The Semantics of Future and Its Use in Program Optimization

Cormac Flanagan*

Matthias Felleisen*

Department of Computer Science
Rice University
Houston, Texas

Abstract

The future annotations of MultiLisp provide a simple
method for taming the implicit parallelism of functional
programs. Past research concerning futures has focused
on implementation issues. In this paper, we present a se-
ries of operational semantics for an idealized functional
language with futures with varying degrees of inten-
sionality. We develop a set-based analysis algorithm
from the most intensional semantics, and use that al-
gorithm to perform touch optimization on programs.
Experiments with the Gambit compiler indicates that
this optimization substantially reduces program execu-
tion times.

1 Implicit Parallelism via Annotations

Programs in functional languages offer numerous oppor-
tunities for executing program components in parallel.
In a call-by-value language, for example, the evalua-
tion of every function application could spawn a par-
allel thread for each sub-expression. However, if such a
strategy were applied indiscriminately, the execution of
a program would generate far too many parallel threads.
The overhead of managing these threads would clearly
outweigh any benefits from parallel execution.

The future annotations of MultiLisp [1, 12] and its
Scheme successors provide a simple method for taming
the implicit parallelism of functional programs. If a pro-
grammer believes that the parallel evaluation of some
expression outweighs the overhead of creating a sepa-
rate task, he may annotate the expression with the key-
word future. An annotated functional program has the
same observable behavior as the original program, but
the run-time system may choose to evaluate the future
expression in parallel with the rest of the program. If it
does, the evaluation will proceed as if the annotated ex-

*Supported in part by NSF grant CCR 91-22518, Texas ATP grant
91-003604014 and a sabbatical at Carnegie Mellon University.

To appear in the 22nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, San Francisco, California, January 23-25,
1995.

pression had immediately returned. Instead of a proper
value though, it returns a placeholder. When a program
operation requires specific knowledge about the value
of some sub-computation but finds a placeholder in its
place, the run-time system performs a touch operation,
which synchronizes the appropriate parallel threads.

Past research on futures has almost exclusively con-
centrated on the efficient implementation of the under-
lying task creation mechanism [6, 17, 23, 25, 26] and
on the extension of the concept to first-class continu-
ations [19, 27]. In contrast, the driving force behind
our effort is the desire to develop a semantic frame-
work and semantically well-founded optimizations for
languages with future. The specific example we choose
to consider is the development of an algorithm for re-
moving provably-redundant fouch operations from pro-
grams. Qur primary results are a series of semantics
for a functional language with futures and a program
analysis. The first semantics defines future to be a
semantically-transparent annotation. The second one
validates that a future expression interpreted as process
creation is correct. The last one is a low-level refine-
ment, which explicates just enough information to per-
mit the derivation of a set-based program analysis [14].
The secondary result is a fouch optimization algorithm
(based on the analysis) with its correctness proof. The
algorithm was added to the Gambit Scheme compiler [6]
and produced significant speedups on a standard set of
benchmarks.

The presentation of our results proceeds as follows.
The second section introduces an idealized functional
language with futures, together with its definitional,
sequential semantics that interprets futures as no-ops.
The third section presents an equivalent parallel seman-
tics for futures and the fourth section contains the low-
level refinement of that semantics. The fifth section dis-
cusses the cost of touch operations and presents a prov-
ably correct algorithm for eliminating unnecessary touch
operations. The latter is based on the set-based analy-
sis algorithm of the sixth section. The seventh section
presents experimental results demonstrating the effec-
tiveness of this optimization. Section eight discusses re-
lated work. For more details, we refer the interested
reader to two technical reports on this work [9, 10].

M € Ag = =z (Terms)
| (let (z V) M)
| (let (z (future M)) M)
| (let (z (car y)) M)
| let ((cdr 4)) M)
| (let (= (if y M M)) M)
| (let (= (apply y z)) M)
V € Value == c|z| (Ao.M) | (cons zy) (Values)
r € Vars == {z,y,2,...} (Variables)
c € Const := {true,false,0,1,...} (Constants)

Figure 1: The A-normalized Language A,

2 A Functional Language with Futures

2.1 Syntax Given the goal of developing a seman-
tics that is useful for proving the soundness of opti-
mizations, we develop the definitional semantics for fu-
tures for an intermediate representation of an idealized
functional language. Specifically, we use the subset of
A-normal forms [11] of an extended A-calculus-like lan-
guage that includes conditionals and a future construct:
see Figure 1. The language also includes primitives for
list manipulation, which serve to illustrate the treatment
of primitive operations, and an unspecified set of basic
constants (numbers, booleans).

The key property of terms in A-normal form is that
each intermediate value is explicitly named and that
the order of execution follows the lexical nesting of let-
expressions. The use of A-normal forms facilitates the
compile-time analysis of programs [29], and it simplifies
the definition of abstract machines [11].

We work with the usual conventions and terminology
of the lambda calculus when discussing syntactic issues.
In particular, the substitution operation M[z « V] re-
places all free occurrences of & within M by V, X© de-
notes the set of closed terms of type X (terms, values),
and M € P denotes that the term M occurs in the pro-
gram P. Also, we use the following notations through-
out the paper: P denotes the power-set constructor;
f : A — B denotes that f is a total function from
A to B; and f: A —, B denotes that f is a partial
function from A to B.

2.2 Definitional Semantics The semantics of A,
is a function from closed programs to results. A re-
sult is either an answer, which is a closed value with
all A-expressions replaced by procedure, or error, in-
dicating that some program operation was misapplied,
or L, if the program does not terminate. We specify the
definitional semantics of the language using a sequential
abstract machine called the C-machine (see Figure 2),
whose states are either closed terms over the run-time
language A, or else the special state error, and whose
deterministic transition rules are the typical leftmost-
outermost reductions of the A-calculus [8]. Each transi-
tion rule also specifies the error semantics of a particular
class of expressions. For example, the transition rule for
car defines that if the argument to car i1s a pair, then
the transition rule extracts the first element of the pair.

If the argument i1s not a pair, then the transition rule
produces the state error.

The rule for future pretends that future is the iden-
tity operation. It demands that the body of a future
expression is first reduced to a value, and then replaces
the name for the future expression with this value.

The definition of the transition function relies on the
notion of evaluation contexrts. An evaluation context &
is a term with a hole [] in place of the next sub-term to
be evaluated; e.g., in the term (let (x M;) M), the next
sub-term to be evaluated is M7, and thus the definition
of evaluation contexts includes (let (z &) M).

A machine state is a final state if it is a value or the
state error. No transitions are possible from a final
state, and for any state that is not a final state, there
i1s a unique transition step from that state to its succes-
sor state. This implies that the relation ewval, is a total
function: Either the transition sequence for a program
P terminates in a final state, in which case eval.(P) is
an answer or error, or else the transition sequence is
infinite, in which case eval.(P) = L. Since the evalua-
tor eval. obviously agrees with the sequential semantics
of the underlying functional language, future is clearly
nothing but an annotation.

3 A Parallel Operational Semantics

The sequential C-machine defines future as an anno-
tation, and ignores the intension of future as an advi-
sory instruction concerning parallel evaluation. To un-
derstand this intensional aspect of future, we need a
semantics of future that models the concurrent evalua-
tion of future expressions.

3.1 The P(C)-machine The state space of the P(C')-
machine is defined in the first part of Figure 3. The
set of P(C) values includes the values of the sequen-
tial C-machine (constants, variables, closures and pairs),
which we refer to as proper values. To model futures, the
P(C)-machine also includes a new class of values called
placeholder variables. A placeholder variable p repre-
sents the result of a computation that is in progress.
Once the computation terminates, all occurrences of the
placeholder are replaced by the value returned by the
computation.

Each C-machine state represents a single thread of
control. To model parallel threads, the P(C')-machine
includes additional states of the form (f-let (p S1) S2).
The primary sub-state S7 is initially the body of a fu-
ture expression, and the secondary sub-state S, is ini-
tially the evaluation context surrounding the future ex-
pression. The placeholder p represents the result of Sy
in Ss. The usual conventions for binding constructs like
A and let apply to f-let. The function F'P returns the
set of free placeholders in a state. The evaluation of
S1 1s mandatory, since it is guaranteed to contribute to
the completion of the program. The evaluation of S5 is
speculative, since such work may not be required for the
termination of the program. In particular, if S; raises
an error signal, then the evaluator discards the state

Evaluator:

1L if Vi € N dM; € Statec such that P = My and M; —. M; 1

evalc : Y — Answers U {error, L}
wnload V] i Pr——%V
evalc(P) = error if P+——2%error

Data Specifications:

et (z &) M)

Unload Function:

S € Statec = M | error (States) unload . : Value? —— Answers
M € A. = 14 (Run-time Language) unload [c] = ¢
| (let (= V') M) unload [(Az.M)] = procedure
| (let (= (future M)) M) unload[(cons V1 V)] = (coms A; Aj)
| (let (z (car V)) M) A; = wnload [V3]
| (let (z (cdr V)) M)
| (let (= (if V M M)) M)
| (let (= (apply V V)) M)
| (let (z M) M
V€ Valuec = clz | (Az.M) | (cons V V) (Run-time Values)
A € Answers u= c | procedure | (cons A A) (Answers)
E € EwalCtzt == [(Evaluation Contexts)
(
(

z (future £)) M)

Transition Rules:

Elet (z V) M)] e &Mz —V]] (bind)

&l (let (z (future V)) M)] +——c E[Mz —V]] . (future-id)
eltet (o (ear v)] e { (L WD Sy SO) (car)

&l (let (z (cdr V)) M)] +——. analogous to (car) . (edr)
elte (e v M) M1 e { SR A iy 2 fane (i
€ (let (= (apply Va Vo)) M)] e { ir((lﬁt (z N[y — V2]) M)] i “2 ; Eiz%; (apply)

Figure 2: The sequential C-machine

Ss, and any effort invested in the evaluation of S5 is
wasted. The distinction between mandatory and specu-
lative steps is crucial for ensuring a sound definition of
an evaluator and is incorporated into the definition of
the transition relation.

Transition Rules We specify the transition relation
of the P(C)-machine as a quadruple. If S 7" 5
holds, then the index n i1s the number of steps involved
in the transition from S to S’, and the index m < n is
the number of these steps that are mandatory.

The transition rules (bind), (future-id), (car), (cdr),
(if) and (apply) are simply the rules of the C-machine,
appropriately modified to allow for placeholder variables.
An application of one of these rules counts as a manda-
tory step.

The transition rule (fork) initiates parallel evalua-
tion. This rule may be applied whenever the current
term includes a future expression within an evaluation
context, ¢.e.:

E(let (z (future N)) M)
The future annotation allows the expression N to be
evaluated in parallel with the enclosing context. The
machine creates a new placeholder p to represent the
result of NV, and initiates parallel evaluation of N and
& (et (z p) M) 1.

The transition rule (parallel) permits concurrent eval-
uation of both sub-states of a parallel state.

The transition rules (join) and (join-error) merge
distinct threads of evaluation. When the primary sub-
state Sy of a parallel state (f-let (p S1) S2) returns a
value, then the rule (join) replaces all occurrences of
the placeholder p within Ss by that value. If the pri-
mary sub-state S; evaluates to error, then the rule
(join-error) discards the secondary sub-state Sy and re-
turns error as the result of the parallel state.

The transition rule (lift) restructures nested parallel
states, and thus exposes additional parallelism in certain
cases. Consider (f-let (p2 (f-let (p1 S1) V) Ss). The
rule (lift) allows the value V to be returned to the sub-
state Sz (via a subsequent (join) transition), without
having to wait on the termination of 5.1

The rules (reflexive) and (transitive) close the rela-
tion under reflexivity and transitivity. We write S'+—7

STif S 2 S for some n,m € N.

pc

Indeterminism Unlike the C-machine, in which each
state has a unique successor state, the transition rules
of the P(C')-machine denote a true relation. In partic-
ular, the definition does not specify when the transi-
tion rule (fork) applies. For example, given the state
&l (let (¢ (future N)) M)], the machine may proceed
either by evaluating N sequentially, or by creating a new
task via a (fork) transition. An implementation may

1A second reason for the inclusion of this rule is that it is necessary
for an elegant proof of the consistency of the machine using a modified
form of the diamond lemma of the lambda calculus.

Evaluator:

evalpe : A — Answers U {error, L}
{ unload [V] if P H;C v
evalpe(P) = error if P »—>p error
1L if Vi € N 3S; € Statepe,ni, m; € N with m; > 0, P = Sy and S; »—>n“m’ Sit1

Data Specifications:

S € Statepe := M | error | (f-let (p S) S) (States)

M € Apc = V| (let (z V) | ... (As for Ac)

V € Valuepe u= c|x| (Az.M) onsV V) |p (Run-time Values)

p € Ph-Vars == {p1,p2,p3,---} (Placeholders Variables)

Transition Rules: 11
El(et (z V) M)] +——p2 E[Mz « V]] (bind)
& (let (¢ (future V) M)] ——1' [Mz — V]] (future-id)
1,1 E[M[z —WV1]] UV = (cons V7 1)
et (o ear vy)] g { (LY TV % (come V2 Vo1 £ (car
El (let (z (cdr V)) M)] »——>113’51 analogous to (car) (edr)
. 1,1 El(let (z Mi) M)] HV #false,V #p
E[(let (& (if V My Ma)) M)] ——p: { €[(let (= My) M)] if V = false (if)
11 £[(let (¢ N[y — Va]) M)] if Vi = (\y.N)

5[(let (l’ (apply Wi V2)) M)] ——pc { error ifVy £ (/\y.N),V1 #£p (apply)
& (let (z (future N)) M)] 12 (flet (p N) E[Mz —p]]) p & FP(£) U FP(M) (fork)
(f-let (p V) 5) bl Slp — V] (join)
(f-let (p error) S) »——>p’cl error (join-error)
(f-let (po (f-let (p1 S1) S2)) S2) =i (flet (p1 S1) (flet (p2 S2) S2)) p1 @ FP(Sa) (lift)
(flet (p S1) So) i’ (flet (p S1) S5) if Si——pl 81, S —Gt Shin=a+c (parallel)
S »——>p’co S (reflezive)
S =g s if S »——>g’cb s s »——>§,’cd S'nm=a+ec,m=b+dn>0 (transitive)

Figure 3: The parallel P(C')-machine

consequently choose to ignore future expressions (along
the lines of the C-machine), which yields a sequential ex-
ecution, to execute fork as early as possible, which yields
an eager task creation mechanism [23, 31], or to choose
some strategy in between the extremes, which yields lazy
task creation [6, 26]

A second source of indeterminism is the transition
rule (parallel). This rule does not specify the number of
steps that parallel sub-states must perform before they
synchronize. An implementation of the machine can use
almost any scheduling strategy for allocating processors
to tasks, as long as it regularly schedules the mandatory
thread.

Evaluation In general, the evaluation of a program
can proceed in many different directions. Some of these
transition sequences may be infinite, even if the program
terminates according to the sequential semantics. Con-
sider:

P = (let (z (future error)) Q)

Q— L1

where € is some diverging sequential term, z.e., o
Q. The sequential evaluator never executes €2 because
P’s result is error. In contrast, P admits the following

infinite parallel transition sequence:

via (fork)

since £2 b—>11)’cl Q

P ._>11),co (f-let (p error) Q)

b—>11)’0 (f-let (p error) Q)

1,0
—pe

This “evaluation” diverges because it exclusively con-
sists of speculative transition steps and does not include
any mandatory transition steps that contribute to the
sequential evaluation of the program. The evaluator
for the P(C)-machine excludes these excessively spec-
ulative transition sequences, and only considers transi-
tion sequences that regularly includes mandatory steps.
For a terminating transition sequence, the number of
speculative steps performed is implicitly bounded. For
non-terminating sequences, the definition of the evalu-
ator explicitly requires the performance of mandatory
transition steps on a regular basis. This constraint im-
plies that an implementation of the machine must keep
track of the mandatory thread and must ensure that this
mandatory thread is regularly executed.

3.2 Correctness The observable behavior of the P(C)-
machine on a given program is deterministic, despite its
indeterminate nternal behavior.

Theorem 3.1 eval,. s a function.

We prove this consistency using a modified form of
the traditional diamond lemma. The modified diamond
lemma states that if we reduce an initial state S by two
alternative transitions, producing respectively states S,
and S5, then there is some state Sy that is reachable from
both S5 and S3. Furthermore, the number of mandatory
steps on the transition from S; to S4 via S5 is bounded
by the total number of steps on the transition from 5y
to Sy via S3, and vice-versa. This bound is necessary to

prove that all transition sequences for a given program
exhibit the same termination behavior.

Since each sequential transition rule of the P(C')-
machine subsumes the corresponding transition rule of
the C-machine, every transition of the C-machine is also
a transition of the P(C')-machine, which implies that the
evaluators are equivalent.

Theorem 3.2 eval,. = eval.

Put differently, the P(C)-machine is a correct im-
plementation of the C'-machine in that both define the
same semantics for the source language. Hence, the in-
terpretation of future as a task creation construct, with
implicit task coordination, is entirely consistent with the
definitional semantics of future as an annotation.

4 A Low-Level Operational Semantics

Since optimizations heavily rely on static information
about the values that variables can assume, the P(C)-
machine is ill-suited for correctness proofs of appropri-
ate analysis algorithms.? On one hand, the states of the
P(C)-machine contain no binding information relating
program variables and values. Instead, the machine re-
lies on substitution for making progress. On the other
hand, the representation of run-time values and other
objects in the P(C')-machine is too coarse. For example,
it does not permit a detailed view of the synchronization
operations that are required for coordinating futures.
To address these problems, we refine the P(C')-machine
to the P(C'EK)-machine (see Figure 4) using standard
techniques [8, 11].

4.1 The P(CEK)-machine An evaluation context,
which represents the control stack, is now represented
as a sequence of activation records (which are similar
to closures). A tagged activation record ({ar{ z, M, E))
represents a point where the continuation can be split
into separate tasks (cmp. fork). The substitution opera-
tion is replaced by an environment in the usual manner.
An environment £ is a mapping from variables to run-
time values. The empty environment is denoted by 0,
and the operation E[x «— V] extends the environment ¥
to map the variable & to the value V.

During the course of the refinement, we also replace
each placeholder p with an explicit undetermined place-
holder object {(ph p o). The symbol o indicates that
the result of the associated computation is unknown.
When the associated computation terminates, producing
a value V', then the undetermined placeholder object is
replaced by the determined placeholder object (ph p V).
This change of representation explicates fouch opera-
tions in the form of side-conditions on the appropriate
transition rules. The conditions state that an undeter-
mined placeholder object ({ph p o)) must have been re-
placed by a determined placeholder object ({ph p V))

?The machine is also far too abstract for the derivation of an
implementation. This problem is also addressed by the following
development.

before the program operation can take place. The con-
ditions precisely identify the positions of car, ecdr, if
and apply that demand proper values and also show
that operations like cons or the second position of ap-
ply do not need to know anything about the values they
process.

The transition relation ——p..; reformulation of the
relation ——. that takes into account the change of state
representation. We write S+——7 Shif s b—>zc’2nk S’ for
some n,m € N

4.2 Correctness The correctness proof for the new
machine involves two steps. The first step constructs an
intermediate semantics by introducing placeholder ob-
jects into the P(C)-machine. The second step proves
the correctness of the P(C' E K)-machine with respect to
the intermediate semantics using standard proof tech-
niques [8], appropriately modified to account for parallel
evaluation.

Theorem 4.1 cvaly..r = eval,.

5 Touch Optimization

The P(CEK)-machine performs touch operations on ar-
guments in placeholder-strict positions of all program
operations. These implicit touch operations guarantee
the transparency of placeholders, which makes future-
based parallelism so convenient to use. Unfortunately,
these compiler-inserted fouch operations impose a signif-
icant overhead on the execution of annotated programs.
For example, an annotated doubly-recursive version of
fib performs 1.2 million touch operations during the com-
putation of (fib 25).

Due to the dynamic typing of Scheme, the cost of
each touch operation depends on the program operation
that invoked it. If a program operation already performs
a type dispatch to ensure that its arguments have the ap-
propriate type, e.g., car, cdr, apply, efc, then a touch
operation is free. Put differently, an implementation of
(car z) in pseudo-code is:

(if (pair? z) (unchecked-car)
error ’car "Not a pair"))

Extending the semantics of car to perform a touch op-
eration on placeholders is simple:

(if (pair? z) (unchecked-car)
(let ([y (touch z)])
(if (pair? y) (unchecked-car y)
error ‘car "Not a pair"))))

The touching version of car incurs an additional over-
head only in the error case or when z is a placeholder.
For the interesting case when z is a pair, no overhead is
incurred. Since the vast majority of Scheme operations
already perform a type-dispatch on their arguments,3
the overhead of performing implicit touch operations ap-
pears to be acceptable at first glance.

3Two notable exceptions are if, which does not perform a type-
dispatch on the value of the test expression, and the equality predicate
eq?, which is typically implemented as a pointer comparison.

Evaluator:

z,E,€)

evalpeey : A — Answers U {error, L})
wnload peer[E(2x)] if (P,0,¢) '—>;cek {
evalpeer(P) = error if (P,0,€) —7 _, error

L if Vi € N 3S; € Statepeer, ni,mi € N with m; > 0, So = (P,0,¢) and S; b—>Zé’eZl’ Sit1

Data Specifications:

S € Statepeer = (M,E,K) | error | (f-let (p S) S) (States)
M € a (A-nf Language)
E € Envpeer = Vars —p Valuepeer (Environments)
V€ Valuepcer = PValuepeer | Ph-Objpeep (Run-Time Values)
W € PValuepeer = c| x| Clpeer | Pairpeer (Proper Values)

Clpcek = {((Az.M),E) (Closures)

Pairpeer := (cons V V) (Pairs)

Ph-0bj ey == (phpo) | (phpV) (Placeholder Objects)
K € Contpeep = e|{arz,M,E).K | {(art o, M,E}.K (Continuations)

Auxiliary Functions:
unload peeg Valuepcek — Answers touchpeek + Valuepcer — PValuepcek U {o}

wnload peerc]
unload peek [((Ae. M), F)]
unloadpcek[(cons Wi V2)]
wnload peer[(Ph p V)]

c
procedure

wnload pee[V]

Transition Rules:
- 1,1
((let (= (cons y z)) M),E, K) F— ek
transition rules for (let (= c)
1,1

M), (let (=

(cons unload peer[V1] unload peer[Va])

(M,E[z — (cons E(y) E(z))],K)
y) M) and (let (&

7"OUChpcek[(ph P O>]
touchpeer[(Ph p V)]
touch peer[W]

touchpcek[V]
19%

(bind-cons)
(Ay.N)) M) are similar to (bind-cons)

(z,E,{ar y, M,E").K) F— ek (M,E'ly — E(2)],K) (return)
M, E[z — Vi], K} if touchoox[E(y)] = (cons V; Vi

((let (= (car y)) M), E, K) zlaclek { irror[O if touchiceZ%EEzH ¢ I(Dairpceklu ?l} (car)
((let (= (cdr y)) M),E, K) ;clek analogous to (car) (edr)
((let (v (f y My Mp)) M),E,K) — %, { %;gézﬁi M §§ ﬁg i f}ZZEZiZgEzH £ {fateeo) (if)
(et (= (apply y 2) M), 5, K) bt LIPS BC o 2,0, LI ot) R s U T
(et ((future N)) M),E,K) %;k (N,E,(art z,M, E).K) (future)
(z,E,{art y,M,E').K) {cek (M E'ly — E(z)],K) (future-id)
(M, E,Ky.(art =, N, E").K>) i (tlet (p (M, E,K1)) (N,E'[e — (ph p o), K2)) p @ FP(E')UFP(Ky) (fork)
(f-let (p (z, E,€)) S) — peck Slp = E(z)] (join)

transition rules (join-error), (lift), (parallel), (reflezive) and (iransitive) are as for the P(C')-machine

Figure 4: The P(CEK)-machine

Unfortunately, a standard technique for increasing
execution speed in Scheme systems is to disable type-
checking typically based on informal correctness argu-
ments or based on type verifiers for the underlying se-
quential language [33]. When type-checking is disabled,
most program operations do not perform a type-dispatch
on their arguments. Under these circumstances; the
source code (car z) translates to the pseudo-code:

(unchecked-car)

Extending the semantics of car to perform a touch op-
eration on placeholders is now quite expensive, since it
then performs an additional check on every invocation:

(if (placeholder? z) (unchecked-car (touch)

(unchecked-car z))

Performing these placeholder? checks can add a signif-
icant overhead to the execution time. Kranz [22] and
Feeley [6] estimated this cost at nearly 100% of the (se-
quential) execution time, and our experiments confirm
these results (see below).

The classical solution for avoiding this overhead is to
provide a compiler switch that disables the automatic
insertion of touches, and a touch primitive so that pro-
grammers can insert touch operations ezplicitly where
needed [6, 20, 31]. We believe that this solution is flawed
for several reasons. First, it clearly destroys the trans-
parent character of future annotations. Instead of an
annotation that only affects executions on some ma-
chines, futureis now a task creation construct and touch
i1s a synchronization tool. Second, to use this solution
safely, the programmer must know where placeholders
can appear instead of regular values and must add touch
operations at these places in the program. In contrast
to the addition of future annotations, the placement
of touch operations is far more difficult: while the for-
mer requires a prediction concerning computational in-
tensity, the latter demands a full understanding of the
data flow properties of the program. Since we believe
that an accurate prediction of data flow by the program-
mer is only possible for small programs, we reject this

. 1,1
((let (= (car y)) M),E,K) —iL,
(M,E[z — Vi],K) if E(y) = (cons V; V3)
unspecified if E(y) € Ph-Objpeer
error otherwise
. 1,1
((let (= (cdr y)) M), E,K) s

analogous to car

((et (= (if y My Mz)) M),E,K) !

pcek
(M2, E,{ar z,M,E).K) if E(y) = false
unspecified

if E(y) € Ph-Obj s,
(Mh,E,{ar ,M,E).K) otherwise
((let (z (apply v 2)) M),E, Ky 211

pcek
BT = BOL L iBG) = (0w V), B

unspecified if E(y) € Ph-0bj peep

error otherwise

Figure 5: Non-{ouching transition rules

traditional solution.

A better approach than explicit touches 1s for the
compiler to use information provided by a data-flow anal-
ysis of the program to remove unnecessary touches wher-
ever possible. This approach substantially reduces the
overhead of touch operations without sacrificing the sim-
plicity or transparency of future annotations.

5.1 Non-touching Primitives The current language
does not provide primitives that do not fouch arguments
in placeholder-strict positions. To express and verify
an algorithm that replaces touching primitives by non-
touching primitives, we extend the language A, with
non-touching forms of the placeholder-strict primitive
operations, denoted car, cdr, if and apply, respec-
tively:

As their name indicates, a non-touching operation be-
haves in the same manner as the original version as long
as its argument in the placeholder-strict position is not
a placeholder. If the argument is a place-holder, the
behavior of the non-touching variant is undefined. The
extended language is called A,.

We define the semantics of the extended language A,
by extending the P(C'EK)-machine with the additional
transition rules described in Figure 5. The evaluator for
the extended language, eval,..p, is defined in the usual
way (cmp. Figure 4). Unlike evaly..x, the evaluator
evalycer 15 no longer a function. There are programs in
A, for which the evaluator eval,.cx can either return a

value or can be unspecified because of the application
of a non-touching operation to a placeholder. Still, the
two evaluators clearly agree on programs in A,.

Lemma 5.1 For P € Ay, evalp.cr(P) = evaly.c;(P).

5.2 The Touch Optimization Algorithm The goal
of touch optimization is to replace the touching opera-
tions car, cdr, if and apply by the corresponding non-
touching operation whenever possible, without changing
the semantics of programs. For example, suppose that a
program contains (let (# (car y)) M) and we can prove
that y i1s never bound to a placeholder. Then we can
replace the expression by the form (let (z (car y)) M),
which the machine can execute more efficiently without
performing a test for placeholdership on y.

This optimization technique relies on a detailed data-
flow analysis of the program that determines a conserva-
tive approximation to the set of run-time values for each
variable. More specifically, we assume that the analysis
returns a valid set environment, which is a table map-
ping program variables to a set of run-time values? that
subsumes the set of values associated with that variable
during an execution.

Definition 5.2. (Set environments, validity) Let P be
a program and let Varsp be the set of variables occurring
in P.
e A mapping £ : Varsp — P(Valueycer) is a set en-
vironment.

e A set environment & is walid for P if S |= & holds
for every S such that (P, 0, ¢) — S.

e The relation S |= £ holds if every environment in
S maps every variable z to a value in £(z).

*
peek

The basic idea behind touch optimization is now easy
to explain. If a valid set environment shows that the ar-
gument of a touching version of car, edr, if or apply can
never be a placeholder, the optimization algorithm re-
places the operation with its non-touching version. The
optimization algorithm 7 is defined in Figure 6.

The function sba, described in the next section, al-
ways returns a valid set environment for a program.
Assuming the correctness of of set-based analysis, the
touch optimization algorithm preserves the meaning of
programs, since each transition step of a source program
P corresponds to a transition step of the optimized pro-
gram.

Theorem 5.3 (Correctness of {ouch-optimization)
For P € AY, evalp.er(P) = evalpcek(sta(P)[P]).

Any implementation that realizes evalp . correctly
can therefore make use of our optimization technique.

6 Set-Based Analysis for Futures

We develop the analysis that produces valid set environ-
ments in two steps. First, we use the transition rules of
the P(CEK)-machine to derive constraints on the sets
of run-time values that variables in a program may as-
sume. Any set environment satisfying these constraints

40raleast a representation of this set that provides the appropriate
information.

Tg : Aa —_— Aa
Telz] = @
Tel(let (m c) M)] = (let (z c) Tg[M])
Tel(let (z y) M)] = (let (z y) Te[M])
Tel(let (= (v N)) M)] = (let (= (A Te (V) To[M])
Tzl(let (z (comns y z)) M)] = (let (z (cons y z)) T¢[M])
Tzl(let (z (future N)) M)] = (let (z (future 7¢[N])) T [M])
Tel(let (v (car y)) M)] = .
{ (let (= (car y)) T¢[M]) }f E(y) C PValuepcer
(let (¢ (car y)) Tg[M]) if E(y) € PValuepcer
Tz[(let (z (cdr y)) M)] = analogous to car
Tel(let (= (if y My Ma)) M) =
{ (let (@ (if y My Ma)) Tg[M]) if E(y) C PValuepeer
(let (@ (if y My Ma)) Tg[M]) if E(y) € PValuepeer

Te[(let (= (apply y 2)) M)] =
(let (¢ (apply vy 2)) Te[M]) if E(y) C PValuepcer
Te[M

(let (¢ (apply y 2)) Te[M]) if E(y) € PValuepcer

Figure 6: The touch optimization algorithm 7

is a valid set environment. Second, we develop an algo-
rithm for finding the minimal set environment satisfying
these constraints. The constraints we produce are simi-
lar to those in Heintze’s work on set based analysis for
ML [14], though our derivation of these constraints dif-
fers substantially.

6.1 Deriving Set Constraints We derive constraints
on valid set environments by analyzing the transition
rules of the machine. Each constraint we produce is of

the form:
A

B

where A and B are statements concerning &£, and A also
depends on the program being analyzed. A set environ-
ment & satisfies this constraint if whenever A holds for
&, then B also holds for £.

Let P be the program of interest, and suppose that

the evaluation of P involves the tran51t10n S '_ﬁc:znk S

where S |= €. We derive constraints on &£ sufficient to
ensure that S’ |= &€ by case analysis on the last transition

n,m oy
rule used for S ek S’

We present three representative cases:

e Suppose S —11§ via the rule (bind-const):

peek
S = {(let (x ¢) M), E,K)
'_>;1;21ek S = (M,E[z —¢c],K)

This rule binds « to the constant ¢, where the term
(let (z ¢) M) occurs in P. To ensure that the set
environment £ includes ¢ as one of the possible val-
ues of z, we demand that &£ satisfy the constraint:

(let (x ¢) M)e P
c€&(x)

(1)

1,1

e Suppose S+ "\ S’ via the rule (apply). In the

interesting case, y is bound, either directly or via a
placeholder, to a closure {(Az'. N), E'):

S = {(let (z (apply y z)) M), E, K)
—ver S = (N, E'[2) — E(2)], (ar 2, M, E).K)
Then this rule binds &’ to E(z). To ensure that £
accounts for this binding, we demand that & satisfy
the constraint:

(let (¢ (apply y z)) M) € P
Velly V.€&(»)
touchpcek[]={(Az'.N), E)

e Suppose S —1 S via the rule (return):

peek

S =
— bl S =

peek

(z, E', {(ar y, M, F}.K)
(M, Ely — E'(z)], K)

We need to ensure that £ includes E'(z) as a pos-
sible value of y. However, when analyzing a “re-
turn instruction” x, we have no information re-
garding the possible activation records that may
receive the value of x during an execution. In
contrast, when analyzing an application expression
(let (y (apply f z)) M), we know both the calling
context and, from £(f), the set of closures that can
possibly be invoked. Furthermore, if {(Az’. N), E)
is the closure being invoked, then the result of the
application will be the current binding of the vari-
able FinalVar[N], where FinalVar is the following
function from expressions to variables:

FinalVar : A,— Vars
FinalVar[z] = «
FinalVar[(let (z V) M)] = FinalVar[M)]
FinalVar[(let (z (future N)) M)] = FinalVar[M]

To ensure that £ accounts for the binding of z to
the value of FinalVar[N] for all closures that may
be invoked, we demand that & satisfy the constraint

(let (z (apply y z)) M) € P
Velly)
touchy.c;[V] = (A2’ . N), E)
Vi € E(FinalVar[N))

Vv € g(l‘)

(C5)

Examining each of the transition rules of the machine
in a similar manner results in eleven program-based set
constraints CE ... CE (see Figure 7) sufficient to en-
sure that a set environment is valid. Put differently, if
a set environment & satisfies the set constraints for a
program P, it is easy to prove, using induction on the
length of the transition sequence, that £ is valid for P.

Theorem 6.1 (Soundness of Constraints) If& sat-
isfies CF ... CL, then & is valid for P.

(let (z c) M) e P (C’P)
c€&(x) !
(let (zy) M) e P Ve é&(y) (C’P)
V € £(x) 2
(let (z (\y.N)) M) e P
Yz € dom(E). E(z) € £(x) (C’P)
((My.N),E) € £(w) ’

(let (z (cons y1 y2)) M) e P Vi €E(yi)i = 1,2
(cons V1 V3) € &(x)

(let (z (car y)) M) e P Ve E(y)
touchpeer[V] = (cons Vi V3)

Vi € 5(1’)

(let (z (cdr y)) M) e P Ve &(y)
7"OUChpcek [V] = (COllS Vi V2) (OP)
Vi € E(x) ¢
(let (= (apply v 2)) M) e P Ve &(y)
touchpeer[V] = ((Az'. N), E) V. € &() (C’P)
V. € £(z)) !
(let (= (apply y 2)) M) € Veé(y)
touc}lpcek[v] ((Al’ N) E>
Vi € E(FinalVar[N]) (C’P)
Viv € £(x) ’
(let (l’ (lf Yy M1 Mg)) M) € P
V € E(FinalVar[Mi]) U E(FinalVar[Ma]) (Op)
V € E(x) °
(let (z (future N)) M) e P V € E(FinalVar[N]) (CP)
Vee() (phpV)el() ’
(let (z (future N)) M) e P (CP)

(ph p o) € E(x)

Figure 7: Set Constraints on £ with respect to P.

6.2 Solving Set Constraints The class of set en-
vironments for a given program P, denoted SetEnvp,
forms a complete lattice under the natural pointwise
partial ordering. Smaller set environments correspond
to more accurate approximations, because they include
include fewer extraneous bindings. We define set-based
analysis as the function that returns the least set envi-
ronment satisfying the set constraints.

Definition 6.2. (sba)

sba(P) = M{€ | £ satisfies CT ..., CE}

Since sba(P) maps variables to infinite sets of possi-
ble values, we need to find a suitable finite representa-
tion for these infinite sets. A systematic inspection of
the set constraints suggests that the set of closures for
a A-expression can be represented by the A-expression
itself, that the set of pairs for a cons-expression can be
represented by the cons-expression, etc. The actual sets
of run-time values can easily be reconstructed from the
representative terms and the set environment. In short,
we can take the set of abstract values for a program P
to be:

V e AbsValuep =

ep | (Az. M)p | (cons z y)p | (ph zp) | {ph o)

(let (= c)_M) epP (f)
cp € E(x)
(let (= y)]\Q E_P Ve (@)
V eé(x)
(let (z (Ay.N)) M) e P

(Ay-N)p € E(x)
(cons y1 y2)) M) € P £
(cons y1 y2)p € E(x

(let (=

(let (z (car y)) M) € P € &(y)
(cons z1 2z2)p € touch [E V] Ve E(Zl) (O_P)
Vi€ &(x) °
(let (z (cdr y)) M) e P V€ E&(y)
(cons z1 2z2)p € touch [E V] V, € E(ZQ) (C_P)
Vs € &(z) ¢
(let (= (apply y 2)) M) € PV € E(y)
(Az'. N)p € touch [E, V] V.¢€ E(z) (C_P)
V. e &) 7
(let (z (apply y 2)) M) €P V€ E(y)
(Ma'.N)p € touch |E, V]
Vi E_E(FinﬁlVar[1) (C—P)
Vi € &(x) i
(let (z (if y M1 Ma)) M) e P
Ve E(FinalVaT[in])_U E(FinalVar[Mz]) (C—P)
Ve &(x) °
(let (z (future N)) My € PV € E(FinalVar[N]) (C_P)
V €&(z) (ph FinalVar[N]p) € &(z) 10

(let (z (future N)) M) € P —
(ph o) € &()

Auxiliary Function touch:

touch : AbsEnvp x AbsValue p — P(AbsValuep)
touch [E, Cp] = {cp}
touch [E,(\e.M)p| = {(Az.M)p}
touch [E, (conszy)p| = {(conszy)p}
touch [€, (ph zp)
{W | U €&(y) and W € touch [£,T

—

}

Figure 8: Abstract Constraints on £ with respect to P.

where the constant c¢p, the A-expression (Az. M)p, the
pair (cons # y)p and the variable zp are all the respec-
tive subterms of P. The size of this set is O(|P]), where
|P| is the length of P.

Abstract values provide finite representations for the
infinite set environments encountered during set-based
analysis. Specifically, an abstract set environment £ is a
mapping from variables in P to sets of abstract values.
The class of all abstract set environments for a program
P 1s denoted AbsEnvp. Each abstract set environment
represents a particular set environment according to the
following function:

F : AbsEnvp——SetEnvp _
F(E) (x) = {V | Ve&(x)}

cgg(x)ﬁceg(x) _
(Ae. M), EY e E(x) & (Ax. M)p € E()

B Ve € dom(E). E(z) e E(x)
(cons V; Va) ¢ §(l‘) & (cons ¥ yz_)p € &(x), Vie E(yi)
(phpV)e §(l‘) < (ph yp) €. (z) and V ¢ E(y)
(Phpo) e &(x) & (pho) € &(x)

Reformulating the set constraints from Figure 7 for
abstract set environments produces the abstract con-
straints CT ..., CT in Figure 8. We define sba(P) be
the least abstract set environment satisfying the abstract
constraints with respect to P.

Definition 6.3. (sba)

sba(P) = N{& | € satisfies C¥, ...

O}
|

The correspondence between set constraints and abstract
constraints implies that sba(P) is a finite representation

for sha(P).
Theorem 6.4 sba(P)=F (%(P))

Since AbsEnvp is finite, of size O(|P|?), we can cal-
culate sba(P) in an iterative manner, starting with the
empty abstract set environment £(z) = §. Since we can
extend £ at most O(|P|?) times, this algorithm termi-
nates. Furthermore, each time we extend £ with a new
binding, calculating the additional bindings implied by
that new binding takes at most O(|P|) time. Hence, the
algorithm runs in O(|P|?) time.

Optimization algorithms can interpret the abstract
set environment sba(P) in a straightforward manner.
For example, the query on sba(P) from the touch op-
timization algorithm:

sba(P)(y) C PValuepoep
is equivalent to the following query on sba(P):

sba(P)(y) C {cp,(Az. M)p,(cons = y)p}

In a similar manner other queries on sba(P) can easily
be reformulated in terms of sba(P).

7 Experimental Results

We extended the Gambit compiler [6, 7], which makes
no attempt to remove touch operations from programs,
with a preprocessor that implements the set-based anal-
ysis algorithm and the fouch optimization algorithm.
The analysis and the optimization algorithm are as de-
scribed in the previous sections extended to a sufficiently

10

Program Description

fib Computes the 25" fibonacci number using
a doubly-recursive algorithm.

queens Computes the number of solutions to the
n-queens problem, for n = 10.

rantree Traverses a binary tree with 32768 nodes.

mm Multiplies two 50 by 50 matrices of integers.

scan Computes the parallel prefix sum of a vector
of 32768 integers.

sum Uses a divide-and-conquer algorithm to sum
a vector of 32768 integers.

tridiag Solves a tridiagonal system of 32767 equations.

allpairs | Computes the shortest path between all pairs
in a 117 node graph using Floyd’s algorithm.

abisort Sorts 16384 integers using adaptive bitonic sort.

nst Computes the minimum spanning tree of a
1000 node graph.

gqsort Uses a parallel Quicksort algorithm to sort
1000 integers.

poly Computes the square of a 200 term polynomial,
and evaluates the result at a given value of z.

Figure 9: Description of the benchmark programs

large subset of functional Scheme.> We used the ex-
tended Gambit compiler to test the effectiveness of touch
optimization on the suite of benchmarks contained in
Feeley’s Ph.D. thesis [6] on a GP1000 shared-memory
multiprocessor [2]. Figure 9 describes these benchmarks.
Each benchmark was tested on the original compiler
(standard) and on the modified compiler (fouch opti-
mized). The results of the test runs are documented
in Figure 10. The first two columns present the num-
ber of touch operations performed during the execution
of a benchmark using the standard compiler (column
1), and the sequential execution overhead of these touch
operations (column 2). To determine the absolute over-
head of touch, we also ran the programs on a single
processor after removing all touch operations. The next
two columns contain the corresponding measurements
for the touch optimizing compiler. The touch optimiza-
tion algorithm reduces the number of touch operations
to a small fraction of the original number (column 3),
thus reducing the average overhead of touch operations
from approximately 90% to less than 10% (column 4).
The last three columns show the relative speedup of
each benchmark for one, four, and 16 processor config-
urations, respectively. The number compares the run-
ning time of the benchmarks using the standard compiler
with the optimizing compiler. As expected, the relative
speedup decreases as the number of processors increases,
because the execution time is then dominated by other
factors, such as memory contention and communication
costs. For most benchmarks, the benefit of our touch
optimization is still substantial, producing an average
speedup over the standard compiler of 37% on four pro-
cessors, and of 20% on 16 processors. The exceptions are
the last three benchmarks, mst, gsort, and poly. How-

5Five of the benchmarks include a small number (one or two per
benchmark) of explicit touch operations for coordinating side-effects.
They do not affect the validity of the analysis and touch optimization
algorithms.

standard touch optimized

Benchmark touches (n =1) touches (n =1) speedup over standard (%)

count(K) | overhead(%) || count(K) | overhead(%) n=1 n =4 n = 16
fib 1214 85.0 122 10.2 40.5 39.9 36.7
queens 2116 41.2 35 1.5 28.1 30.4 28.1
rantree 327 67.5 14 2.6 38.7 37.2 26.8
mm 1828 121.0 3 <1 54.7 44.1 23.6
scan 1278 126.8 66 4.1 54.1 43.4 19.0
sum 525 107.3 33 6.1 48.8 37.9 20.0
tridiag 811 110.8 7 <1 52.1 29.4 5.8
allpairs 32360 150.4 14 <1 60.0 39.6 <1
abisort 5751 106.5 9 <1 51.3 31.1 24.4
mst 20422 91.4 750 5.3 45.0 17.2 <1
gqsort 253 43.3 78 19.9 16.4 <1 <1
poly 526 65.3 121 16.2 29.7 12.5 <1

Figure 10: Benchmark Results

ever, even Feeley [6] described these as “poorly parallel”
programs, in which the effects of memory contention and
communication costs are especially visible. It 1s there-
fore not surprising that our optimizing compiler does not
improve the running time in these cases.

8 Related Work

The literature on programming languages contains a num-
ber of semantics for parallel, Scheme-like languages. The
only one that directly deals with parallelism based on
transparent annotations is Moreau’s Ph.D. thesis [27].
Moreau studies the functional core of Scheme extended
with pcall (for evaluating function and argument ex-
pressions of an application in parallel) and first-class
continuations. His primary goal 1s to design a semantics
for the language that treats pcall as a pure annotation.
His correctness proofs is far more complicated than our
techniques, due to the inclusion of continuations.

Independently, Reppy [28] and Leroy [24] define a
formal operational semantics for an ML-like language
with first-class synchronization operations. Reppy’s lan-
guage, Concurrent ML, can provide the future mecha-
nism as an abstraction over the given primitives. The
semantics 1s a two-level rewriting system. Reppy uses
his semantics to prove a type soundness theorem. Leroy
formulates a semantics for a subset of CML in the tradi-
tional “natural” semantics framework. He also uses his
semantics to prove the type soundness of the complete
language. Neither Reppy nor Leroy used their semantics
for developing analyses or optimizations.

Jaganathan and Weeks [18] define an operational se-
mantics for a simple function language extended with
the spawn construct by extending Deutsch’s transition
semantics [5]. They described an analysis for their lan-
guage that they intend to use in a forthcoming compiler,
but they do not have an implementation of their analysis
for a full language like functional Scheme, and they do
not have optimization algorithms that exploit the results
of their analysis.

Wand [32] recently extended his work on correctness
proofs for sequential compilers to parallel languages. In
his prior work on the correctness of sequential compil-

11

ers, he derived compilers from the semantic mappings
that translate syntax into A-calculus expressions. The
extension of this work to parallel compilers starts from
a semantic mapping that translates a Scheme-like lan-
guage with process creation and communication con-
structs into a higher-order calculus of communication
and computation. After separating the compiler from
the “machine”, the correctness proof is a combination of
the sequential correctness proof and a correctness proof
for the parallel portion of the language. The proof tech-
niques are related to the ones we used to prove the equiv-
alence of the P(CEK)-machine and the P(C)-machine.

Kranz et al. [23] briefly describe a simplistic algo-
rithm for touch optimization based on a first-order type
analysis. The algorithm lowers the fouch overhead to
65% from 100% in standard benchmarks, that is, it is
significantly less effective than our fouch optimization.
The paper does not address the semantics of future or
the well-foundedness of the optimizations. Knopp [21]
reports the existence of a touch optimization algorithm
based on abstract interpretation. His paper presents nei-
ther a semantics nor the abstract interpretation. He
only reports the reduction of static counts of touch op-
erations for an implementation of Common Lisp with
future. Neither paper gives an indication concerning
the expense of the analysis algorithms.

Our analysis methods most closely follows Heintze’s
work on set-based analysis for the sequential language
ML [13, 14], but the extension of his technique to paral-
lel languages requires a substantial reformulation of the
derivation and correctness proof. Specifically, Heintze
uses the “natural” semantics framework to define a set-
based “natural” semantics, from which he reads off safe-
ness conditions on set environments. He then presents
set constraints whose solution is the minimal safe set
environment. We start from a parallel abstract machine
and avoid these intermediate steps by deriving our set
constraints and proving their correctness directly from
the abstract machine semantics.

Other techniques for static analysis of sequential pro-
grams include abstract interpretation [3, 4] and Shivers’
OCFA [30]. The relationship between abstract interpre-
tation and set-based analysis was covered by Heintze [13].

Sequential optimization techniques such as tagging
optimization [15] and soft-typing [33] are similar in char-
acter to touch optimization. Both techniques remove
the type-dispatches required for dynamic type-checking
wherever possible, without changing the behavior of pro-
grams, in the same fashion as we remove fouch opera-
tions. However, the analyses relies on conventional type
inference techniques.

9 Conclusion

The development of a semantics for futures directly
leads to the derivation of a powerful program analy-
sis. The analysis is computationally inexpensive but
yields enough information to eliminate numerous im-
plicit fouch operations. We believe that the construc-
tion of this simple fouch optimization algorithm clearly
illustrates how semantics can contribute to the devel-
opment of advanced compilers. We intend to use our
semantic characterization for the derivation of other pro-
gram optimizations in Gambit and for the design of truly
transparent future annotations for languages with im-
perative constructs.

Acknowledgments We thank Marc Feeley for discus-
sions concerning touch optimizations and for his assis-
tance in testing the effectiveness of our algorithm, and
Nevin Heintze for discussions on set-based analysis and
for access to his implementation of set based analysis for
ML.

References

[1] BAKER, H., AND HEWITT, C. The incremental garbage
collection of processes. In Proceedings of the Symposium
on Artificial Intelligence and Programming Languages
(1977), vol. 12(8), 55-59.

BBN AbpvaNcED COMPUTERS, INC., CAMBRIDGE, MA.
Inside the GP1000. 1989.

CousoT, P., anD CousoT, R. Abstract interpretation:
A unified lattice model for static analyses of programs
by consruction or approximation of fixpoints. In POPL
(1977), 238-252.

Cousot, P., aAND Cousotr, R. Higer order abstract
interpretation (and application to comportment analysis
generalizing strictness, termination, projection and per
analysis of functional languages. ICCL (1994), 95-112.

DreuTscH, A. Modéles Opérationnels de Language
de Programmation et Représentations de Relations
sue des Languages Rationnels avec Application a la
Détermination Statique de Propriétes de Partages Dy-
namiques de Données. PhD thesis, Universite Paris VI,
1992.

FEELEY, M. An FEfficient and General Implementation
of Futures on Large Scale Shared-Memory Multiproces-
sors. PhD thesis, Department of Computer Science,
Brandeis University, 1993.

FEELEY, M., AND MILLER, J. S. A parallel virtual ma-
chine for efficient scheme compilation. In LFP (1990).

[8] FELLEISEN, M., AND FRIEDMAN, D. P. Control oper-
ators, the SECD-machine, and the lambda-calculus. In
8rd Working Conference on the Formal Description of
Programming Concepts (Aug. 1986), 193-219.

12

[9] FLANAGAN, C., AND FELLEISEN, M. The semantics of
Future. Rice University Comp. Sci. TR94-238.

Franacgan, C., aNnD FELLEISEN, M. Well-founded

touch optimization of Parallel Scheme. Rice University
Comp. Sci. TR94-239.

Franacan, C., SaBry, A., DuBa, B. F., anD
FELLEISEN, M. The essence of compiling with continu-
ations. In PLDI (1993), 237-247.

HavLsTEAD, R. Multilisp: A language for concurrent
symbolic computataion. ACM Transactions on Pro-
gramming Languages and Systems 7, 4 (1985), 501-538.

HeENTZE, N. Set Based Program Analysis. PhD thesis,
Carnegie Mellon University, 1992.

HeINTZE, N. Set-based analysis of ML programs.
LFP (1994), 306-317.

HeENGLEIN, F. Global tagging optimization by type in-
ference. In LFP (1992), 205-215.

Ito, T., AND HALSTEAD, R., Eds. Parallel Lisp: Lan-
guages and Systems. Springer-Verlag Lecture Notes in
Computer Science 441, 1989,

Ito, T., AND MaTsui, M. A parallel lisp language:
Pailisp and its kernel specification. [16:58-100].

JAGANNATHAN, S.; AND WEEKS, S. Analyzing stores
and references in a parallel symbolic language. In LFP
(1994), 294-305.

Karz, M., anp WEeise, D. Continuing into the fu-
ture: on the interaction of futures and first-class contin-
uations. In LFP (1990).

KessLER, R.R., AND R. SwaNSON. Concurrent scheme.
[16:200-234].

Kn~opp, J. Improving the performance of parallel lisp
by compile time analysis. [16:271-277].

KraNz, D., HALsTEAD, R., AND MoHR, E. Mul-T: A
high-performance parallel lisp. [16:306-321].

KranNz, D., HALsTEAD, R., AND MoHR, E. Mul-T: A
high-performance parallel lisp. In PLDI (1989), 81-90.
LeEroy, X. Typage polymorphe d’un langage algorith-
mique. PhD thesis, Université Paris 7, 1992.

MILLER, J. MultiScheme: A Parallel Processing System.
PhD thesis, MIT, 1987.

MoHR, E., Kranz, R., AND HALSTEAD, R. Lazy task
creation: A technique for increasing the granularity of
parallel programs. In LFP (1990).

MoRreAu, L. Sound Fvaluation of Parallel Functional
Programs with First-Class Continuations. PhD thesis,
Universite de Liege, 1994.

ReppY, J.H. Higher-Order Concurrency. PhD thesis,
Cornell University, Jan. 1992.

SABRY, A., AND FELLEISEN, M. Is continuation-passing
useful for data flow analysis. In PLDI (1994), 1-12.

SHIVERS, O. Control-flow Analysis of Higher-Order
Languages or Taming Lambda. PhD thesis, Carnegie-
Mellon University, 1991.

SwWANSON, M., KEssLER, R., AND LINDSTROM, G. An
implementation of portable standard lisp on the BBN
butterfly. In LFP (1988), 132-142.

WaND, M. Compiler correctness for parallel languages.
Unpublished manuscript, 1995.

WRIGHT, A. AND R. CARTWRIGHT. A practical soft
type system for scheme. In LFP (1994), 250-262.

[10]

[11]

[12]

[13]
[14] In
[15]

[16]

[17]

[18]

[19]

[20]
[21]
[22]
[23]
[24]
[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

33]

