
The Semantics of Future and Its Use in Program Optimization

Cormac Flanagan� Matthias Felleisen�

Department of Computer Science

Rice University

Houston� Texas

Abstract

The future annotations of MultiLisp provide a simple
method for taming the implicit parallelism of functional
programs� Past research concerning futures has focused
on implementation issues� In this paper� we present a se�
ries of operational semantics for an idealized functional
language with futures with varying degrees of inten�
sionality� We develop a set�based analysis algorithm
from the most intensional semantics� and use that al�
gorithm to perform touch optimization on programs�
Experiments with the Gambit compiler indicates that
this optimization substantially reduces program execu�
tion times�

� Implicit Parallelism via Annotations

Programs in functional languages o�er numerous oppor�
tunities for executing program components in parallel�
In a call�by�value language� for example� the evalua�
tion of every function application could spawn a par�
allel thread for each sub�expression� However� if such a
strategy were applied indiscriminately� the execution of
a program would generate far too many parallel threads�
The overhead of managing these threads would clearly
outweigh any bene�ts from parallel execution�

The future annotations of MultiLisp ��� ��� and its
Scheme successors provide a simple method for taming
the implicit parallelism of functional programs� If a pro�
grammer believes that the parallel evaluation of some
expression outweighs the overhead of creating a sepa�
rate task� he may annotate the expression with the key�
word future� An annotated functional program has the
same observable behavior as the original program� but
the run�time system may choose to evaluate the future
expression in parallel with the rest of the program� If it
does� the evaluation will proceed as if the annotated ex�

�Supported in part by NSF grant CCR ��������� Texas ATP grant
������	�
��
 and a sabbatical at Carnegie Mellon University�

To appear in the ��nd Annual ACM SIGPLAN�
SIGACT Symposium on Principles of Programming
Languages� San Francisco� California� January ������
�����

pression had immediately returned� Instead of a proper
value though� it returns a placeholder� When a program
operation requires speci�c knowledge about the value
of some sub�computation but �nds a placeholder in its
place� the run�time system performs a touch operation�
which synchronizes the appropriate parallel threads�

Past research on futures has almost exclusively con�
centrated on the e	cient implementation of the under�
lying task creation mechanism �
� ��� ��� �� �
� and
on the extension of the concept to �rst�class continu�
ations ���� ���� In contrast� the driving force behind
our e�ort is the desire to develop a semantic frame�
work and semantically well�founded optimizations for
languages with future� The speci�c example we choose
to consider is the development of an algorithm for re�
moving provably�redundant touch operations from pro�
grams� Our primary results are a series of semantics
for a functional language with futures and a program
analysis� The �rst semantics de�nes future to be a
semantically�transparent annotation� The second one
validates that a future expression interpreted as process
creation is correct� The last one is a low�level re�ne�
ment� which explicates just enough information to per�
mit the derivation of a set�based program analysis �����
The secondary result is a touch optimization algorithm
�based on the analysis� with its correctness proof� The
algorithm was added to the Gambit Scheme compiler �
�
and produced signi�cant speedups on a standard set of
benchmarks�

The presentation of our results proceeds as follows�
The second section introduces an idealized functional
language with futures� together with its de�nitional�
sequential semantics that interprets futures as no�ops�
The third section presents an equivalent parallel seman�
tics for futures and the fourth section contains the low�
level re�nement of that semantics� The �fth section dis�
cusses the cost of touch operations and presents a prov�
ably correct algorithm for eliminating unnecessary touch
operations� The latter is based on the set�based analy�
sis algorithm of the sixth section� The seventh section
presents experimental results demonstrating the e�ec�
tiveness of this optimization� Section eight discusses re�
lated work� For more details� we refer the interested
reader to two technical reports on this work ��� ����

M � �a 		
 x �Terms�
j �let �x V � M�
j �let �x �futureM�� M�
j �let �x �car y�� M�
j �let �x �cdr y�� M�
j �let �x �if y M M�� M�
j �let �x �apply y z�� M�

V � Value 		
 c j x j ��x�M� j �cons x y� �Values�
x � Vars 		
 fx� y� z� � � �g �Variables�
c � Const 		
 ftrue�false�� �� � � �g �Constants�

Figure �� The A�normalized Language �a

� A Functional Language with Futures

��� Syntax Given the goal of developing a seman�
tics that is useful for proving the soundness of opti�
mizations� we develop the de�nitional semantics for fu�
tures for an intermediate representation of an idealized
functional language� Speci�cally� we use the subset of
A�normal forms ���� of an extended ��calculus�like lan�
guage that includes conditionals and a future construct�
see Figure �� The language also includes primitives for
list manipulation� which serve to illustrate the treatment
of primitive operations� and an unspeci�ed set of basic
constants �numbers� booleans��

The key property of terms in A�normal form is that
each intermediate value is explicitly named and that
the order of execution follows the lexical nesting of let�
expressions� The use of A�normal forms facilitates the
compile�time analysis of programs ����� and it simpli�es
the de�nition of abstract machines �����

We work with the usual conventions and terminology
of the lambda calculus when discussing syntactic issues�
In particular� the substitution operation M �x � V � re�
places all free occurrences of x within M by V � X� de�
notes the set of closed terms of type X �terms� values��
and M � P denotes that the termM occurs in the pro�
gram P � Also� we use the following notations through�
out the paper� P denotes the power�set constructor�
f � A �� B denotes that f is a total function from
A to B� and f � A ��p B denotes that f is a partial
function from A to B�

��� De�nitional Semantics The semantics of �a

is a function from closed programs to results� A re�
sult is either an answer� which is a closed value with
all ��expressions replaced by procedure� or error� in�
dicating that some program operation was misapplied�
or �� if the program does not terminate� We specify the
de�nitional semantics of the language using a sequential
abstract machine called the C�machine �see Figure ���
whose states are either closed terms over the run�time
language �c or else the special state error� and whose
deterministic transition rules are the typical leftmost�
outermost reductions of the ��calculus ���� Each transi�
tion rule also speci�es the error semantics of a particular
class of expressions� For example� the transition rule for
car de�nes that if the argument to car is a pair� then
the transition rule extracts the �rst element of the pair�

If the argument is not a pair� then the transition rule
produces the state error�

The rule for future pretends that future is the iden�
tity operation� It demands that the body of a future
expression is �rst reduced to a value� and then replaces
the name for the future expression with this value�

The de�nition of the transition function relies on the
notion of evaluation contexts� An evaluation context E
is a term with a hole � � in place of the next sub�term to
be evaluated� e�g�� in the term �let �x M��M��� the next
sub�term to be evaluated is M�� and thus the de�nition
of evaluation contexts includes �let �x E� M ��

A machine state is a �nal state if it is a value or the
state error� No transitions are possible from a �nal
state� and for any state that is not a �nal state� there
is a unique transition step from that state to its succes�
sor state� This implies that the relation evalc is a total
function� Either the transition sequence for a program
P terminates in a �nal state� in which case evalc�P � is
an answer or error� or else the transition sequence is
in�nite� in which case evalc�P � � �� Since the evalua�
tor evalc obviously agrees with the sequential semantics
of the underlying functional language� future is clearly
nothing but an annotation�

� A Parallel Operational Semantics

The sequential C�machine de�nes future as an anno�
tation� and ignores the intension of future as an advi�
sory instruction concerning parallel evaluation� To un�
derstand this intensional aspect of future� we need a
semantics of future that models the concurrent evalua�
tion of future expressions�

��� The P �C��machine The state space of the P �C��
machine is de�ned in the �rst part of Figure �� The
set of P �C� values includes the values of the sequen�
tialC�machine �constants� variables� closures and pairs��
which we refer to as proper values� To model futures� the
P �C��machine also includes a new class of values called
placeholder variables� A placeholder variable p repre�
sents the result of a computation that is in progress�
Once the computation terminates� all occurrences of the
placeholder are replaced by the value returned by the
computation�

Each C�machine state represents a single thread of
control� To model parallel threads� the P �C��machine
includes additional states of the form �f�let �p S�� S���
The primary sub�state S� is initially the body of a fu�
ture expression� and the secondary sub�state S� is ini�
tially the evaluation context surrounding the future ex�
pression� The placeholder p represents the result of S�
in S�� The usual conventions for binding constructs like
� and let apply to f�let� The function FP returns the
set of free placeholders in a state� The evaluation of
S� is mandatory � since it is guaranteed to contribute to
the completion of the program� The evaluation of S� is
speculative� since such work may not be required for the
termination of the program� In particular� if S� raises
an error signal� then the evaluator discards the state

�

Evaluator	
eval c 	 ��a �� Answers � ferror��g

eval c�P �

�
unloadc�V � if P ����

c V

error if P ����
c error

� if �i �N �Mi � Statec such that P
 M� andMi ���c Mi��

Data Speci�cations	

S � Statec 		
 M j error �States�
M � �c 		
 V �Run�time Language�

j �let �x V � M�
j �let �x �futureM��M�
j �let �x �car V �� M�
j �let �x �cdr V �� M�
j �let �x �if V M M��M�
j �let �x �apply V V �� M�
j �let �x M� M�

V � Valuec 		
 c j x j ��x�M� j �cons V V � �Run�time Values�
A � Answers 		
 c j procedure j �cons A A� �Answers�
E � EvalCtxt 		
 � � �Evaluation Contexts�

j �let �x E� M�
j �let �x �future E��M�

Unload Function	

unload c 	 Value
�
c �� Answers

unloadc�c�
 c

unloadc���x�M��
 procedure

unload c��cons V� V���
 �cons A� A��
Ai
 unload c�Vi�

Transition Rules	

E � �let �x V � M� � ���c E� M �x	 V � � �bind�
E� �let �x �future V �� M� � ���c E� M �x	 V � � �future�id�

E� �let �x �car V �� M� � ���c

n
E� M �x	 V�� � if V
 �cons V� V��
error if V

 �cons V� V��

�car�

E� �let �x �cdr V �� M� � ���c analogous to �car� �cdr�

E� �let �x �if V M� M��� M� � ���c

n
E� �let �x M�� M� � if V

 false

E� �let �x M�� M� � if V
 false
�if �

E� �let �x �apply V� V��� M� � ���c

n
E� �let �x N �y 	 V��� M� � if V�
 ��y�N�
error if V�

 ��y�N�

�apply�

Figure �� The sequential C�machine

S�� and any e�ort invested in the evaluation of S� is
wasted� The distinction between mandatory and specu�
lative steps is crucial for ensuring a sound de�nition of
an evaluator and is incorporated into the de�nition of
the transition relation�

Transition Rules We specify the transition relation
of the P �C��machine as a quadruple� If S ���n�m

pc S�

holds� then the index n is the number of steps involved
in the transition from S to S�� and the index m � n is
the number of these steps that are mandatory �

The transition rules �bind�� �future�id�� �car�� �cdr��
�if � and �apply� are simply the rules of the C�machine�
appropriately modi�ed to allow for placeholder variables�
An application of one of these rules counts as a manda�
tory step�

The transition rule �fork � initiates parallel evalua�
tion� This rule may be applied whenever the current
term includes a future expression within an evaluation
context� i�e��

E�let �x �futureN �� M �

The future annotation allows the expression N to be
evaluated in parallel with the enclosing context� The
machine creates a new placeholder p to represent the
result of N � and initiates parallel evaluation of N and
E � �let �x p� M � ��

The transition rule �parallel� permits concurrent eval�
uation of both sub�states of a parallel state�

The transition rules �join� and �join�error� merge
distinct threads of evaluation� When the primary sub�
state S� of a parallel state �f�let �p S�� S�� returns a
value� then the rule �join� replaces all occurrences of
the placeholder p within S� by that value� If the pri�
mary sub�state S� evaluates to error� then the rule
�join�error� discards the secondary sub�state S� and re�
turns error as the result of the parallel state�

The transition rule �lift� restructures nested parallel
states� and thus exposes additional parallelism in certain
cases� Consider �f�let �p� �f�let �p� S�� V �� S��� The
rule �lift� allows the value V to be returned to the sub�
state S� �via a subsequent �join� transition�� without
having to wait on the termination of S���

The rules �re�exive� and �transitive� close the rela�
tion under re�exivity and transitivity� We write S ����

pc

S� if S ���n�m
pc S� for some n�m �N�

Indeterminism Unlike the C�machine� in which each
state has a unique successor state� the transition rules
of the P �C��machine denote a true relation� In partic�
ular� the de�nition does not specify when the transi�
tion rule �fork � applies� For example� given the state
E � �let �x �future N �� M � �� the machine may proceed
either by evaluatingN sequentially� or by creating a new
task via a �fork� transition� An implementation may

�A second reason for the inclusion of this rule is that it is necessary
for an elegant proof of the consistency of the machine using a modi�ed
form of the diamond lemma of the lambda calculus�

�

Evaluator	

evalpc 	 ��a �� Answers � ferror��g

evalpc�P �

�
unloadc�V � if P ����

pc V

error if P ����
pc error

� if �i �N �Si � Statepc� ni�mi �N with mi � � P
 S� and Si ���
ni �mi
pc Si��

Data Speci�cations	
S � Statepc 		
 M j error j �f�let �p S� S� �States�
M � �pc 		
 V j �let �x V � M� j � � � �As for �c�
V � Valuepc 		
 c j x j ��x�M� j �cons V V � j p �Run�time Values�
p � Ph�Vars 		
 fp�� p�� p�� � � �g �Placeholders Variables�

Transition Rules	
E� �let �x V � M� � ���

���
pc E� M �x	 V � � �bind�

E� �let �x �future V �� M� � ������
pc E� M �x	 V � � �future�id�

E� �let �x �car V �� M� � ������
pc

n
E� M �x	 V�� � if V
 �cons V� V��
error if V

 �cons V� V��� V

 p

�car�

E� �let �x �cdr V �� M� � ������
pc analogous to �car� �cdr�

E� �let �x �if V M� M��� M� � ������
pc

n
E� �let �x M�� M� � if V

 false� V

 p

E� �let �x M�� M� � if V
 false
�if �

E� �let �x �apply V� V��� M� � ������
pc

n
E� �let �x N �y	 V��� M� � if V�
 ��y�N�
error if V�

 ��y�N�� V�

 p

�apply�

E� �let �x �future N��M� � ������
pc �f�let �p N� E � M �x	 p� �� p
� FP�E�� FP�M� �fork�

�f�let �p V � S� ������
pc S�p	 V � �join�

�f�let �p error� S� ������
pc error �join�error�

�f�let �p� �f�let �p� S�� S��� S�� ������
pc �f�let �p� S�� �f�let �p� S�� S��� p�
� FP �S�� �lift�

�f�let �p S�� S�� ���n�b
pc �f�let �p S�

�
� S�

�
� if S� ���

a�b
pc S�

�
� S� ���

c�d
pc S�

�
� n
 a� c �parallel �

S ������
pc S �re�exive�

S ���n�m
pc S�� if S ���a�b

pc S�� S� ���c�d
pc S��� n
 a� c�m
 b� d�n � �transitive�

Figure �� The parallel P �C��machine

consequently choose to ignore future expressions �along
the lines of the C �machine�� which yields a sequential ex�
ecution� to execute fork as early as possible� which yields
an eager task creation mechanism ���� ���� or to choose
some strategy in between the extremes� which yields lazy
task creation �
� �
�

A second source of indeterminism is the transition
rule �parallel�� This rule does not specify the number of
steps that parallel sub�states must perform before they
synchronize� An implementation of the machine can use
almost any scheduling strategy for allocating processors
to tasks� as long as it regularly schedules the mandatory
thread�

Evaluation In general� the evaluation of a program
can proceed in many di�erent directions� Some of these
transition sequences may be in�nite� even if the program
terminates according to the sequential semantics� Con�
sider�

P � �let �x �future error�� ��

where � is some diverging sequential term� i�e�� � ������
pc

�� The sequential evaluator never executes � because
P �s result is error� In contrast� P admits the following
in�nite parallel transition sequence�

P ������
pc �f�let �p error� �� via �fork�

������
pc �f�let �p error� �� since � ������

pc �

������
pc � � �

This �evaluation� diverges because it exclusively con�
sists of speculative transition steps and does not include
any mandatory transition steps that contribute to the
sequential evaluation of the program� The evaluator
for the P �C��machine excludes these excessively spec�
ulative transition sequences� and only considers transi�
tion sequences that regularly includes mandatory steps�
For a terminating transition sequence� the number of
speculative steps performed is implicitly bounded� For
non�terminating sequences� the de�nition of the evalu�
ator explicitly requires the performance of mandatory
transition steps on a regular basis� This constraint im�
plies that an implementation of the machine must keep
track of the mandatory thread and must ensure that this
mandatory thread is regularly executed�

��� Correctness The observable behavior of the P �C��
machine on a given program is deterministic� despite its
indeterminate internal behavior�

Theorem ��� evalpc is a function�

We prove this consistency using a modi�ed form of
the traditional diamond lemma� The modi�ed diamond
lemma states that if we reduce an initial state S� by two
alternative transitions� producing respectively states S�
and S�� then there is some state S
 that is reachable from
both S� and S�� Furthermore� the number of mandatory
steps on the transition from S� to S
 via S� is bounded
by the total number of steps on the transition from S�
to S
 via S�� and vice�versa� This bound is necessary to

�

prove that all transition sequences for a given program
exhibit the same termination behavior�

Since each sequential transition rule of the P �C��
machine subsumes the corresponding transition rule of
the C�machine� every transition of the C�machine is also
a transition of the P �C��machine� which implies that the
evaluators are equivalent�

Theorem ��� evalpc � eval c

Put di�erently� the P �C��machine is a correct im�
plementation of the C�machine in that both de�ne the
same semantics for the source language� Hence� the in�
terpretation of future as a task creation construct� with
implicit task coordination� is entirely consistent with the
de�nitional semantics of future as an annotation�

� A Low�Level Operational Semantics

Since optimizations heavily rely on static information
about the values that variables can assume� the P �C��
machine is ill�suited for correctness proofs of appropri�
ate analysis algorithms�� On one hand� the states of the
P �C��machine contain no binding information relating
program variables and values� Instead� the machine re�
lies on substitution for making progress� On the other
hand� the representation of run�time values and other
objects in the P �C��machine is too coarse� For example�
it does not permit a detailed view of the synchronization
operations that are required for coordinating futures�
To address these problems� we re�ne the P �C��machine
to the P �CEK��machine �see Figure �� using standard
techniques ��� ����

��� The P �CEK��machine An evaluation context�
which represents the control stack� is now represented
as a sequence of activation records �which are similar
to closures�� A tagged activation record �hary x�M�Ei�
represents a point where the continuation can be split
into separate tasks �cmp� fork�� The substitution opera�
tion is replaced by an environment in the usual manner�
An environment E is a mapping from variables to run�
time values� The empty environment is denoted by ��
and the operation E�x� V � extends the environment E
to map the variable x to the value V �

During the course of the re�nement� we also replace
each placeholder p with an explicit undetermined place�
holder object hph p 	i� The symbol 	 indicates that
the result of the associated computation is unknown�
When the associated computation terminates� producing
a value V � then the undetermined placeholder object is
replaced by the determined placeholder object hph p V i�
This change of representation explicates touch opera�
tions in the form of side�conditions on the appropriate
transition rules� The conditions state that an undeter�
mined placeholder object �hph p 	i� must have been re�
placed by a determined placeholder object �hph p V i�

�The machine is also far too abstract for the derivation of an
implementation� This problem is also addressed by the following
development�

before the program operation can take place� The con�
ditions precisely identify the positions of car� cdr� if
and apply that demand proper values and also show
that operations like cons or the second position of ap�
ply do not need to know anything about the values they
process�

The transition relation ���pcek reformulation of the
relation ���pc that takes into account the change of state
representation� We write S ����

pcek S
� if S ���n�m

pcek S
� for

some n�m �N

��� Correctness The correctness proof for the new
machine involves two steps� The �rst step constructs an
intermediate semantics by introducing placeholder ob�
jects into the P �C��machine� The second step proves
the correctness of the P �CEK��machine with respect to
the intermediate semantics using standard proof tech�
niques ���� appropriately modi�ed to account for parallel
evaluation�

Theorem ��� evalpcek � evalpc

� Touch Optimization

The P �CEK��machine performs touch operations on ar�
guments in placeholder�strict positions of all program
operations� These implicit touch operations guarantee
the transparency of placeholders� which makes future�
based parallelism so convenient to use� Unfortunately�
these compiler�inserted touch operations impose a signif�
icant overhead on the execution of annotated programs�
For example� an annotated doubly�recursive version of
�b performs ���million touch operations during the com�
putation of ��b ����

Due to the dynamic typing of Scheme� the cost of
each touch operation depends on the program operation
that invoked it� If a program operation already performs
a type dispatch to ensure that its arguments have the ap�
propriate type� e�g�� car� cdr� apply� etc� then a touch
operation is free� Put di�erently� an implementation of
�car x� in pseudo�code is�

�if �pair� x � �unchecked�car x �
�error �car �Not a pair���

Extending the semantics of car to perform a touch op�
eration on placeholders is simple�

�if �pair� x � �unchecked�car x �
�let ��y �touch x ���
�if �pair� y� �unchecked�car y�

�error �car �Not a pair�����

The touching version of car incurs an additional over�
head only in the error case or when x is a placeholder�
For the interesting case when x is a pair� no overhead is
incurred� Since the vast majority of Scheme operations
already perform a type�dispatch on their arguments��

the overhead of performing implicit touch operations ap�
pears to be acceptable at �rst glance�

�Two notable exceptions are if� which does not perform a type�
dispatch on the value of the test expression� and the equality predicate
eq�� which is typically implemented as a pointer comparison�

Evaluator	

evalpcek 	 ��a �� Answers � ferror��g

evalpcek�P �

�
unload pcek�E�x�� if hP��� �i ����

pcek
hx�E� �i

error if hP��� �i ����

pcek
error

� if �i �N �Si � Statepcek� ni�mi � N with mi � � S�
 hP� �� �i and Si ���
ni�mi

pcek
Si��

Data Speci�cations	
S � Statepcek 		
 hM�E�Ki j error j �f�let �p S� S� �States�
M � �a �A�nf Language�
E � Envpcek 		
 Vars ��p Valuepcek �Environments�
V � Valuepcek 		
 PValuepcek j Ph�Obj pcek �Run�Time Values�
W � PValuepcek 		
 c j x j Clpcek j Pairpcek �Proper Values�

Clpcek 		
 h��x�M��Ei �Closures�
Pairpcek 		
 �cons V V � �Pairs�
Ph�Obj pcek 		
 hph p �i j hph p V i �Placeholder Objects�

K � Contpcek 		
 � j har x�M�Ei�K j hary x�M�Ei�K �Continuations�

Auxiliary Functions	

unload pcek 	 Value
�
pcek �� Answers

unload pcek�c�
 c

unloadpcek �h��x�M��Ei�
 procedure

unloadpcek ��cons V� V���
 �cons unload pcek�V�� unload pcek�V���
unload pcek�hph p V i�
 unloadpcek�V �

touchpcek 	 Valuepcek �� PValuepcek � f�g
touchpcek�hph p �i�
 �
touchpcek�hph p V i�
 touchpcek �V �

touchpcek�W �
 W

Transition Rules	

h�let �x �cons y z�� M��E�Ki ������

pcek
hM�E�x	 �cons E�y� E�z����Ki �bind�cons�

transition rules for �let �x c� M�� �let �x y� M� and �let �x ��y�N��M� are similar to �bind�cons�

hx�E� har y�M�E�i�Ki ������

pcek
hM�E��y 	 E�x���Ki �return�

h�let �x �car y�� M��E�Ki ������

pcek

n
hM�E�x	 V��� Ki if touchpcek�E�y��
 �cons V� V��
error if touchpcek�E�y��
� Pairpcek � f�g

�car�

h�let �x �cdr y�� M��E�Ki ������
pcek

analogous to �car� �cdr�

h�let �x �if y M� M��� M��E�Ki ������
pcek

n
hM�� E� har x�M�Ei�Ki if touchpcek �E�y��
� ffalse� �g
hM�� E� har x�M�Ei�Ki if touchpcek �E�y��
 false

�if �

h�let �x �apply y z�� M��E�Ki ���
���

pcek

n
hN�E��x� 	 E�z��� har x�M�Ei�Ki if touchpcek �E�y��
 h��x�� N��E�i
error if touchpcek �E�y��
� Clpcek � f�g

�apply�

h�let �x �future N�� M��E�Ki ������
pcek

hN�E� hary x�M�Ei�Ki �future�

hx�E� hary y�M�E�i�Ki ������

pcek
hM�E��y 	 E�x���Ki �future�id�

hM�E�K��hary x�N�E�i�K�i ������

pcek
�f�let �p hM�E�K�i� hN�E��x	 hph p �i��K�i� p
� FP �E�� � FP �K�� �fork�

�f�let �p hx�E� �i� S� ������
pcek

S�p 	
 E�x�� �join�

transition rules �join�error�� �lift�� �parallel�� �re�exive� and �transitive� are as for the P �C��machine

Figure �� The P �CEK��machine

Unfortunately� a standard technique for increasing
execution speed in Scheme systems is to disable type�
checking typically based on informal correctness argu�
ments or based on type veri�ers for the underlying se�
quential language ����� When type�checking is disabled�
most program operations do not perform a type�dispatch
on their arguments� Under these circumstances� the
source code �car x� translates to the pseudo�code�

�unchecked�car x �

Extending the semantics of car to perform a touch op�
eration on placeholders is now quite expensive� since it
then performs an additional check on every invocation�

�if �placeholder� x � �unchecked�car �touch x ��
�unchecked�car x ��

Performing these placeholder� checks can add a signif�
icant overhead to the execution time� Kranz ���� and
Feeley �
� estimated this cost at nearly ���� of the �se�
quential� execution time� and our experiments con�rm
these results �see below��

The classical solution for avoiding this overhead is to
provide a compiler switch that disables the automatic
insertion of touches� and a touch primitive so that pro�
grammers can insert touch operations explicitly where
needed �
� ��� ���� We believe that this solution is �awed
for several reasons� First� it clearly destroys the trans�
parent character of future annotations� Instead of an
annotation that only a�ects executions on some ma�
chines� future is now a task creation construct and touch
is a synchronization tool� Second� to use this solution
safely� the programmer must know where placeholders
can appear instead of regular values and must add touch
operations at these places in the program� In contrast
to the addition of future annotations� the placement
of touch operations is far more di	cult� while the for�
mer requires a prediction concerning computational in�
tensity� the latter demands a full understanding of the
data �ow properties of the program� Since we believe
that an accurate prediction of data �ow by the program�
mer is only possible for small programs� we reject this

h�let �x �car y�� M��E�Ki ������
pcek�

hM�E�x	 V���Ki if E�y�
 �cons V� V��
unspeci�ed if E�y� � Ph�Obj pcek
error otherwise

h�let �x �cdr y�� M��E�Ki ������

pcek

analogous to car

h�let �x �if y M� M��� M��E�Ki ������
pcek�

hM��E� har x�M�Ei�Ki if E�y�
 false

unspeci�ed if E�y� � Ph�Obj pcek
hM��E� har x�M�Ei�Ki otherwise

h�let �x �apply y z�� M��E�Ki ������

pcek��
�

hN�E��x� 	 E�z���
har x�M�Ei�Ki

if E�y�
 h��x�� N��E�i

unspeci�ed if E�y� � Ph�Obj pcek
error otherwise

Figure � Non�touching transition rules

traditional solution�
A better approach than explicit touches is for the

compiler to use information provided by a data��ow anal�
ysis of the program to remove unnecessary touches wher�
ever possible� This approach substantially reduces the
overhead of touch operations without sacri�cing the sim�
plicity or transparency of future annotations�

��� Non�touchingPrimitives The current language
does not provide primitives that do not touch arguments
in placeholder�strict positions� To express and verify
an algorithm that replaces touching primitives by non�
touching primitives� we extend the language �a with
non�touching forms of the placeholder�strict primitive
operations� denoted car� cdr� if and apply� respec�
tively�

M ��� �let �x �car y�� M �
j �let �x �cdr y�� M �
j �let �x �if y M M �� M �
j �let �x �apply y z�� M �

As their name indicates� a non�touching operation be�
haves in the same manner as the original version as long
as its argument in the placeholder�strict position is not
a placeholder� If the argument is a place�holder� the
behavior of the non�touching variant is unde�ned� The
extended language is called �a�

We de�ne the semantics of the extended language �a

by extending the P �CEK��machine with the additional
transition rules described in Figure � The evaluator for
the extended language� evalpcek� is de�ned in the usual

way �cmp� Figure ��� Unlike evalpcek� the evaluator
evalpcek is no longer a function� There are programs in

�a for which the evaluator evalpcek can either return a

value or can be unspeci�ed because of the application
of a non�touching operation to a placeholder� Still� the
two evaluators clearly agree on programs in �a�

Lemma ��� For P � �a� evalpcek�P � � evalpcek�P ��

��� The Touch OptimizationAlgorithm The goal
of touch optimization is to replace the touching opera�
tions car� cdr� if and apply by the corresponding non�
touching operation whenever possible� without changing
the semantics of programs� For example� suppose that a
program contains �let �x �car y�� M � and we can prove
that y is never bound to a placeholder� Then we can
replace the expression by the form �let �x �car y�� M ��
which the machine can execute more e	ciently without
performing a test for placeholdership on y�

This optimization technique relies on a detailed data�
�ow analysis of the program that determines a conserva�
tive approximation to the set of run�time values for each
variable� More speci�cally� we assume that the analysis
returns a valid set environment � which is a table map�
ping program variables to a set of run�time values
 that
subsumes the set of values associated with that variable
during an execution�

De�nition ���� �Set environments� validity	 Let P be
a program and let VarsP be the set of variables occurring
in P �

 A mapping E � VarsP � P�Valuepcek� is a set en�
vironment �

 A set environment E is valid for P if S j� E holds
for every S such that hP� �� �i ����

pcek S�

 The relation S j� E holds if every environment in
S maps every variable x to a value in E�x��

The basic idea behind touch optimization is now easy
to explain� If a valid set environment shows that the ar�
gument of a touching version of car� cdr� if or apply can
never be a placeholder� the optimization algorithm re�
places the operation with its non�touching version� The
optimization algorithm T is de�ned in Figure
�

The function sba� described in the next section� al�
ways returns a valid set environment for a program�
Assuming the correctness of of set�based analysis� the
touch optimization algorithm preserves the meaning of
programs� since each transition step of a source program
P corresponds to a transition step of the optimized pro�
gram�

Theorem ��� �Correctness of touch�optimization	
For P � ��

a� evalpcek�P � � evalpcek�TsbaP ��P ���

Any implementation that realizes evalpcek correctly

can therefore make use of our optimization technique�

� Set�Based Analysis for Futures

We develop the analysis that produces valid set environ�
ments in two steps� First� we use the transition rules of
the P �CEK��machine to derive constraints on the sets
of run�time values that variables in a program may as�
sume� Any set environment satisfying these constraints

�Or a least a representation of this set that provides the appropriate
information�

�

TE 	 �a ���a
TE �x�
 x

TE ��let �x c� M��
 �let �x c� TE �M ��
TE ��let �x y� M��
 �let �x y� TE �M ��

TE ��let �x ��y�N�� M��
 �let �x ��y�TE �N��� TE �M ��
TE ��let �x �cons y z�� M��
 �let �x �cons y z�� TE �M ��
TE ��let �x �futureN�� M��
 �let �x �future TE �N ��� TE �M ��

TE ��let �x �car y�� M��
n
�let �x �car y�� TE �M �� if E�y� PValuepcek
�let �x �car y�� TE �M �� if E�y�
 PValuepcek

TE ��let �x �cdr y�� M��
 analogous to car

TE ��let �x �if y M� M��� M��
n
�let �x �if y M� M��� TE �M �� if E�y� PValuepcek
�let �x �if y M� M��� TE �M �� if E�y�
 PValuepcek

TE ��let �x �apply y z�� M��
n
�let �x �apply y z�� TE �M �� if E�y� PValuepcek
�let �x �apply y z�� TE �M �� if E�y�
 PValuepcek

Figure
� The touch optimization algorithm T

is a valid set environment� Second� we develop an algo�
rithm for �nding the minimal set environment satisfying
these constraints� The constraints we produce are simi�
lar to those in Heintze�s work on set based analysis for
ML ����� though our derivation of these constraints dif�
fers substantially�

�� Deriving Set Constraints We derive constraints
on valid set environments by analyzing the transition
rules of the machine� Each constraint we produce is of
the form�

A

B

where A and B are statements concerning E � and A also
depends on the program being analyzed� A set environ�
ment E satis�es this constraint if whenever A holds for
E � then B also holds for E �

Let P be the program of interest� and suppose that
the evaluation of P involves the transition S ���n�m

pcek
S��

where S j� E � We derive constraints on E su	cient to
ensure that S� j� E by case analysis on the last transition
rule used for S ���n�m

pcek S
��

We present three representative cases�

 Suppose S ������
pcek S

� via the rule �bind�const��

S � h�let �x c� M �� E�Ki
������

pcek S� � hM�E�x� c��Ki

This rule binds x to the constant c� where the term
�let �x c� M � occurs in P � To ensure that the set
environment E includes c as one of the possible val�
ues of x� we demand that E satisfy the constraint�

�let �x c� M � � P

c � E�x�

�
CP
�

�

 Suppose S ������
pcek S

� via the rule �apply�� In the
interesting case� y is bound� either directly or via a
placeholder� to a closure h��x�� N �� E�i�

S � h�let �x �apply y z�� M �� E�Ki
������

pcek S
� � hN�E��x� � E�z��� har x�M�Ei�Ki

Then this rule binds x� to E�z�� To ensure that E
accounts for this binding� we demand that E satisfy
the constraint�

�let �x �apply y z�� M � � P
V � E�y� Vz � E�z�

touchpcek�V � � h��x�� N �� Ei

Vz � E�x��

�
CP
�

�

 Suppose S ������
pcek S

� via the rule �return��

S � hx�E�� har y�M�Ei�Ki
������

pcek S� � hM�E�y � E��x���Ki

We need to ensure that E includes E��x� as a pos�
sible value of y� However� when analyzing a �re�
turn instruction� x� we have no information re�
garding the possible activation records that may
receive the value of x during an execution� In
contrast� when analyzing an application expression
�let �y �apply f z��M �� we know both the calling
context and� from E�f�� the set of closures that can
possibly be invoked� Furthermore� if h��x�� N �� Ei
is the closure being invoked� then the result of the
application will be the current binding of the vari�
able FinalVar �N �� where FinalVar is the following
function from expressions to variables�

FinalVar � �a��Vars
FinalVar �x� � x

FinalVar ��let �x V � M �� � FinalVar�M �
FinalVar ��let �x �futureN �� M �� � FinalVar�M �

� � � � � �

To ensure that E accounts for the binding of x to
the value of FinalVar �N � for all closures that may
be invoked� we demand that E satisfy the constraint

�let �x �apply y z�� M � � P
V � E�y�

touchpcek�V � � h��x�� N �� Ei
VN � E�FinalVar �N ��

VN � E�x�

�
CP
�

�
Examining each of the transition rules of the machine

in a similar manner results in eleven program�based set
constraints CP

� � � � � � C
P
�� �see Figure �� su	cient to en�

sure that a set environment is valid� Put di�erently� if
a set environment E satis�es the set constraints for a
program P � it is easy to prove� using induction on the
length of the transition sequence� that E is valid for P �

Theorem
�� �Soundness of Constraints	 If E sat�
is�es CP

� � � � � � C
P
��� then E is valid for P �

�

�let �x c� M� � P

c � E�x�

�
CP
�

�
�let �x y� M� � P V � E�y�

V � E�x�

�
CP
�

�
�let �x ��y�N�� M� � P

�x � dom�E�� E�x� � E�x�

h��y�N��Ei � E�x�

�
CP
�

�
�let �x �cons y� y��� M� � P Vi � E�yi�� i
 �� �

�cons V� V�� � E�x�

�
CP
�

�
�let �x �car y�� M� � P V � E�y�

touchpcek�V �
 �cons V� V��

V� � E�x�

�
CP
�

�
�let �x �cdr y�� M� � P V � E�y�

touchpcek�V �
 �cons V� V��

V� � E�x�

�
CP
�

�
�let �x �apply y z�� M� � P V � E�y�
touchpcek �V �
 h��x�� N��Ei Vz � E�z�

Vz � E�x��

�
CP
�

�
�let �x �apply y z�� M� � P V � E�y�

touchpcek�V �
 h��x�� N��Ei
VN � E�FinalVar �N ��

VN � E�x�

�
CP
	

�
�let �x �if y M� M��� M� � P

V � E�FinalVar �M���� E�FinalVar �M���

V � E�x�

�
CP

�
�let �x �future N��M� � P V � E�FinalVar �N ��

V � E�x� hph p V i � E�x�

�
CP
��

�
�let �x �future N��M� � P

hph p �i � E�x�

�
CP
��

�
Figure �� Set Constraints on E with respect to P �

�� Solving Set Constraints The class of set en�
vironments for a given program P � denoted SetEnvP �
forms a complete lattice under the natural pointwise
partial ordering� Smaller set environments correspond
to more accurate approximations� because they include
include fewer extraneous bindings� We de�ne set�based
analysis as the function that returns the least set envi�
ronment satisfying the set constraints�

De�nition
��� �sba	

sba�P � � ufE j E satis�es CP
� � � � � � C

P
��g

Since sba�P � maps variables to in�nite sets of possi�
ble values� we need to �nd a suitable �nite representa�
tion for these in�nite sets� A systematic inspection of
the set constraints suggests that the set of closures for
a ��expression can be represented by the ��expression
itself� that the set of pairs for a cons�expression can be
represented by the cons�expression� etc� The actual sets
of run�time values can easily be reconstructed from the
representative terms and the set environment� In short�
we can take the set of abstract values for a program P
to be�

V � AbsValueP ���
cP j ��x�M �P j �cons x y�P j hph xP i j hph 	i

�let �x c� M� � P

cP � E�x�

�
CP
�

�
�let �x y� M� � P V � E�y�

V � E�x�

�
CP
�

�
�let �x ��y�N�� M� � P

��y�N�P � E�x�

�
CP
�

�
�let �x �cons y� y��� M� � P E�yi�

 �� i
 ���

�cons y� y��P � E�x�

�
CP
�

�
�let �x �car y�� M� � P V � E�y�

�cons z� z��P � touch
�
E� V

�
V � � E�z��

V � � E�x�

�
CP
�

�
�let �x �cdr y�� M� � P V � E�y�

�cons z� z��P � touch
�
E� V

�
V � � E�z��

V � � E�x�

�
CP
�

�
�let �x �apply y z�� M� � P V � E�y�

��x�� N�P � touch
�
E� V

�
V z � E�z�

V z � E�x��

�
CP
�

�
�let �x �apply y z�� M� � P V � E�y�

��x��N�P � touch
�
E � V

�
VN � E�FinalVar �N ��

V N � E�x�

�
CP
	

�
�let �x �if y M� M��� M� � P

V � E�FinalVar �M��� � E�FinalVar �M���

V � E�x�

�
CP

�
�let �x �futureN�� M� � P V � E�FinalVar �N ��

V � E�x� hph FinalVar �N �P i � E�x�

�
CP
��

�
�let �x �futureN�� M� � P

hph �i � E�x�

�
CP
��

�
Auxiliary Function touch	

touch 	 AbsEnvP � AbsValueP �� P�AbsValueP �

touch
�
E� cP

�

 fcP g

touch
�
E� ��x�M�P

�

 f��x�M�P g

touch
�
E� �cons x y�P

�

 f�cons x y�P g

touch
�
E� hph xP i

�

fW j U � E�y� and W � touch
�
E� U

�
g

Figure �� Abstract Constraints on E with respect to P �

where the constant cP � the ��expression ��x�M �P � the
pair �cons x y�P and the variable xP are all the respec�
tive subterms of P � The size of this set is O�jP j�� where
jP j is the length of P �

Abstract values provide �nite representations for the
in�nite set environments encountered during set�based
analysis� Speci�cally� an abstract set environment E is a
mapping from variables in P to sets of abstract values�
The class of all abstract set environments for a program
P is denoted AbsEnvP � Each abstract set environment
represents a particular set environment according to the
following function�

�

F � AbsEnvP��SetEnvP
F
�
E
�
�x� � fV j V � E�x�g

c � E�x� � c � E�x�
h��x�M �� Ei � E�x� � ��x�M �P � E�x� and

�x � dom�E�� E�x� � E�x�
�cons V� V�� � E�x� � �cons y� y��P � E�x�� Vi � E�yi�

hph p V i � E�x� � hph yP i � E�x� and V � E�y�
hph p 	i � E�x� � hph 	i � E�x�

Reformulating the set constraints from Figure � for
abstract set environments produces the abstract con�

straints CP
� � � � � � C

P
�� in Figure �� We de�ne sba�P � be

the least abstract set environment satisfying the abstract
constraints with respect to P �

De�nition
��� �sba	

sba�P � � ufE j E satis�es CP
� � � � � � C

P
��g

The correspondence between set constraints and abstract
constraints implies that sba�P � is a �nite representation
for sba�P ��

Theorem
�� sba�P � � F
�
sba�P �

�
Since AbsEnvP is �nite� of size O�jP j��� we can cal�

culate sba�P � in an iterative manner� starting with the
empty abstract set environment E�x� � �� Since we can
extend E at most O�jP j�� times� this algorithm termi�
nates� Furthermore� each time we extend E with a new
binding� calculating the additional bindings implied by
that new binding takes at most O�jP j� time� Hence� the
algorithm runs in O�jP j�� time�

Optimization algorithms can interpret the abstract
set environment sba�P � in a straightforward manner�
For example� the query on sba�P � from the touch op�
timization algorithm�

sba�P ��y� PValuepcek

is equivalent to the following query on sba�P ��

sba�P ��y� fcP � ��x�M �P � �cons x y�P g

In a similar manner other queries on sba�P � can easily
be reformulated in terms of sba�P ��

� Experimental Results

We extended the Gambit compiler �
� ��� which makes
no attempt to remove touch operations from programs�
with a preprocessor that implements the set�based anal�
ysis algorithm and the touch optimization algorithm�
The analysis and the optimization algorithm are as de�
scribed in the previous sections extended to a su	ciently

Program Description

fib Computes the ��th �bonacci number using
a doubly�recursive algorithm�

queens Computes the number of solutions to the
n�queens problem� for n
 ��

rantree Traverses a binary tree with ����� nodes�
mm Multiplies two � by � matrices of integers�
scan Computes the parallel pre�x sum of a vector

of ����� integers�
sum Uses a divide�and�conquer algorithm to sum

a vector of ����� integers�
tridiag Solves a tridiagonal system of ����� equations�
allpairs Computes the shortest path between all pairs

in a ��� node graph using Floyd�s algorithm�
abisort Sorts ����� integers using adaptive bitonic sort�
mst Computes the minimum spanning tree of a

� node graph�
qsort Uses a parallel Quicksort algorithm to sort

� integers�
poly Computes the square of a � term polynomial�

and evaluates the result at a given value of x�

Figure �� Description of the benchmark programs

large subset of functional Scheme�� We used the ex�
tended Gambit compiler to test the e�ectiveness of touch
optimization on the suite of benchmarks contained in
Feeley�s Ph�D� thesis �
� on a GP���� shared�memory
multiprocessor ���� Figure � describes these benchmarks�

Each benchmark was tested on the original compiler
�standard� and on the modi�ed compiler �touch opti�
mized�� The results of the test runs are documented
in Figure ��� The �rst two columns present the num�
ber of touch operations performed during the execution
of a benchmark using the standard compiler �column
��� and the sequential execution overhead of these touch
operations �column ��� To determine the absolute over�
head of touch� we also ran the programs on a single
processor after removing all touch operations� The next
two columns contain the corresponding measurements
for the touch optimizing compiler� The touch optimiza�
tion algorithm reduces the number of touch operations
to a small fraction of the original number �column ���
thus reducing the average overhead of touch operations
from approximately ��� to less than ��� �column ���

The last three columns show the relative speedup of
each benchmark for one� four� and �
 processor con�g�
urations� respectively� The number compares the run�
ning time of the benchmarks using the standard compiler
with the optimizing compiler� As expected� the relative
speedup decreases as the number of processors increases�
because the execution time is then dominated by other
factors� such as memory contention and communication
costs� For most benchmarks� the bene�t of our touch
optimization is still substantial� producing an average
speedup over the standard compiler of ��� on four pro�
cessors� and of ��� on �
 processors� The exceptions are
the last three benchmarks� mst� qsort� and poly� How�

�Five of the benchmarks include a small number one or two per
benchmark� of explicit touch operations for coordinating side�e�ects�
They do not a�ect the validity of the analysis and touch optimization
algorithms�

��

standard touch optimized

Benchmark touches �n
 �� touches �n
 �� speedup over standard ���
count�K� overhead��� count�K� overhead��� n
 � n
 � n
 ��

fib ���� ��� ��� ��� ��� ���� ����
queens ���� ���� �� ��� ���� ��� ����
rantree ��� ���� �� ��� ���� ���� ����
mm ���� ���� � �� ���� ���� ����
scan ���� ����� �� ��� ���� ���� ���
sum ��� ���� �� ��� ���� ���� ��
tridiag ��� ���� � �� ���� ���� ���
allpairs ���� ���� �� �� �� ���� ��
abisort ���� ���� � �� ���� ���� ����
mst ���� ���� �� ��� ��� ���� ��
qsort ��� ���� �� ���� ���� �� ��
poly ��� ���� ��� ���� ���� ���� ��

Figure ��� Benchmark Results

ever� even Feeley �
� described these as �poorly parallel�
programs� in which the e�ects of memory contention and
communication costs are especially visible� It is there�
fore not surprising that our optimizing compiler does not
improve the running time in these cases�

� Related Work

The literature on programming languages contains a num�
ber of semantics for parallel� Scheme�like languages� The
only one that directly deals with parallelism based on
transparent annotations is Moreau�s Ph�D� thesis �����
Moreau studies the functional core of Scheme extended
with pcall �for evaluating function and argument ex�
pressions of an application in parallel� and �rst�class
continuations� His primary goal is to design a semantics
for the language that treats pcall as a pure annotation�
His correctness proofs is far more complicated than our
techniques� due to the inclusion of continuations�

Independently� Reppy ���� and Leroy ���� de�ne a
formal operational semantics for an ML�like language
with �rst�class synchronization operations� Reppy�s lan�
guage� Concurrent ML� can provide the future mecha�
nism as an abstraction over the given primitives� The
semantics is a two�level rewriting system� Reppy uses
his semantics to prove a type soundness theorem� Leroy
formulates a semantics for a subset of CML in the tradi�
tional �natural� semantics framework� He also uses his
semantics to prove the type soundness of the complete
language� Neither Reppy nor Leroy used their semantics
for developing analyses or optimizations�

Jaganathan and Weeks ���� de�ne an operational se�
mantics for a simple function language extended with
the spawn construct by extending Deutsch�s transition
semantics ��� They described an analysis for their lan�
guage that they intend to use in a forthcoming compiler�
but they do not have an implementation of their analysis
for a full language like functional Scheme� and they do
not have optimization algorithms that exploit the results
of their analysis�

Wand ���� recently extended his work on correctness
proofs for sequential compilers to parallel languages� In
his prior work on the correctness of sequential compil�

ers� he derived compilers from the semantic mappings
that translate syntax into ��calculus expressions� The
extension of this work to parallel compilers starts from
a semantic mapping that translates a Scheme�like lan�
guage with process creation and communication con�
structs into a higher�order calculus of communication
and computation� After separating the compiler from
the �machine�� the correctness proof is a combination of
the sequential correctness proof and a correctness proof
for the parallel portion of the language� The proof tech�
niques are related to the ones we used to prove the equiv�
alence of the P�CEK��machine and the P�C��machine�

Kranz et al� ���� brie�y describe a simplistic algo�
rithm for touch optimization based on a �rst�order type
analysis� The algorithm lowers the touch overhead to

� from ���� in standard benchmarks� that is� it is
signi�cantly less e�ective than our touch optimization�
The paper does not address the semantics of future or
the well�foundedness of the optimizations� Knopp ����
reports the existence of a touch optimization algorithm
based on abstract interpretation� His paper presents nei�
ther a semantics nor the abstract interpretation� He
only reports the reduction of static counts of touch op�
erations for an implementation of Common Lisp with
future� Neither paper gives an indication concerning
the expense of the analysis algorithms�

Our analysis methods most closely follows Heintze�s
work on set�based analysis for the sequential language
ML ���� ���� but the extension of his technique to paral�
lel languages requires a substantial reformulation of the
derivation and correctness proof� Speci�cally� Heintze
uses the �natural� semantics framework to de�ne a set�
based �natural� semantics� from which he reads o� safe�
ness conditions on set environments� He then presents
set constraints whose solution is the minimal safe set
environment� We start from a parallel abstract machine
and avoid these intermediate steps by deriving our set
constraints and proving their correctness directly from
the abstract machine semantics�

Other techniques for static analysis of sequential pro�
grams include abstract interpretation ��� �� and Shivers�
�CFA ����� The relationship between abstract interpre�
tation and set�based analysis was covered by Heintze �����

��

Sequential optimization techniques such as tagging
optimization ��� and soft�typing ���� are similar in char�
acter to touch optimization� Both techniques remove
the type�dispatches required for dynamic type�checking
wherever possible� without changing the behavior of pro�
grams� in the same fashion as we remove touch opera�
tions� However� the analyses relies on conventional type
inference techniques�

	 Conclusion

The development of a semantics for futures directly
leads to the derivation of a powerful program analy�
sis� The analysis is computationally inexpensive but
yields enough information to eliminate numerous im�
plicit touch operations� We believe that the construc�
tion of this simple touch optimization algorithm clearly
illustrates how semantics can contribute to the devel�
opment of advanced compilers� We intend to use our
semantic characterization for the derivation of other pro�
gram optimizations in Gambit and for the design of truly
transparent future annotations for languages with im�
perative constructs�

Acknowledgments We thank Marc Feeley for discus�
sions concerning touch optimizations and for his assis�
tance in testing the e�ectiveness of our algorithm� and
Nevin Heintze for discussions on set�based analysis and
for access to his implementation of set based analysis for
ML�

References

��� Baker� H�� and Hewitt� C� The incremental garbage
collection of processes� In Proceedings of the Symposium
on Arti�cial Intelligence and Programming Languages
������� vol� �	�
�� ������

�	� BBN Advanced Computers� Inc�� Cambridge� MA�
Inside the GP����� ��
��

�� Cousot� P�� and Cousot� R� Abstract interpretation�
A uni�ed lattice model for static analyses of programs
by consruction or approximation of �xpoints� In POPL
������� 	
�	�	�

��� Cousot� P�� and Cousot� R� Higer order abstract
interpretation �and application to comportment analysis
generalizing strictness� termination� projection and per
analysis of functional languages� ICCL ������� �����	�

��� Deutsch� A� Mod�eles Op�erationnels de Language
de Programmation et Repr�esentations de Relations
sue des Languages Rationnels avec Application a la
D�etermination Statique de Propri�etes de Partages Dy�
namiques de Donn�ees� PhD thesis� Universite Paris VI�
���	�

��� Feeley� M� An E�cient and General Implementation
of Futures on Large Scale Shared�Memory Multiproces�
sors� PhD thesis� Department of Computer Science�
Brandeis University� ����

��� Feeley� M�� and Miller� J� S� A parallel virtual ma�
chine for e�cient scheme compilation� In LFP �������

�
� Felleisen� M�� and Friedman� D� P� Control oper�
ators� the SECD�machine� and the lambda�calculus� In
�rd Working Conference on the Formal Description of
Programming Concepts �Aug� ��
��� ���	���

��� Flanagan� C�� and Felleisen� M� The semantics of
Future� Rice University Comp� Sci� TR���	
�

���� Flanagan� C�� and Felleisen� M� Well�founded
touch optimization of Parallel Scheme� Rice University
Comp� Sci� TR���	��

���� Flanagan� C�� Sabry� A�� Duba� B� F�� and
Felleisen� M� The essence of compiling with continu�
ations� In PLDI ������ 	��	���

��	� Halstead� R� Multilisp� A language for concurrent
symbolic computataion� ACM Transactions on Pro�
gramming Languages and Systems �� � ���
��� �����
�

��� Heintze� N� Set Based Program Analysis� PhD thesis�
Carnegie Mellon University� ���	�

���� Heintze� N� Set�based analysis of ML programs� In
LFP ������� ������

���� Henglein� F� Global tagging optimization by type in�
ference� In LFP ����	�� 	���	���

���� Ito� T�� and Halstead� R�� Eds� Parallel Lisp	 Lan�
guages and Systems� Springer�Verlag Lecture Notes in
Computer Science ���� ��
��

���� Ito� T�� and Matsui� M� A parallel lisp language�
Pailisp and its kernel speci�cation� �����
������

��
� Jagannathan� S�� and Weeks� S� Analyzing stores
and references in a parallel symbolic language� In LFP
������� 	������

���� Katz� M�� and Weise� D� Continuing into the fu�
ture� on the interaction of futures and �rst�class contin�
uations� In LFP �������

�	�� Kessler� R�R�� and R� Swanson� Concurrent scheme�
����	���	���

�	�� Knopp� J� Improving the performance of parallel lisp
by compile time analysis� ����	���	����

�		� Kranz� D�� Halstead� R�� and Mohr� E� Mul�T� A
high�performance parallel lisp� �������	���

�	� Kranz� D�� Halstead� R�� and Mohr� E� Mul�T� A
high�performance parallel lisp� In PLDI ���
���
�����

�	�� Leroy� X� Typage polymorphe d
un langage algorith�
mique� PhD thesis� Universit�e Paris �� ���	�

�	�� Miller� J� MultiScheme	 A Parallel Processing System�
PhD thesis� MIT� ��
��

�	�� Mohr� E�� Kranz� R�� and Halstead� R� Lazy task
creation� A technique for increasing the granularity of
parallel programs� In LFP �������

�	�� Moreau� L� Sound Evaluation of Parallel Functional
Programs with First�Class Continuations� PhD thesis�
Universite de Liege� �����

�	
� Reppy� J�H� Higher�Order Concurrency� PhD thesis�
Cornell University� Jan� ���	�

�	�� Sabry� A�� and Felleisen� M� Is continuation�passing
useful for data �ow analysis� In PLDI ������� ���	�

��� Shivers� O� Control��ow Analysis of Higher�Order
Languages or Taming Lambda� PhD thesis� Carnegie�
Mellon University� �����

��� Swanson� M�� Kessler� R�� and Lindstrom� G� An
implementation of portable standard lisp on the BBN
butter�y� In LFP ���

�� �	���	�

�	� Wand� M� Compiler correctness for parallel languages�
Unpublished manuscript� �����

�� Wright� A� and R� Cartwright� A practical soft
type system for scheme� In LFP ������� 	���	�	�

��

