Addendum to
Dynamic Partial-Order Reduction
for Model Checking Software

Cormac Flanagan

University of California at Santa Cruz

cormac@cs.ucsc.edu

On page 6 of our POPL’2005 paper, we wrote that “sleep
sets can be added exactly as described in [10]”. Specifically,
sleep sets can be added to the algorithm of Figure 3 as fol-
lows:

e line 5 should be replaced with

let E = {q € enabled(pre(S,i)) |g=por 3j €
dom(S) : 7 > i and q = proc(S;) and j —5
p} \ Sleep(pre(S,i));

e line 7 should be replaced with

else add all g € (enabled(pre(S,i))\Sleep(pre(S,i)))

to backtrack(pre(S,1));

The rules for defining and manipulating sleep sets are the
same as in [10].

The correctness of this combination can be proved as fol-
lows. The definition of E(S,i,p) (see the appendix) be-
comes:

{ q € enabled(pre(S,7)) |

g=por

3j € dom(S) : j > ¢ and ¢ = proc(S;) and j —g p}
\Sleep(pre(S,)

The definition of PC(S, j, p) then becomes:

if
S is a transition sequence from sp in Ag
and i = maz({i € dom(S) | S; is dependent and
co-enabled with next(last(S),p) and i /s p})
and ¢ < j

then
if E(S,i,p) #0
then backtrack(pre(S,i)) N E(S,i,p) # 0
else backtrack(pre(S,i)) = enabled(pre(S,i)) \
Sleep(pre(S,i))

The postcondition PC for Explore(S) becomes:

Vp Yw : (Yw; € [w] : wi & Sleep(last(S))) =
PC(Sw,|S|,p)

Patrice Godefroid
Microsoft Research
pg@microsoft.com

where Vw; € [w] denotes the set of sequences w; of transi-
tions equivalent to w (i.e., transition sequences that are part
of the same Mazurkiewicz’s trace — see [10] for details), and
where wil denotes the first transition of w;.

In the presence of sleep sets, we use the following definition
(similar notions are used in [9], for instance in Theorem 5.2):

DEFINITION 1. A set T C T of transitions enabled in a
state s is partially persistent in s iff, for all nonempty se-
quences w of transitions

t to th1 ot
§1 — 82 —83... — Sn — Sn+1
from s in Ag and including only transitions t; € T, 1 <
i < n, and such that Vw; € [w] : w} & Sleep(s), t, is
independent with all the transitions in T.

If Sleep(s) = @, this definition coincides with the definition
of persistent sets. Note that if T' = enabled(s) \ Sleep(s), T
is a partially persistent set in s.

With sleep sets, Lemma 1 and Theorem 1 in the appendix
remains the same except that “is a persistent set in s” has
to be replaced by “is a partially persistent set in s” in both.
From this modified Theorem 1, it follows from the proof of
Theorem 2 in [10] that all deadlocks (terminating states) are
visited by the combined algorithm using sleep sets.

For clarity and completeness, we include below those mod-
ified versions of Lemma 1 and Theorem 1 extended with
sleep sets, as well as their proof.

LEMMA 1. Whenever a state s reached after a transition
sequence S is backtracked during the search performed by the
algorithm of Figure 3, the set T of transitions that have been
explored from s is a partially persistent set in s, provided the
postcondition PC holds for every recursive call Explore(S.t)
forallteT.

Proor. Let
s = last(9)
T = {next(s,p) | p € backtrack(s)}

If T is not enabled(s)\Sleep(s), T is non-empty and we prove
that T is a partially persistent set in s by contradiction:
assume that there exist ¢1,...,t, € T such that

1. S.t1...t, is a transition sequence from s in Ag and
2. Yw; € [t1...tn] : wi & Sleep(s) and
3. t1,...,tn—1 are all independent with T" and

4. t, is dependent with some ¢t € T'.

Let w = t1...tn—1. By property of independence, this im-
plies that t is enabled in the state last(S.w) and hence co-
enabled with t,. Without loss of generality, assume that
t1...tn is the shortest such sequence. We thus have that

V1 <i<n:i—gwproc(tn)

(If this was not true for some ¢, the same transition sequence
without ¢ would also satisfy our assumptions and be shorter.)

By definition, S.w is itself a transition sequence from so
in Ag and we have

next(last(S.w),proc(tn)) = tn
If proc(t) = proc(tn) then

t = mnext(last(S),proc(t))
= next(last(S.w),proc(t))

= tn

since t is independent with all the transitions in w, contra-
dicting that t, ¢ T'. Hence proc(t) # proc(tn).

Since t is in a different process than ¢, and since ¢ is
independent with all the transitions in w, we have

tn, = mnext(last(S.w),proc(tn))
= mnext(last(S.w.t),proc(ty))
= next(last(S.t.w),proc(ty))

Since t € T, t is executed from s. Since Vw; € [w] : w; &
Sleep(s) and since t1,...,tn, € T (i.e., none of those transi-
tions are executed from s), none of the w; transitions are in
Sleep(last(S.t)) (by construction — see the rules for defining
sleep sets in [10]).

Let ¢ = |S| 4+ 1. Consider the postcondition

PC(Staw,i,proc(tn))
for the recursive call Explore(S.t). Clearly,

1 5.t proc(tn)

(since t is in a different process than ¢, and since t is inde-
pendent with ¢1,...,%,—-1). In addition, we have (by defini-
tion of E):

E(S.taw,i,proc(tn)) C
{proc(t1),...,proc(tn—1),proc(tn)} N enabled(s)

Moreover, we have by construction:

Vi € dom(St.w) :j > i =J —s.t.w proc(tn)

Hence, by the postcondition PC for the recursive call Explore(S.t),

either E(S.t.w, 1, proc(t,)) is nonempty and at least one pro-

cess in E(S.t.w, i, proc(t,)) is in backtrack(s), or E(S.t.w, i, proc(tn))

is empty and all the processes in enabled(s) \ Sleep(s) are in
backtrack(s). In either case, at least one transition among
{t1,...,tn} is in T. This contradicts the assumption that
t, .. ytn €T.

O

THEOREM 1. Whenever a state s reached after a transi-
tion sequence S is backtracked during the search performed
by the algorithm of Figure 3 in an acyclic state space, the
postcondition PC' for Explore(S) is satisfied, and the set T
of transitions that have been explored from s is a partially
persistent set in s.

Proor. Let
s = last(9)
T = {next(s,p) | p € backtrack(s)}

The proof is by induction on the order in which states are
backtracked.

(Base case) Since the state space Ag is acyclic and since
the search is performed in depth-first order, the first back-
tracked state must be either a deadlock where no transi-
tion is enabled, or a state s where enabled(s) = Sleep(s)
(i.e., all transitions enabled in s are in Sleep(s)). There-
fore, in either case, the postcondition for that state becomes
Vp: PC(S,|S|,p), and is directly established by lines 3-9
of the algorithm of Figure 3.

(Inductive case) We assume that each recursive call to
Explore(S.t) satisfies its postcondition. That T is a partially
persistent set in s then follows by Lemma 1. We show that
Explore(S) ensures its postcondition PC for any p and w
such that S.w is a transition sequence from sp in Ag and
such that Yw; € [w] : w} ¢ Sleep(last(S)).

1. Suppose some transition in w is dependent with some
transition in 7. In this case, we split w into X.t.Y,
where all the transitions in X are independent with
all the transitions in 7" and ¢ is the first transition in
w that is dependent with some transition in 7. Since T’
is a partially persistent set in s, ¢ must be in 7" (other-
wise, T' would not be partially persistent in s). Thus, ¢
is independent with all the transitions in X. By prop-
erty of independence, this implies that the transition
sequence t.X.Y is executable from s. It also implies
that ¢ is one of the w} transitions.

(Case 1.a) If ¢ is the first transition of the w;] transi-
tions of w to be executed in s and since none of those
are in Sleep(last(S)), then Sleep(last(S.t)) does not
contain any of the w; transitions either (by the rules
defining sleep sets in [10]). By applying the inductive
hypothesis to the recursive call Explore(S.t) for the
sequence X.Y, we know

Vp: PC(St.X.Y,|S|+1,p)
which implies (by the definition of PC') that
Vp: PC(St.X.Y,|S|,p)

Since t is independent with all the transitions in X,
we also have that

Vi € dom(S.t.X.Y) i —sexy pifft i —sxiyp

Therefore, by definition,
PC(St.X.Y,|S|,p) iff PC(S.X.t.Y,|S|, p)

We can thus conclude that
Vp: PC(S.X.t.Y,|S|,p)

(Case 1.b) Otherwise, let t' be the first transition of
the w! transitions of w which is executed in s before
t. We thus have w = X.t.W.t'.Z. Since t’ is one of the
w} transitions, we know (by definition of w;}) that ¢’
is independent of all transitions in X.t.W.

O

The same reasoning as in the previous case 1.a can be
applied to Explore(S.t') and the sequence X.t.W.Z.
We can thus prove that

PC(St . XtW.Z,|S|,p) if PC(S.X.t.W.t'.Z, |S|,p)
and conclude again that

Vp: PC(S.w,|S|,p)

. Suppose that all the transitions in w are independent

with all the transitions in 7" and p € backtrack(s).
Then

(a) next(s,p) € T}

(b) next(s,p) is independent with w;

(c) pis a different process from any transition in w;
(d) next(last(S.w),p) = next(last(S),p);
(e) Vi e dom(S): i —swpiff it =5 p.
Thus, we have PC(S.w,|S|,p) iff PC(S,|S|,p), and

the latter is directly established by the lines 3-9 of the
algorithm for all p.

. Suppose that all the transitions in w are independent

with all the transitions in 7" and p ¢ backtrack(s).
Pick any t € T. We then have that

proc(t) # p;
t independent with all the transitions in w;

next(last(S.w),p) = next(last(S.t.w),p);
Vi€ dom(S): ¢ —s5.w piff i =50 .

(a
(b
(c
(d
Thus, we have PC(S.w,|S|,p) iff PC(S.t.w,|S|,p).

Since none of the w;} transitions are in Sleep(last(S))
and since none of those transitions are executed in s,
Sleep(last(S.t)) does not contain any of the w; tran-
sitions either (by the rules defining sleep sets in [10]).

By applying the inductive hypothesis to the recursive
call Explore(S.t), we know

Vp: PC(S.t.w,|S|+1,p)

which implies (by the definition of PC') that
Vp: PC(S.taw,|S|,p)

which in turn implies
Vp: PC(S.w,|S|,p)

as required.

Acknowledgements: We thank Katie Coons for point-

ing out that combining sleep sets with our POPL’2005 al-
gorithm is not as immediate as originally thought and for
helpful comments.

