker at blame assignment, and, in this sense, fundamentally less
expressive than contract systems [4].

This paper investigates the relationship between contract systems and hybrid
type systems. We work in the context of two idealized languages: a contract lan-
guage λC (based on λCon [6]) and the hybrid-typed language λH [7]. Surprisingly,

XXIX–1

we show that λH is sufficiently powerful to express all λC programs. In particular,
the doubly-labelled contract obligation of λC (which enforces both sides of a con-
tract) is equivalent to two singly-labelled type casts in λH (each of which enforces
only one side of the contract). Prior work showed that contracts can naturally be
implemented as pairs of projections, each with a single blame label [5]. This paper
carries that development one step further, by showing that the type casts of λH ex-
actly provide this projection functionality. Moreover, we believe that reifying these
projections as a syntactic construct in the language provides additional flexibility
and clarity.

In addition to our main expressiveness result, this connection between contract
systems and hybrid type systems provides a formal foundation for understanding
the relationship between these two approaches, which we hope will facilitate fur-
ther cross-pollination between these domains. In particular, our result suggests
that the static-analysis machinery of hybrid type systems (including recent results
on the decidability of type inference [11]) could be applicable to λC contracts and
programs, perhaps strengthening existing contract-based analyses [15].

An immediate benefit of expressing a λC contract as two λH casts is that it
allows one of these casts to be lifted or refactored from the reference to an exported
variable to the definition of that variable, which provides earlier error detection
and improved contract coverage over λC.1 This refactoring means that the type of
each exported variable explicates the contract on that variable. In addition, this
refactoring allows privileged contract obligations to be replaced by unprivileged
type casts. That is, contract obligations are privileged in that a contract obligation
in one module may need to assign blame to a different module, and so contract
obligations should be inserted only by a trusted pre-processor or elaborator, and
should not be present in source programs. A type cast is unprivileged if it only
blames its containing module. In the refactored λH program, each module only
contains unprivileged type casts that dynamically enforce that module’s side of
each contract. The λH type system then ensures, via assume-guarantee reasoning,
that any assumption one module makes about a second module is guaranteed via
dynamic type casts in that second module.

In the remainder of the paper, we first briefly review the two languages being
compared, λC and λH , in Sections 2 and 3, respectively. Section 4 describes our
translation from contracts to types. Section 5 shows how λH enables a notion of
lifting that improves contract coverage. Section 6 proves the correctness of our
translation. We conclude with a discussion of related work.

2 THE CONTRACT LANGUAGE λC

We begin by reviewing λC (see Figure 1), which extends the simply-typed lambda
calculus with contracts along the lines of Findler and Felleisen [6]. The language is
typed and includes both base types B (Int and Bool) and function types T → T . In

1DrScheme’s projection-based implementation of contracts includes a similar optimization [5].

XXIX–2

Figure 1: λC Syntax and Evaluation Rules

B ::= Int | Bool Base Types
T ::= B | T → T Types
c ::= contract B v | c 7→ c Contracts
t ::= v | t t | letl x : T : c = t in t | blame(l) | tc,l,l′ Expressions
v ::= x | k | λx : T. t | vc7→c,l,l′ Values
k ::= + | − | < | > | = | 0 | 1 | . . . Constants

Evaluation Contexts E

E = • t | v • | letl x : T : c = • in t | •c,l,l′

Evaluation Rules t →c t ′

k v→c [[k]] (v) [E-CONST]
(λx : T. t) v→c t[x := v] [E-BETA]

letl x : T : c = v in t→c t[x := v] [E-LET]
vcontract B v′,l,l′ →c v if v′ v →∗

c true [E-OK]
vcontract B v′,l,l′ →c blame(l) if v′ v →∗

c false [E-FAIL]
vc7→c′,l,l′ v′→c [v (v′c,l

′,l)]c
′,l,l′ [E-FUN]

E[t1]→c E[t2] if t1 →c t2 [E-COMPAT]
E[blame(l)]→c blame(l) [E-BLAME]

addition to these simple types, the language includes contracts that more precisely
define module interfaces2. A base contract (contract B v) describes the set of
values of base type B that also satisfy the predicate v of type B → Bool. A function
contract c 7→ c′ describes functions that take an argument satisfying contract c and
return values satisfying contract c′.

A key goal of the contract system is to attribute blame for contract violations
to particular program modules. To avoid complicating the language with a module
system, λC modules are defined via let expressions. That is,

letl x : T : c = t1 in t2

defines a module t1 identified by label l, that exports a variable x of type T and
contract c. Code outside a let-bound expression is part of the main module.

Before execution, a λC program is first pre-processed (or elaborated) so that
each reference to the above let-bound variable x from a different module l′ is re-
placed by the contract obligation xc,l,l′ . A contract obligation enforces the contract
c, and blames any contract violation on either the server module l that exports x or
the client module l′ that imports x.

The evaluation rules of λC programs are mostly straightforward: see Figure
1. The rule [E-CONST] relies on the auxiliary partial function [[k]] : Expression →
Expression to define the semantics of constant functions. For example, [[+]](3) =

2Other languages, such as Eiffel [17], also include both types and contracts.

XXIX–3

Figure 2: λC Type Rules

Type Environment Γ

Γ ::= /0 | Γ,x : T

Type rules Γ ` t : T

[T-VAR]
x : T ∈ Γ

Γ ` x : T

[T-CONST]

Γ ` k : ty(k)

[T-LAM]
Γ,x : T1 ` t : T2

Γ ` (λx : T1. t) : (T1 → T2)

[T-APP]
Γ ` t1 : (T1 → T2) Γ ` t2 : T1

Γ ` t1 t2 : T2

[T-LET]
Γ ` t1 : T1 Γ `c c : T1 Γ,x : T1 ` t2 : T2

Γ ` letl x : T1 : c = t1 in t2 : T2

[T-BLAME]

Γ ` blame(l) : T

[T-OBLIG]
Γ ` t : T Γ `c c : T

Γ ` tc,l,l′ : T

Contract Type Rules Γ `c c : T

[T-BASEC]
Γ ` v : (B → Bool)

Γ `c contract B v : B

[T-FUNC]
Γ `c c : T1 Γ `c c′ : T2

Γ `c c 7→ c′ : (T1 → T2)

+3 and [[+3]](4) = 7. The rules [E-BETA] and [E-LET] perform by-value evalua-
tion of function applications and let expressions. The rule [E-COMPAT] compatibly
closes the evaluation relation →c over the evaluation context E.

The more interesting rules are those for evaluating a contract obligation vc,l,l′ .
If c is a base contract (contract B v′) and (v′ v) evaluates to false, then the
contract obligation reduces, via [E-FAIL], to blame(l), which blames the server l
for providing an inappropriate value v for x. Otherwise, if (v′ v) evaluates to true,
then the contract is fulfilled and the rule [E-OK] removes the contract obligation
from v. If c is a function contract c 7→ c′, then vc7→c′,l,l′ is considered a value. Once
this value is applied to an argument, the obligation decomposes into two smaller
obligations on the argument and the result of v, via [E-FUN].

The λC type system is defined via the usual judgement Γ ` t : T , which states
that the expression t has type T in environment Γ. The auxiliary judgement Γ `c

c : T checks that the contract c is applicable to values of type T . The rules defining
these two judgements are mostly straightforward: see Figure 2.

To illustrate the operational semantics of contracts, consider the following elab-
orated program P:

let f f : (Int → Int) : (cNeg 7→ cPos) =λx : Int. x in
letm m : Int : cPos = f cNeg7→cPos, f ,m 4 in mcPos,m,main

XXIX–4

where
cPos=(contract Int (λx : Int. x > 0))
cNeg=(contract Int (λx : Int. x < 0))

This example includes two modules, f and m, where we label each module ac-
cording to its exported variable. This program is evaluated as follows, where, for
clarity, we shade each contract obligation grey or white, according to whether the
obligation occurs on an expression produced by the module f or m, respectively.

P→c letm m : Int : cPos =(λx : Int. x)cNeg7→cPos, f ,m 4 in mcPos,m,main

→c letm m : Int : cPos = [(λx : Int. x) 4cNeg,m, f]cPos, f ,m in mcPos,m,main

→c letm m : Int : cPos = [(λx : Int. x) blame(m)]cPos, f ,m in mcPos,m,main

→c blame(m)

In this case, the contract obligation 4cNeg,m, f fails and the contract labels indicate
that the error originated in module m, which violated the contract cNeg 7→ cPos
of module f . Alternatively, if the literal 4 is replaced with −4, the first contract
obligation would succeed and P would evaluate to:

letm m : Int : cPos =−4cPos, f ,m in mcPos,m,main

in this case blaming f for the violation. Although P includes only first-order func-
tions, blame assignment also works in more complicated, higher-order situtations
where functions are passed as arguments to other functions, etc.

3 THE HYBRID-TYPED λH CALCULUS

Whereas λC incorporates both a static type system and a dynamic contract system,
λH [7] unifies these two interface specification systems into a single expressive
type system.

The syntax of λH is shown in Figure 3 and includes types (S), expressions (s)
and values (w). Types include refinement types of the form {x : B |s}, which de-
scribe the set of values of base type B that satisfy the predicate s. For example,
{x : Int |x ≥ 0} describes the set of positive numbers. We sometimes use a base
type B to abbreviate the trivial refinement type {x : B |true}. In λH , types can be
enforced dynamically, via a type cast 〈S2 ⇐ S1〉l s. Here the expression s is stat-
ically typed as S1 and the type cast dynamically enforces that the value produced
by s also has type S2; if not, the module labeled l is blamed.

Figure 3 defines the evaluation rules for λH ; of particular interest are the rules
for type casts. Casting a value w to a base refinement type {x : B |s} involves
checking if the predicate s[x := w] evaluates to true.

A function cast 〈(S3 → S4) ⇐ (S1 → S2)〉l w is considered a value; once an
argument w′ is supplied, that cast is decomposed into two smaller casts on the
function argument and result, via [F-FUN]:

(〈(S3 → S4)⇐ (S1 → S2)〉l w) w′ →h 〈S4 ⇐ S2〉l [w (〈S1 ⇐ S3〉l w′)]

XXIX–5

Figure 3: λH Syntax

S ::= {x :B |s} | S → S Types
s ::= w | s s | letl x : S = s in s | blame(l) | 〈S ⇐ S〉l s Expressions

w ::= x | k | λx : S. s | 〈S → S ⇐ S → S〉l w Values

Evaluation Contexts F

F ::= • s | w • | letl x : S = • in s | 〈S2 ⇐ S1〉l •
Evaluation Rules s →h s′

k w→h [[k]] (w) [F-CONST]
(λx : S. s) w→h s[x := w] [F-BETA]

letl x : S = w in s→h s[x := w] [F-LET]
〈{x :B |s2}⇐ {x :B |s1}〉l w→h w if s2[x := w]→∗

h true [F-OK]
〈{x :B |s2}⇐ {x :B |s1}〉l w→h blame(l) if s2[x := w]→∗

h false [F-FAIL]
(〈(S3 → S4)⇐ (S1 → S2)〉l w) w′→h 〈S4 ⇐ S2〉l [w (〈S1 ⇐ S3〉l w′)] [F-FUN]

〈(S1 → S2)⇐{x :B |s1}〉l w→h blame(l) [F-BAD1]
〈{x :B |s1}⇐ (S1 → S2)〉l w→h blame(l) [F-BAD2]

F [s1]→h F [s2] if s1 →h s2 [F-CTX]
F [blame(l)]→h blame(l) [F-BLAME]

Function casts involve a subtle mix of static and dynamic reasoning. Since the orig-
inal function w has type S1 → S2, the evaluation rules must ensure that w is only ap-
plied to values of type S1. The argument cast generated by [F-FUN], 〈S1 ⇐ S3〉l w′,
relies on the type system to ensure that w′ has type S3, and then dynamically casts
w′ to a value of type S1. Thus, in the function cast 〈(S3 → S4)⇐ (S1 → S2)〉l w, the
types S1 and S4 are enforced dynamically, whereas the type system is responsible
for enforcing S2 and S3.

The λH type system is defined via the judgement ∆ ` s : S, which states that the
expression s has type S in environment ∆: see Figure 4. The auxiliary judgement
∆ ` S checks that S is a well-formed type. Subtyping between function types is
straightforward, via [SUB-FUN]. Subtyping between refinement types is defined
via [SUB-BASE]. This rule uses the auxiliary judgement ∆ ` s1 ⇒ s2, which states
that s2 is true whenever s1 is, in any variable substitution that is consistent with
the type environment ∆. This notion of consistency between a substitution σ (from
variables to values) with an environment ∆ is formalized via the final judgement
∆ |= σ, and we refer the interested reader to [7] for more details.

Type checking for λH is in general undecidable. In this paper, however, since
we start with well-typed λC programs and translate expressions in a manner that is
type-preserving, our generated λH programs are well-typed by construction.

XXIX–6

Figure 4: λH Type Rules
Type Environment ∆

∆ ::= /0 | ∆,x : S

Type Rules ∆ ` s : S

[S-VAR]
x : S ∈ ∆

∆ ` x : S

[S-CONST]

∆ ` k : ty(k)

[S-LAMa]
∆ ` S1 ∆,x : S1 ` s : S2 x 6∈ FV (S2)

∆ ` (λx : S1. s) : (S1 → S2)

[S-APP]
∆ ` s1 : (S1 → S2) ∆ ` s2 : S1

∆ ` s1 s2 : S2

[S-LET]
∆ ` s1 : S1 ∆,x : S1 ` s2 : S2[x := s1]

∆ ` letl x : S1 = s1 in s2 : S2[x := s1]

[S-BLAME]
∆ ` S

∆ ` blame(l) : S

[S-CAST]
∆ ` S2 ∆ ` s : S1

∆ ` 〈S2 ⇐ S1〉l s : S2

[S-SUB]
∆ ` s : S1 ∆ ` S2 ∆ ` S1 <: S2

∆ ` s : S2

Well-Formed Types ∆ ` S

[WF-FUN]
∆ ` S1 ∆ ` S2

∆ ` (S1 → S2)

[WF-BASE]
∆,x : B ` s : Bool

∆ ` {x :B |s}

Subtyping ∆ ` S1 <: S2

[SUB-FUN]
∆ ` S3 <: S1 ∆ ` S2 <: S4

∆ ` (S1 → S2) <: (S3 → S4)

[SUB-BASE]
∆,x : B ` s1 ⇒ s2

∆ ` {x :B |s1}<: {x :B |s2}

Implication Rule ∆ ` s1 ⇒ s2

[IMP]
∀σ. (∆ |= σ and σ(s1)→∗

h true implies σ(s2)→∗
h true)

∆ ` s1 ⇒ s2

Consistent Substitutions ∆ |= σ

[CS-EMPTY]

/0 |= /0

[CS-EXT]
/0 ` s : S (x := s)∆ |= σ

x : S,∆ |= (x := s)σ

aThe hygiene condition x 6∈ FV (S2) was omitted from the initial version of this paper.

4 EXPRESSING CONTRACTS AS TYPES

We now show that λH is sufficiently powerful to express all λC programs, including
proper attribution of contract violations to appropriate modules.

XXIX–7

We begin by translating λC types (T) into more expressive λH types (S) via the
translation φt : T → S, which adds the trivial refinement predicate true to base
types.

φt(B)={x :B |true}
φt(T1 → T2)=φt(T1)→ φt(T2)

We also translate λC contracts (c) into λH types (S) via the translation φc : c → S,
which uses refinement types to emulate contracts.

φc(contract B v)= {x :B |φ(v) x} if x 6∈ FV (v)
φc(c 7→ c′)= φc(c)→ φc(c′)

These two translations already shed some light on the relationship between
λC types and contracts. Suppose that c is a contract over some type T (i.e. Γ `c

c : T). Since the contract c is a “restriction” of T , we might expect that φc(c)
would be a subtype of φt(T). This property holds for base contracts, but not for
function contracts, because of the contravariance of function domains. Thus φc(c)
and φt(T) may be incomparable under the subtyping relation. The two λH types
φc(c) and φt(T) are, however, identical in structure, except that φc(c) has more
precise refinement predicates. That is, base(φc(c)) = φt(T), where base : S → S is
a function that strips refinement predicates from λH types.

base({x :B |s})={x :B |true}
base(S1 → S2)=base(S1)→ base(S2)

Finally, we consider how to translate λC expressions into behaviorally-equivalent
λH expressions, and in particular, how to translate the contract obligation in our
earlier example P:

f cNeg7→cPos, f ,m 4

Recall that f has type Int → Int. The translated expression φ(f) should then have
type sInt → sInt, where sInt is the trivial refinement type {x : Int |true}.

As a first attempt we could translate the above contract obligation into a corre-
sponding type cast, yielding the λH expression

[〈S ⇐ base(S)〉 f f] 4

where
S =(sNeg → sPos)

base(S)=(sInt → sInt)
sNeg=φc(cNeg)
sPos=φc(cPos)

This translation has two problems, however. First, it retains only one blame label,
resulting in incorrect blame assignment. Second, and more importantly, the trans-
lated program is ill-typed, since the casted function has type S = sNeg → sPos, and
so should not be applied to 4, an expression of type sInt. Thus, this program is
both ill-typed and also no longer enforces the original cNeg domain contract.

XXIX–8

To solve both these problems, we introduce a second type cast to dynamically
enforce the domain part of function contracts, yielding the translated λH program:

[〈base(S)⇐ S〉m (〈S ⇐ base(S)〉 f f)] 4

Thus, given f of type base(S) = (sInt → sInt), the first type cast 〈S ⇐ base(S)〉 f

dynamically ensures the covariant property, that the function only returns posi-
tive integers, but relies on the type system to ensure the contravariant property,
that the casted function is only applied to negative integers. The second type cast
〈base(S) ⇐ S〉m dynamically fulfills this second obligation, producing a function
of type (sInt → sInt) that statically may be applied to any integer, but dynamically
fails and blames module m if ever given non-negative arguments. Together, these
two type casts exactly enforce the semantics of the original λC contract obligation,
with correct blame assignment.

The complete translation φ : t → s from λC expressions to λH expressions is
then the compatible closure of this rule for translating contract obligations:

φ(tc,l,l′)= 〈base(S)⇐ S〉l′ 〈S ⇐ base(S)〉l φ(t) where S = φc(c)
φ(x)= x
φ(k)= k

φ(λx : T. t)= λx : φt(T).φ(t)
φ(t1 t2)= φ(t1) φ(t2)

φ(letl x : T : c = t1 in t2)= letl x : φt(T) = φ(t1) in φ(t2)
φ(blame(l))= blame(l)

4.1 Example

To illustrate this translation, consider the translation of the earlier example φ(P):

let f f : (sInt → sInt) = λx : sInt. x in
letm m : sInt = [〈base(S)⇐ S〉m 〈S ⇐ base(S)〉 f f] 4 in
〈sInt ⇐ sPos〉main 〈sPos ⇐ sInt〉m m

where the λH type S = sNeg → sPos encodes the original contract. Note that φ(P)
mostly includes only simple types; precise refinement types are only used in casts
to implement contract obligations in the original program. These precise refine-
ment types occur in matched pairs such as 〈sInt ⇐ sPos〉main 〈sPos ⇐ sInt〉m m,
where the precise type sPos is first dynamically enforced and then statically as-
sumed. Note that the base contract cPos on module m has no contravariant compo-
nent, and so the second resulting type cast 〈sInt ⇐ sPos〉main is actually an up-cast,
and could be optimized away. That is, the second cast is only necessary for function
contracts that involve bidirectional communication between modules.

XXIX–9

The program φ(P) evaluates as follows, correctly blaming m:

→h letm m : sInt = [〈base(S)⇐ S〉m 〈S ⇐ base(S)〉 f (λx : sInt. x)] 4 in . . .
→h letm m : sInt =

〈sInt ⇐ sPos〉m ([〈S ⇐ base(S)〉 f (λx : sInt. x)] 〈sNeg ⇐ sInt〉m 4) in . . .
→h letm m : sInt = 〈sInt ⇐ sPos〉m ([〈S ⇐ base(S)〉 f (λx : sInt. x)] blame(m)) . . .
→h blame(m)

Conversely, if the literal 4 were replaced with −4, then φ(P) would evaluate as
follows, blaming f :

letm m : sInt = 〈sInt ⇐ sPos〉m 〈sPos ⇐ sInt〉 f (−4) in . . .

5 IMPROVING CONTRACT COVERAGE

In the above program φ(P), every reference to an exported variable, such as f , is
enclosed in a cast, such as 〈S ⇐ base(S)〉 f f , which does not mention the client
module. Hence, we could refactor this program to avoid repeatedly re-checking
these casts at each reference of an exported variable, and instead check those casts
only once, as variables are exported.

let f f : S = 〈S ⇐ base(S)〉 f (λx : sInt. x) in
letm m : sPos = 〈sPos ⇐ sInt〉m [(〈base(S)⇐ S〉m f) 4] in m

In this refactored program (with up-casts optimized away), the “contract” on the
exported variable f is explicated via the precise type S = sNeg → sPos; this precise
type is enforced via the dynamic type cast 〈S ⇐ base(S)〉 f inside module f . The
second cast 〈base(S)⇐ S〉m f remains in the client module m to detect attempts by
m to pass incorrect arguments to f .

This refactoring yields two main advantages. First, evaluating the cast 〈S ⇐
base(S)〉 f only once instead of multiple times may result in better performance.
Second, the refactoring provides earlier, and hence better, error detection.

To illustrate this idea, consider the following λC program, where the module f
exports the literal 4, in clear violation of its cNeg contract:

P′ = let f f : Int : cNeg = 4 in . . . (f cNeg, f ,main) . . .

In both this program and the corresponding λH program φ(P′), the contract viola-
tion is not actually detected unless the contract obligation f cNeg, f ,main is evaluated,
which may of course only happen when certain code paths are exercised. In con-
trast, the refactored λH version of this program:

let f f : sNeg = 〈sNeg ⇐ sInt〉 f 4 in . . . 〈sInt ⇐ sNeg〉main f . . .

would detect this error immediately. Thus, the refactoring enabled by the transla-
tion to λH permits somewhat increased contract coverage over λC.

XXIX–10

6 CORRECTNESS OF THE TRANSLATION

We now prove that φ is a semantics preserving translation. First, φ is type-preserving
in that it maps well-typed λC expressions to well-typed λH expressions. The formal
statement and proof of this property relies on an auxiliary function φΓ that maps λC

type environments to λH type environments by translating the types in the bindings.

φΓ(/0)= /0

φΓ(Γ,x : T)=φΓ(Γ),x : φt(T)

Theorem 1 (Type Preservation)

1. If Γ ` t : T then φΓ(Γ) ` φ(t) : φt(T)

2. If Γ `c c : T then φΓ(Γ) ` φc(c)

Second, the translation φ also preserves the operational semantics in that if a
λC expression t evaluates to t ′, then the translation φ(t) evaluates in λH to some
expression s that is also reachable from φ(t ′).

Theorem 2 (Behavioral Equivalence) If t →∗
c t ′ then ∃s such that φ(t)→∗

h s and
φ(t ′)→∗

h s.

7 RELATED AND FUTURE WORK

The enforcement of complex program specifications, or contracts, is the subject of
a large body of prior work [16, 6, 13, 9, 10, 14, 18, 12, 5, 2]. Since these contracts
are typically not expressible in classical type systems, they have previously been
relegated to dynamic checking, as in, for example, Eiffel [16]. Eiffel’s expressive
contract language is strictly separated from its type system. The Bigloo Scheme
compiler [19] introduced higher-order contracts. Findler and Felleisen [6] describe
λCon, a language with a higher-order contract system that provides an elegant way
to introduce, propagate, and enforce contracts, and to assign blame appropriately.
Blume and McAllester [1] model λCon in order to prove the soundness of the con-
tract checker and extend the system with recursive contracts.

Work on advanced type systems influenced our choice of how to express pro-
gram invariants in λH . In particular, Freeman and Pfenning [8] extended ML with
another form of refinement types. Their work focuses on providing both decidable
type checking and type inference, instead of on supporting arbitrary refinement
predicates. Xi and Pfenning have explored applications of dependent types in De-
pendent ML [21, 20]. In a complementary approach, Chen and Xi [3] address
decidability limitations by providing a mechanism through which the programmer
can provide proofs of subtle properties in the source code.

This paper attempts to connect these two fields of study by developing a formal
connection between type systems and contract systems, and by showing how hy-
brid type system can express higher-order contracts obligations with precise blame
assignment.

XXIX–11

Recently, Meunier et al investigated statically verifying contracts via set-based
analysis [15], and Findler and Blume [5] defined a partial-order for higher-order
contracts that is contravariant in the domain. These ideas appear closely related
to the corresponding notions of type inference and subtyping in type theory. We
plan to use the framework of this paper to formally explore these kinds of deep
connections between contract theory and type theory. Further cross-pollination
between these two fields may yield additional contributions to type theory, and
may also help apply existing type theory to contract-based programs.

Acknowledgements We would like to thank Robby Findler and Matthias Felleisen
for valuable feedback on this paper. This work was supported by a Sloan Fellow-
ship and by NSF grant CCR-0341179.

REFERENCES

[1] M. Blume and D. McAllester. Sound and complete models of contracts. Journal of
Functional Programming, 16(4-5):375–414, 2006.

[2] M. Blume and D. A. McAllester. A sound (and complete) model of contracts. In
ICFP, pages 189–200, 2004.

[3] C. Chen and H. Xi. Combining programming with theorem proving. In ICFP, pages
66–77, 2005.

[4] R. Findler. Personal communication, October 2006.
[5] R. B. Findler and M. Blume. Contracts as pairs of projections. In M. Hagiya and

P. Wadler, editors, FLOPS ’06, volume 3945. Springer, 2006.
[6] R. B. Findler and M. Felleisen. Contracts for higher-order functions. In ICFP, pages

48–59, New York, NY, USA, 2002. ACM Press.
[7] C. Flanagan. Hybrid type checking. In POPL ’06, pages 245–256, New York, NY,

USA, 2006. ACM Press.
[8] T. Freeman and F. Pfenning. Refinement types for ML. In Proceedings of the ACM

Conference on Programming Language Design and Implementation, pages 268–277,
1991.

[9] B. Gomes, D. Stoutamire, B. Vaysman, and H. Klawitter. A language manual for
Sather 1.1, 1996.

[10] R. C. Holt and J. R. Cordy. The Turing programming language. Commun. ACM,
31:1310–1424, 1988.

[11] K. Knowles and C. Flanagan. Type reconstruction for general refinement types. In
ESOP ’07 (to appear), 2007.

[12] M. Kölling and J. Rosenberg. Blue: Language specification, version 0.94, 1997.
[13] G. T. Leavens and Y. Cheon. Design by contract with JML, 2005. avaiable at

http://www.cs.iastate.edu/˜leavens/JML/.
[14] D. Luckham. Programming with specifications. Texts and Monographs in Computer

Science, 1990.

XXIX–12

[15] P. Meunier, R. B. Findler, and M. Felleisen. Modular set-based analysis from con-
tracts. In Proceedings of the ACM Symposium on Principles of Programming Lan-
guages, pages 218–231, 2006.

[16] B. Meyer. Object-oriented Software Construction. Prentice Hall, 1988.
[17] B. Meyer. Eiffel: the language. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,

1992.
[18] D. L. Parnas. A technique for software module specification with examples. Com-

mun. ACM, 15(5):330–336, 1972.
[19] M. Serrano. Bigloo: A practical Scheme Compiler, 1992-2002.
[20] H. Xi. Imperative programming with dependent types. In Proceedings of the IEEE

Symposium on Logic in Computer Science, pages 375–387, 2000.
[21] H. Xi and F. Pfenning. Dependent types in practical programming. In Proceedings

of the ACM Symposium on Principles of Programming Languages, pages 214–227,
1999.

A PROOF OF TYPE PRESERVATION

The proof of type preservation relies on following two simple lemmas:

Lemma 3 (Well-formed Translations) ∀∆,T. ∆ ` φt(T)

Lemma 4 If Γ `c c : T then base(φc(c)) = φt(T)

Assumption 5 Let tyC and tyH be the constant typing functions for λC and λH

respectively. We assume that ∀k. tyH(k) <: φt(tyC(k)). Also, following [7], we
assume that each basic constant is assigned a singleton type that denotes exactly
that constant. For example, tyH(3) = {x : Int |x = 3}.

Restatement of Theorem 1 (Type Preservation)

1. If Γ ` t : T then φΓ(Γ) ` φ(t) : φt(T)

2. If Γ `c c : T then φΓ(Γ) ` φc(c)

PROOF: The proof is an induction on the type derivation for Γ ` t : T and Γ `c c : T .

1. [T-LAM] Suppose Γ ` (λx : T1. t) : (T1 → T2). Then Γ,x : T1 ` t : T2.
By induction, φΓ(Γ),x : φt(T1) ` φ(t) : φt(T2).
By Lemma 3, φΓ(Γ) ` φt(T1).
Hence, φΓ(Γ) ` φ(λx : T1. t) : (φt(T1)→ φt(T2)) via [S-LAM].

[T-CONST] Suppose Γ ` k : tyC(k).
By Assumption 5, φΓ(Γ) ` k : tyH(k), via [S-CONST].

[T-VAR] Suppose Γ ` x : T . Then x : T ∈ Γ.
By construction, x : φt(T) ∈ φΓ(Γ).
Hence, φΓ(Γ) ` x : φt(T) via [S-VAR].

XXIX–13

[T-APP] Suppose Γ ` t1 t2 : T2. Then Γ ` t1 : (T1 → T2) and Γ ` t2 : T1.
By induction, φΓ(Γ) ` φ(t1) : (φt(T1)→ φt(T2)) and φΓ(Γ) ` φ(t2) :
φt(T1).
Hence, φΓ(Γ) ` φ(t1 t2) : φt(T2) via [S-APP].

[T-LET] Suppose Γ ` letl x : T1 : c = t1 in t2 : T2. Then Γ ` t1 : T1 and
Γ,x : T1 ` t2 : T2.
By induction, φΓ(Γ)` φ(t1) : φt(T1) and φΓ(Γ),x : φt(T1)` φ(t2) : φt(T2).
Hence, φΓ(Γ) ` φ(letl x : T1 : c = t1 in t2) : φt(T2), via [S-LET] since
x 6∈ FV (φt(T2)).

[T-BLAME] Suppose Γ ` blame(l) : T . Then φΓ(Γ) ` blame(l) : φt(T) via
[S-BLAME] and Lemma 3.

[T-OBLIG] Suppose Γ ` tc,l1,l2 : T . Then Γ ` t : T and Γ `c c : T .
Let S = φc(c). By Lemma 4, base(S) = φt(T).
Hence, φΓ(Γ) ` φ(t) : base(S) and φΓ(Γ) ` S by induction.
By Lemma 3, φΓ(Γ) ` base(S).
Hence via two applications of [S-CAST],
φΓ(Γ) ` [〈base(S)⇐ S〉l2 〈S ⇐ base(S)〉l1 φ(t)] : base(S)
Or equivalently φΓ(Γ) ` φ(tc,l1,l2) : φt(T).

2. [T-BASEC] Suppose Γ `c contract B v : B. Then Γ ` v : (B → Bool).
By induction φΓ(Γ) ` φ(v) : (B → Bool).
Let x 6∈ FV (φ(v)). Then φΓ(Γ),x : B ` φ(v) : (B → Bool).
By [S-FUN], φΓ(Γ),x : B ` φ(v) x : Bool.
By [WF-BASE], φΓ(Γ) ` {x :B |φ(v) x} or φΓ(Γ) ` φc(contract B v).

[T-FUNC] Suppose Γ `c c 7→ c′ : (T1 → T2). Then Γ `c c : T1 and Γ `c c′ : T2.
By induction φΓ(Γ) ` φc(c)and φΓ(Γ) ` φc(c′).
By [WF-FUN] φΓ(Γ) ` φc(c)→ φc(c′) or φΓ(Γ) ` φc(c 7→ c′).

�

B PROOF OF BEHAVIORAL EQUIVALENCE

The proof of behavioral equivalence relies on the following lemmas:

Lemma 6 φ(t1[x := t2]) = φ(t1)[x := φ(t2)]

Lemma 7 The translation φ maps λC values to λH values.

Assumption 8 Let [[·]]C and [[·]]H define the semantics of primitive functions k for
λC and λH respectively. We assume each primitive function k behaves equivalently
on any λC value v and on the corresponding λH value φ(v), i.e., φ([[k]]C v) =
[[k]]H φ(v).

XXIX–14

Lemma 9 (Single Step Behavioral Equivalence) If t →c t ′ then ∃s.φ(t)→∗
h s and

φ(t ′)→∗
h s.

PROOF: The proof is by induction on the derivation of t →c t ′. For all cases except
the [E-FUN] case, s = φ(t ′).

[E-CONST] Suppose k v →c [[k]] (v).
φ(k v) = k φ(v)

→h [[k]]H φ(v) by Lemma 7 and [F-CONST].
=φ([[k]]C v) by Assumption 8.

[E-BETA] Suppose (λx : T. t) v →c t[x := v].
φ((λx : T. t) v) =(λx : φt(T).φ(t)) φ(v)

→h φ(t)[x := φ(v)] by Lemma 7 and [F-BETA].
=φ(t[x := v]) by Lemma 6.

[E-LET] Suppose letl x : T : c = v in t ′ →c t ′[x := v].
φ(letl x : T : c = v in t ′) =letl x : φt(T) = φ(v) in φ(t ′)

→h φ(t ′)[x := φ(v)] by Lemma 7 and [F-LET].
=φ(t ′[x := v]) by Lemma 6.

[E-BLAME] Suppose E[blame(l)]→c blame(l).
For some F, φ(E[blame(l)]) =F [blame(l)]

→h blame(l) by [F-BLAME].
=φ(blame(l)) by definition.

[E-OK] Suppose vcontract B v′,l1,l2 →c v and v′ v →∗
c true.

φ([vcontract B v′,l1,l2])
= 〈φt(B)⇐{x :φt(B) |φ(v′) x}〉l2〈{x :φt(B) |φ(v′) x}⇐ φt(B)〉l1φ(v)

→h 〈φt(B)⇐{x :φt(B) |φ(v′) x}〉l2 φ(v) by [F-OK]
because of Lemma 7 and φ(v′ v)→∗

c true by induction.
→h φ(v)

[E-FAIL] Suppose vcontract B v′,l1,l2 →c blame(l) and v′ v →∗
c false.

φ([vcontract B v′,l1,l2])
= 〈φt(B)⇐{x :φt(B) |φ(v′) x}〉l2〈{x :φt(B) |φ(v′) x}⇐ φt(B)〉l1φ(v)

→h 〈φt(B)⇐{x :φt(B) |φ(v′) x}〉l2 blame(l1) by [F-FAIL]
by Lemma 7 and since φ(v′ v)→∗

c false by induction.
→h blame(l1) by [F-BLAME]
=φ(blame(l1)).

[E-FUN] Suppose [vc7→c′,p,n v′]→c [(v v′c,n,p)c′,p,n]. Let S = φc(c) and S′ = φc(c′).
and s f = (〈S ⇐ base(S)〉n φ(v′)).

φ([vc7→c′,p,n v′])
= [〈base(S → S′)⇐ (S → S′)〉n〈(S → S′)⇐ base(S → S′)〉p φ(v)] φ(v′)
→h 〈base(S′)⇐ S′〉n [[〈(S → S′)⇐ base(S → S′)〉p φ(v)] s f]

XXIX–15

If S is a function type, then s f is a value, and so:
〈base(S′)⇐ S′〉n [[〈(S → S′)⇐ base(S → S′)〉p φ(v)] s f]

→h 〈base(S′)⇐ S′〉n〈S′ ⇐ base(S′)〉p (φ(v) [〈base(S)⇐ S〉p s f])
= φ([(v v′c,n,p)c′,p,n])

If S is a base refinement type and s f →h blame(n), then:
〈base(S′)⇐ S′〉n [[〈(S → S′)⇐ base(S → S′)〉p φ(v)] s f]

→h 〈base(S′)⇐ S′〉n [[〈(S → S′)⇐ base(S → S′)〉p φ(v)] blame(n)]
→h blame(n)

φ([(v v′c,n,p)c′,p,n])
= 〈base(S′)⇐ S′〉n[〈S′ ⇐ base(S′)〉p (φ(v) [〈base(S)⇐ S〉p s f])]
→h 〈base(S′)⇐ S′〉n[〈S′ ⇐ base(S′)〉p (φ(v) [〈base(S)⇐ S〉p blame(n)])]
→h blame(n)

Otherwise, S is a base refinement type and s f →h φ(v′), and:
〈base(S′)⇐ S′〉n [[〈(S → S′)⇐ base(S → S′)〉p φ(v)] s f]

→h 〈base(S′)⇐ S′〉n [[〈(S → S′)⇐ base(S → S′)〉p φ(v)] φ(v′)]
→h 〈base(S′)⇐ S′〉n[〈S′ ⇐ base(S′)〉p (φ(v) [〈base(S)⇐ S〉p φ(v′)])]

φ([(v v′c,n,p)c′,p,n])
= 〈base(S′)⇐ S′〉n[〈S′ ⇐ base(S′)〉p (φ(v) [〈base(S)⇐ S〉p s f])]
→h 〈base(S′)⇐ S′〉n[〈S′ ⇐ base(S′)〉p (φ(v) [〈base(S)⇐ S〉p φ(v′)])]

[E-CTX] Suppose E[t1] →c E[t2] and t1 →c t2. This case holds by inspection.
∀E.φ(E[t1])→h φ(E[t2]).

�

Lemma 10 The operational semantics for λC and λH are deterministic.

Restatement of Theorem 2 (Behavioral Equivalence) If t →∗
c t ′ then ∃s such that

φ(t)→∗
h s and φ(t ′)→∗

h s.

PROOF: This proof is by induction on the length of the reduction t →∗
c t ′. The no-

tation →n
c and →n

h indicates that n steps have occurred.
The base case where n = 0 is trivially true.
For the inductive case, suppose t →n

c t ′ →c t ′′.
By induction ∃m1,m2 ∈ N,s′ such that φ(t)→m1

h s′ and φ(t ′)→m2
h s′.

By Lemma 9, ∃m3,m4 ∈ N,s′′ such that φ(t ′)→m3
h s′′ and φ(t ′′)→m4

h s′′.
Suppose m3 ≤m2. Then, since the evaluation from φ(t ′) is deterministic (Lemma 10),
we have that φ(t)→m1

h s′ and φ(t ′′)→m4
h s′′ →m2−m3

h s′.
The case where m3 ≥ m2 is symmetric. �

XXIX–16

