
Addendum to
Dynamic Partial-Order Reduction

for Model Checking Software

Cormac Flanagan
University of California at Santa Cruz

cormac@cs.ucsc.edu

Patrice Godefroid
Microsoft Research
pg@microsoft.com

On page 6 of our POPL’2005 paper, we wrote that “sleep
sets can be added exactly as described in [10]”. Specifically,
sleep sets can be added to the algorithm of Figure 3 as fol-
lows:

• line 5 should be replaced with

let E = {q ∈ enabled(pre(S, i)) | q = p or ∃j ∈
dom(S) : j > i and q = proc(Sj) and j →S

p} \ Sleep(pre(S, i));

• line 7 should be replaced with

else add all q ∈ (enabled(pre(S, i))\Sleep(pre(S, i)))
to backtrack(pre(S, i));

The rules for defining and manipulating sleep sets are the
same as in [10].

The correctness of this combination can be proved as fol-
lows. The definition of E(S, i, p) (see the appendix) be-
comes:

{ q ∈ enabled(pre(S, i)) |
q = p or
∃j ∈ dom(S) : j > i and q = proc(Sj) and j →S p}
\Sleep(pre(S, i))

The definition of PC(S, j, p) then becomes:

if
S is a transition sequence from s0 in AG

and i = max({i ∈ dom(S) | Si is dependent and
co-enabled with next(last(S), p) and i 6→S p})
and i ≤ j

then
if E(S, i, p) 6= ∅
then backtrack(pre(S, i)) ∩ E(S, i, p) 6= ∅
else backtrack(pre(S, i)) = enabled(pre(S, i)) \
Sleep(pre(S, i))

The postcondition PC for Explore(S) becomes:

∀p ∀w : (∀wi ∈ [w] : w1
i 6∈ Sleep(last(S))) ⇒

PC(S.w, |S|, p)

where ∀wi ∈ [w] denotes the set of sequences wi of transi-
tions equivalent to w (i.e., transition sequences that are part
of the same Mazurkiewicz’s trace – see [10] for details), and
where w1

i denotes the first transition of wi.
In the presence of sleep sets, we use the following definition

(similar notions are used in [9], for instance in Theorem 5.2):

Definition 1. A set T ⊆ T of transitions enabled in a
state s is partially persistent in s iff, for all nonempty se-
quences w of transitions

s1

t1→ s2

t2→ s3 . . .
t
n−1

→ sn
tn→ sn+1

from s in AG and including only transitions ti 6∈ T , 1 ≤
i ≤ n, and such that ∀wi ∈ [w] : w1

i 6∈ Sleep(s), tn is
independent with all the transitions in T .

If Sleep(s) = ∅, this definition coincides with the definition
of persistent sets. Note that if T = enabled(s) \ Sleep(s), T

is a partially persistent set in s.
With sleep sets, Lemma 1 and Theorem 1 in the appendix

remains the same except that “is a persistent set in s” has
to be replaced by “is a partially persistent set in s” in both.
From this modified Theorem 1, it follows from the proof of
Theorem 2 in [10] that all deadlocks (terminating states) are
visited by the combined algorithm using sleep sets.

For clarity and completeness, we include below those mod-
ified versions of Lemma 1 and Theorem 1 extended with
sleep sets, as well as their proof.

Lemma 1. Whenever a state s reached after a transition
sequence S is backtracked during the search performed by the
algorithm of Figure 3, the set T of transitions that have been
explored from s is a partially persistent set in s, provided the
postcondition PC holds for every recursive call Explore(S.t)
for all t ∈ T .

Proof. Let

s = last(S)
T = {next(s, p) | p ∈ backtrack(s)}

If T is not enabled(s)\Sleep(s), T is non-empty and we prove
that T is a partially persistent set in s by contradiction:
assume that there exist t1, . . . , tn 6∈ T such that

1. S.t1 . . . tn is a transition sequence from s0 in AG and

2. ∀wi ∈ [t1 . . . tn] : w1
i 6∈ Sleep(s) and

3. t1, . . . , tn−1 are all independent with T and

4. tn is dependent with some t ∈ T .

1

Let w = t1 . . . tn−1. By property of independence, this im-
plies that t is enabled in the state last(S.w) and hence co-
enabled with tn. Without loss of generality, assume that
t1 . . . tn is the shortest such sequence. We thus have that

∀1 ≤ i < n : i →S.w proc(tn)

(If this was not true for some i, the same transition sequence
without i would also satisfy our assumptions and be shorter.)

By definition, S.w is itself a transition sequence from s0

in AG and we have

next(last(S.w), proc(tn)) = tn

If proc(t) = proc(tn) then

t = next(last(S), proc(t))
= next(last(S.w), proc(t))
= tn

since t is independent with all the transitions in w, contra-
dicting that tn 6∈ T . Hence proc(t) 6= proc(tn).

Since t is in a different process than tn and since t is
independent with all the transitions in w, we have

tn = next(last(S.w), proc(tn))
= next(last(S.w.t), proc(tn))
= next(last(S.t.w), proc(tn))

Since t ∈ T , t is executed from s. Since ∀wi ∈ [w] : w1
i 6∈

Sleep(s) and since t1, . . . , tn 6∈ T (i.e., none of those transi-
tions are executed from s), none of the w1

i transitions are in
Sleep(last(S.t)) (by construction – see the rules for defining
sleep sets in [10]).

Let i = |S| + 1. Consider the postcondition

PC(S.t.w, i, proc(tn))

for the recursive call Explore(S.t). Clearly,

i 6→S.t.w proc(tn)

(since t is in a different process than tn and since t is inde-
pendent with t1, . . . , tn−1). In addition, we have (by defini-
tion of E):

E(S.t.w, i, proc(tn)) ⊆
{proc(t1), . . . , proc(tn−1), proc(tn)} ∩ enabled(s)

Moreover, we have by construction:

∀j ∈ dom(S.t.w) : j > i ⇒ j →S.t.w proc(tn)

Hence, by the postcondition PC for the recursive call Explore(S.t),
either E(S.t.w, i, proc(tn)) is nonempty and at least one pro-
cess in E(S.t.w, i, proc(tn)) is in backtrack(s), or E(S.t.w, i, proc(tn))
is empty and all the processes in enabled(s)\Sleep(s) are in
backtrack(s). In either case, at least one transition among
{t1, . . . , tn} is in T . This contradicts the assumption that
t1, . . . , tn 6∈ T .

Theorem 1. Whenever a state s reached after a transi-
tion sequence S is backtracked during the search performed
by the algorithm of Figure 3 in an acyclic state space, the
postcondition PC for Explore(S) is satisfied, and the set T

of transitions that have been explored from s is a partially
persistent set in s.

Proof. Let

s = last(S)
T = {next(s, p) | p ∈ backtrack(s)}

The proof is by induction on the order in which states are
backtracked.

(Base case) Since the state space AG is acyclic and since
the search is performed in depth-first order, the first back-
tracked state must be either a deadlock where no transi-
tion is enabled, or a state s where enabled(s) = Sleep(s)
(i.e., all transitions enabled in s are in Sleep(s)). There-
fore, in either case, the postcondition for that state becomes
∀p : PC(S, |S|, p), and is directly established by lines 3–9
of the algorithm of Figure 3.

(Inductive case) We assume that each recursive call to
Explore(S.t) satisfies its postcondition. That T is a partially
persistent set in s then follows by Lemma 1. We show that
Explore(S) ensures its postcondition PC for any p and w

such that S.w is a transition sequence from s0 in AG and
such that ∀wi ∈ [w] : w1

i 6∈ Sleep(last(S)).

1. Suppose some transition in w is dependent with some
transition in T . In this case, we split w into X.t.Y ,
where all the transitions in X are independent with
all the transitions in T and t is the first transition in
w that is dependent with some transition in T . Since T

is a partially persistent set in s, t must be in T (other-
wise, T would not be partially persistent in s). Thus, t

is independent with all the transitions in X. By prop-
erty of independence, this implies that the transition
sequence t.X.Y is executable from s. It also implies
that t is one of the w1

i transitions.

(Case 1.a) If t is the first transition of the w1
i transi-

tions of w to be executed in s and since none of those
are in Sleep(last(S)), then Sleep(last(S.t)) does not
contain any of the w1

i transitions either (by the rules
defining sleep sets in [10]). By applying the inductive
hypothesis to the recursive call Explore(S.t) for the
sequence X.Y , we know

∀p : PC(S.t.X.Y, |S| + 1, p)

which implies (by the definition of PC) that

∀p : PC(S.t.X.Y, |S|, p)

Since t is independent with all the transitions in X,
we also have that

∀i ∈ dom(S.t.X.Y) : i →S.t.X.Y p iff i →S.X.t.Y p

Therefore, by definition,

PC(S.t.X.Y, |S|, p) iff PC(S.X.t.Y, |S|, p)

We can thus conclude that

∀p : PC(S.X.t.Y, |S|, p)

(Case 1.b) Otherwise, let t′ be the first transition of
the w1

i transitions of w which is executed in s before
t. We thus have w = X.t.W.t′.Z. Since t′ is one of the
w1

i transitions, we know (by definition of w1
i) that t′

is independent of all transitions in X.t.W .

2

The same reasoning as in the previous case 1.a can be
applied to Explore(S.t′) and the sequence X.t.W.Z.
We can thus prove that

PC(S.t
′

.X.t.W.Z, |S|, p) iff PC(S.X.t.W.t
′

.Z, |S|, p)

and conclude again that

∀p : PC(S.w, |S|, p)

2. Suppose that all the transitions in w are independent
with all the transitions in T and p ∈ backtrack(s).
Then

(a) next(s, p) ∈ T ;

(b) next(s, p) is independent with w;

(c) p is a different process from any transition in w;

(d) next(last(S.w), p) = next(last(S), p);

(e) ∀i ∈ dom(S) : i →S.w p iff i →S p.

Thus, we have PC(S.w, |S|, p) iff PC(S, |S|, p), and
the latter is directly established by the lines 3–9 of the
algorithm for all p.

3. Suppose that all the transitions in w are independent
with all the transitions in T and p 6∈ backtrack(s).
Pick any t ∈ T . We then have that

(a) proc(t) 6= p;

(b) t independent with all the transitions in w;

(c) next(last(S.w), p) = next(last(S.t.w), p);

(d) ∀i ∈ dom(S) : i →S.w p iff i →S.t.w p.

Thus, we have PC(S.w, |S|, p) iff PC(S.t.w, |S|, p).

Since none of the w1
i transitions are in Sleep(last(S))

and since none of those transitions are executed in s,
Sleep(last(S.t)) does not contain any of the w1

i tran-
sitions either (by the rules defining sleep sets in [10]).

By applying the inductive hypothesis to the recursive
call Explore(S.t), we know

∀p : PC(S.t.w, |S| + 1, p)

which implies (by the definition of PC) that

∀p : PC(S.t.w, |S|, p)

which in turn implies

∀p : PC(S.w, |S|, p)

as required.

Acknowledgements: We thank Katie Coons for point-
ing out that combining sleep sets with our POPL’2005 al-
gorithm is not as immediate as originally thought and for
helpful comments.

3

