
Componential Set�Based Analysis

Cormac Flanagan Matthias Felleisen

cormac�cs�rice�edu matthias�cs�rice�edu

Rice University�

Abstract

Set�based analysis is a constraint�based whole program
analysis that is applicable to functional and object�
oriented programming languages� Unfortunately� the
analysis is useless for large programs� since it gener�
ates descriptions of data �ow relationships that grow
quadratically in the size of the program�

This paper presents componential set�based analysis�
which is faster and handles larger programs without any
loss of accuracy over set�based analysis� The design of
the analysis exploits a number of theoretical results con�
cerning constraint systems� including a completeness re�
sult and a decision algorithm concerning the observable
equivalence of constraint systems� Experimental results
validate the practicality of the analysis�

� The E�ectiveness of Set�Based Analysis

Rice�s Scheme program development environment pro�
vides a static debugger� MrSpidey� which analyzes a
program and� using the results of this analysis� checks
the soundness of all computational primitives ���� If a
primitive operation may fault due to a violation of its
invariant� MrSpidey highlights the program operation
so that the programmer can investigate the potential
fault site before running the program� Using the graph�
ical explanation facilities of MrSpidey� the programmer
can determine whether this fault will really happen or
whether the corresponding correctness proof is beyond
the analysis�s capabilities�

MrSpidey�s program analysis is a constraint�based
system similar to Heintze�s set�based analysis ����� The
analysis consists of two co�mingled phases	 a deriva�

tion phase� during which MrSpidey derives constraints
describing the data �ow relationships of the analyzed

�This work was partially supported by NSF grants CCR��������

and CCR��������� and a Lodieska Stockbridge Vaughan Fellowship	

program� and a solution phase� during which MrSpidey
solves the constraints� The solution conservatively ap�
proximates the set of values that may be returned by
each program expression�

In practice� MrSpidey has proven highly e
ective for
pedagogic programming� which includes programs of
several hundred to a couple of thousand lines of code�
It becomes less useful� however� for debugging larger
programs due to limitations in the underlying analy�
sis� which has an O�n�� worst�case time bound� The
constant on the cubic element is small� but it becomes
dominant for programs of several thousand lines�

The bottleneck is due to the excessive size of the con�
straint systems that describe a program�s data �ow rela�
tionships� If we could simplify these constraint systems
without a
ecting the data �ow relationships that they
denote� then we could reduce the analysis times� That
is� by 
rst simplifying the constraint system for each
program component �e�g� module or package�� we could
solve the combined system of constraints in less time�
Furthermore� if we saved each simpli
ed constraint sys�
tem in a constraint �le� then we could exploit those
saved constraints in future runs of the analysis to avoid
reprocessing components that have not changed�

The simpli
cation of constraint systems raises both
interesting theoretical and practical questions� On the
theoretical side� we need to ensure that simpli
cation
preserves the observable behavior of a constraint sys�
tem� In this paper� we provide a complete characteri�
zation of observable behavior and� in the course of this
development� establish a close connection between this
observable equivalence of constraint systems and the
equivalence of regular tree grammars �RTGs��� Exploit�
ing this connection� we develop a complete algorithm for
deciding the equivalence of constraint systems� Unfor�
tunately� the algorithm is PSPACE�hard�

Fortunately� a minimized constraint system is only
optimal but not necessary for practical purposes� The

�A number of researchers� including Reynolds 
���� Jones and

Muchnick 
���� Heintze 
���� Aiken 

�� and Cousot and Cousot 
��

previously exploited the relationship between RTGs and the least so�

lution of a constraint system	 We present an additional result� namely

a connection between RTGs and the observable behavior �i�e�� the en�

tire solution space� of constraint systems	



practical question concerns 
nding approximate algo�
rithms for simplifying constraint systems that would
make MrSpidey more useful� To answer this question�
we exploit the correspondence between the minimiza�
tion problems for RTGs and constraint systems to adapt
a variety of algorithms for simplifying RTGs to the
problem of simplifying constraint systems� Based on
these simpli
cation algorithms� we develop a componen�

tial �
 or component�wise� variant of set�based analysis�
Experimental results verify the e
ectiveness of the sim�
pli
cation algorithms and the corresponding �avors of
the analysis� The simpli
ed constraint systems are typ�
ically at least an order of magnitude smaller than the
original systems� and these reductions in size result in
signi
cant gains in the speed of the analysis�

We expect that some of our theoretical and practical
results as well as the techniques will carry over to other
constraint�based systems� such as the conditional type
system of Aiken et al� ���� Eifrig et al��s object�oriented
type system ���� or Pottier�s or Smith et al��s subtyping
simpli
cation algorithms ���� ����

The presentation proceeds as follows� Section � de�
scribes an idealized source language� Sections � and �
present the theoretical underpinnings of the new analy�
sis� Section � introduces practical constraint simpli
ca�
tion algorithms and Sections � and � discuss how these
algorithms perform in a realistic program analysis sys�
tem� Section � discusses related work� and Section �
describes directions for future research�

� The Source Language

For simplicity� we derive our analysis for a ��calculus�
like language with constants and labeled expressions� It
is straightforward to extend the analysis to a realistic
language including assignments� recursive data struc�
tures� objects and modules along the lines described in
an earlier report ����

Expressions in the language are either variables� val�
ues� function applications� let�expressions� or labeled
expressions	 see 
gure �� We use labels to identify those
program expressions whose values we wish to predict�
Values include basic constants and functions� Functions
have identifying tags so that MrSpidey can reconstruct
a call�graph from the results of the analysis� We use
let�expressions to introduce polymorphic bindings� and
hence restrict these bindings to syntactic values �����
We work with the usual conventions and terminology
of the �v�calculus when discussing syntactic issues� In

�componential a� of or pertaining to components� spec� �Ling��

designating the analysis of distinctive sound units or grammatical

elements into phonetic or semantics components �New Shorter Oxford

English Dictionary� Clarendon Press� �����

Syntax�

M � � � x j V j �M M� j M l �Expressions�

j �let �x M� M�

V � Value � b j ��tx�M� �Values�

x � Vars � fx� y� z� � � �g �Variables�

b � BConst �Basic constants�

t � Tag �Function tags�

l � Label �Expression labels�

Evaluator�

eval � �� �� Value � f�g

eval�M� � V if M ���� V

Reduction Rules�

E� ���tx�M� V � � �� E� M �x �� V � � ��v�

E� �let �x V � M� � �� E� M �x �� V � � ��let �

E� V l � �� E� V � �unlabel�

Evaluation Contexts�

E � � � j �E M� j �V E� j �let �x E� M� j El

Figure �	 The source language �	 syntax and semantics

particular� the substitution operation M �x � V � re�
places all free occurrences of x within M by V � and ��

denotes the set of closed terms� also called programs�
We specify the meaning of programs via the reduc�

tion semantics based on the rules described in 
gure ��
The reduction rules �v and �let are conventional� and
the unlabel rule removes the label from an expression
once its value is needed�

� Set�Based Analysis

Conceptually� set�based analysis consists of two phases	
a speci�cation phase and a solution phase�� During
the speci
cation phase� the analysis tool derives con�

straints on the sets of values that program expressions
may assume� These constraints describe the data �ow
relationships of the analyzed program� During the solu�
tion phase� the analysis produces 
nite descriptions of
the potentially in
nite sets of values that satisfy these
constraints� The result provides an approximate set of
values for each labeled expression in the program�

��� The Constraint Language

To simplify the derivation of the constraint simpli
ca�
tion algorithms� we formulate our constraint language
in terms of type selectors� instead of the more usual

�Cousot and Cousot showed that set�based analysis can alter�

natively be formulated as an abstract interpretation computed by

chaotic iteration 
��	



type constructors	

� � SetExp � � j c j dom��� j rng���
�� �� � � SetVar � Label

c � Const � BConst � Tag

A set expression � is either a set variable� a constant� or
one of the �selector� expressions dom��� or rng���� By
using selector expressions� we can specify each �quan�
tum� of the program�s data �ow behavior independently�
using constructors would combine several of these quanta
into one constraint� The meta�variables �� �� � range
over set variables� and we include program labels in the
collection of set variables� Constants include both ba�
sic constants and function tags� A constraint C is an
inequality �� � �
 relating two set expressions�

Intuitively� each set expression denotes a set of run�
time values� and a constraint ��� � �
� indicates that
the value set denoted by �� is contained in the value set
denoted by �
� A constraint system S is a collection of
constraints� A simple constraint system is a collection
of simple constraints � which have the form	

c�� j ��� j ��dom���
j rng����� j dom����� j ��rng���

In some cases� we are interested in constraints that only
mention certain set variables� The restriction of a con�
straint system to a collection of set variables E is	

S jE � fC � S j C only mentions set variables in Eg

��� Semantics of Constraints

A set expression denotes a collection of values� which is
represented as a triple X � hC�D�Ri� The 
rst com�
ponent C � P�Const�� is a set of basic constants and
function tags� and represents a set of run�time values
�relative to a given program� according to the relation
V in C	

b in C i
 b � C

��tx�M� in C i
 t � C

The second and third components of X denote the pos�
sible argument values �dom� and result values �rng� of
functions in X � respectively� Since these two compo�
nents also denote value sets� the appropriate model for
set expressions is the solution of the equation	�

D � P�Const��D �D

�P denotes the power�set constructor	
�The set D is equivalent to the set of all in�nite binary trees with

each node labeled with an element of P�Const�	 This set can be

formally de�ned as the set of total functions f � fdom� rngg� ��

P�Const�� and the rest of the development can be adapted mutan�

dis mutatis 
���	 For clarity� we present our results using the more

intuitive notation instead	

We use the functions const 	 D �� P�Const� and dom�
rng 	 D �� D to extract the respective components of
an element of D�

We order the elements of D according to a relation
that is contravariant in the argument component� since
the information about argument values at an applica�
tion needs to �ow backward along data��ow paths to the
formal parameter of the corresponding function de
ni�
tions� Thus hC�� D�� R�i v hC
� D
� R
i if and only if
C� � C
� D
 v D�� and R� v R
� The set D forms
a complete lattice under this ordering� with top and
bottom elements being the solutions to the equations
	 � hConst �
�	i and 
 � h��	�
i� respectively�

The semantics of set expressions is de
ned with re�
spect to a set environment �� which maps each set vari�
able to an element of D� We extend the domain of set
environments from set variables to set expressions in
the natural manner	

� 	 SetExp �� D
��c� � hfcg�	�
i

��dom���� � dom ������
��rng���� � rng ������

An environment � satis�es a constraint C � ��� � �
�
�written � j� C� if ����� v ���
�� Similarly� � satis
es
S� or � is a solution of S �written � j� S� if � j� C for
each C � S� The solution space of a constraint system
S is Soln�S� � f� j � j� Sg� A constraints set S�
entails S
 �written S� j� S
� i
 Soln�S�� � Soln�S
��
and S� is observably equivalent to S
 �written S� �� S
�
i
 S� j� S
 and S
 j� S��

The restriction of a solution space to a collection of
variables E is	

Soln�S� jE � f� j 
�� � Soln�S�� �� � E� ���� � �����g

We extend the notion of restriction to entailment and
observable equivalence of constraint systems	

� If Soln�S�� jE � Soln�S
� jE � then S� entails S

with respect to E �written S� j�E S
��

� If S� j�E S
 and S
 j�E S� then that S� and S

are observably equivalent with respect to E �written
S� ��E S
� �

��� Deriving Constraints

The speci
cation phase of set�based analysis derives
constraints on the sets of values that program expres�
sions may assume� Following Aiken et al� and Palsberg
and O�Keefe� we formulate this derivation as a subtype
system ��� ����

The derivation proceeds in a syntax�directed manner
according to the constraint derivation rules presented



� � fx � �g � x � �� � �var�

� � b � �� fb 	 �g �const�

� �M � ��S

� �M l � ��S � f� 	 lg
�label�

� � fx � ��g �M � ���S

� � ��tx�M� � ��S � ft 	 �� dom��� 	 ��� �� 	 rng���g
�abs�

� �Mi � �i�Si
� � �M� M�� � ��S� � S� � f�� 	 dom����� rng���� 	 �g

�app�

� � V � ��SV
A � Vars�SV � n �FV �rng���� � Label�

� � fx � 
A� ���SV �g �M � ��S

� � �let �x V � M� � ��S
�let�

� is a substitution of fresh vars for A

� � fx � 
A� ��� SV �g � x � ����� ��SV �
�inst�

Figure �	 Constraint derivation rules�

in 
gure �� Each rule infers a judgement of the form
� �M 	 ��S � where the set variable context � maps the
free variables of M either to set variables or constraint
schemas �see below�� � names the value set of M � and
the constraint system S describes the data �ow rela�
tionships of M � using ��

The rules �var � and �const� are straightforward� The
rule �label � records the value set of a labeled expression
in the appropriate label� The rule �abs� for functions
records the function�s tag� and also propagates values
from the function�s domain into its formal parameter
and from the function�s body into its range� The rule
�app� for applications propagates values from the argu�
ment expression into the domain of the applied function
and from the range of that function into the result of
the application expression�

The rule �let� produces a constraint schema � �
�A� ���S� for polymorphic� let�bound values ���� �� ����
The set variable � names the result of the expression�
the constraint system S describes the data �ow rela�
tionships of the expression� and the set A contains those
internal set variables of the constraint system that must
be duplicated at each reference to the let�bound vari�
able via the rule �inst�� We use FV �rng���� to denote
the free set variables in the range of �� The free set vari�
ables of a schema � � �A� ���S� are those in S but not
in A� and the free variables of a set variable is simply
the set variable itself�

��� Set Based Analysis

Every constraint system admits the trivial solution ��

where ����� � 	s and 	s � hConst �	s�	si� Since 	s

represents the set of all run�time values� this solution
is highly approximate and utterly useless� Fortunately�
constraint systems typically yield many additional so�
lutions that more accurately characterize the value sets
of program expressions�

For example� consider the program P � ��tx�x��
which yields the constraint system	

ft � �P � dom��P � � �x� �x � rng��P �g

In addition to the trivial solution described above� this
constraint system admits a number of other solutions�
including	

�� � f�P �� hftg�
�
i� �x �� 
g
�
 � f�P �� hftg�	�	i� �x �� 	g

The solution �� more accurately describes the program�s
run�time value sets than �
� Yet these two solutions
are incomparable under the ordering v �pointwise ex�
tended to environments�� since it models the �ow of
values through a program� but does not rank environ�
ments according to their accuracy�

Therefore we introduce a second ordering vs on D
that properly ranks environments according to their ac�
curacy� This ordering is covariant in the domain posi�
tion� i�e�� hC�� D�� R�i vs hC
� D
� R
i if and only if
C� � C
� D� vs D
� and R� vs R
�

Under this ordering� a constraint system S has both
a maximal solution ��� above� and a minimal solution�
The minimal solution exists because the greatest lower
bound us with respect to vs of two solutions is also a
solution ����� We use LeastSoln�S� to denote this least
solution� and de
ne set�based analysis as the function
that extracts the basic constants and function tags for
each labeled expression from LeastSoln�S��

De�nition ���� �sba� If � � P 	 ��S� then	

sba�P ��l� � const�LeastSoln�S��l��

The solution sba�P � conservatively approximates the
value sets for each labeled expression�

Theorem ��� �Correctness of sba� If P ����E � V l �
then V in sba�P ��l��

This result follows from a subject reduction proof
along the lines of Wright and Felleisen ���� and Pals�
berg ���� and is contained in a related report ����

��� Computing the Least Solution

To compute sba�P �� we close the constraint system for
P under the rules � described in 
gure �� Intuitively�



c 	 � � 	 �

c 	 �
�s��

� 	 rng��� � 	 �

� 	 rng���
�s��

dom��� 	 � � 	 �

dom��� 	 �
�s��

� 	 rng��� rng��� 	 �

� 	 �
�s��

� 	 dom��� dom��� 	 �

� 	 �
�s��

Figure �	 The inference rule system ��

these rules infer all the data �ow paths in the pro�
gram� and propagate values along those paths� Specif�
ically� the rules �s��� �s
�� and �s�� propagate infor�
mation about constants� function domains and func�
tion ranges forward along the data �ow paths of the
program� These data �ow paths are described by con�
straints of the form � � �� The rule �s�� constructs the
data �ow paths from actual to formal parameters for
each function call� and the rule �s�� similarly constructs
data �ow paths from function bodies to corresponding
call sites� We write S �� C if S proves C via the rules
�� and use ��S� to denote the closure of S under ��
i�e�� the set fC j S �� Cg�

MrSpidey uses a worklist algorithm to compute the
closure of S under � e�ciently� The worklist keeps
track of all eligible inference rules whose antecedents
are in S but whose consequent may not be in S� The
algorithm repeatedly removes an inference rule from the
worklist� adds its consequent to S� if necessary� and
then adds to the worklist all inference rules that are
made eligible by the addition of that consequent� The
process iterates until the worklist is empty� at which
point S is closed under �� The complete algorithm can
be found in an earlier technical report ����

This closure process propagates all information con�
cerning the possible constants for labeled expressions
into constraints of the form c � l� Hence� we can infer
sba�P � from ��S� according to the following theorem�

Theorem ��� If P � �� and � � P 	 ��S then�

sba�P ��l� � fc j �c � l� � ��S�g

� Observable Equivalence of Constraints

The traditional set�based analysis we have just described
has proven highly e
ective for programs of up to a cou�
ple of thousand lines of code� Unfortunately� it is useless
for larger programs due to its nature as a whole program
analysis and due to the size of the constraint systems
it produces� which are quadratic in the size of �large�
programs� Storing these constraint systems in memory
is beyond the capabilities of most machines�

To overcome this problem� we develop algorithms for
simplifying constraints systems� Applying these simpli�

cation algorithms to each program component signi
�
cantly reduces both the time and space required by the
overall analysis�

The following subsection shows that constraint sim�
pli
cation does not a
ect the analysis results provided
the simpli
ed system is observably equivalent to the
original system� Subsection ��� presents a complete
proof�theoretic formulation of observable equivalence�
and subsection ��� exploits this formulation to develop
an algorithm for deciding the observable equivalence of
constraint systems� The insights provided by this de�
velopment lead to the practical constraint simpli
cation
algorithms of section ��

��� Conditions on Constraint Simpli�cation

Let us consider a program P containing a program com�
ponent M � Suppose the constraint derivations for M
concludes � � M 	 ��S�� where S� is the constraint
system for M � Our goal is to replace S� by a simpler
constraint system without changing sba�P ��

Since the constraint derivation process is composi�
tional� the constraint derivation for the entire program
concludes � � P 	 ��SC �S�� where SC is the constraint
system for the context surrounding M � The combined
constraint system SC � S� describes the space of solu�
tions for the entire program� which is the intersection
of the two respective solution spaces	

Soln�SC � S�� � Soln�SC� � Soln�S��

and hence Soln�S�� describes at least all the properties
of S� relevant to the analysis� However� Soln�S�� may
describe solutions for set variables that are not relevant
to the analysis of P � In particular�

� sba�P � only references the solutions for labels� and

� the only interactions between SC and S� are due
to the set variables f�g � FV �rng�����

Thus the only properties of S� relevant to the analysis
is the solution space for its external set variables

E � Label � f�g � FV �rng����



For our original problem� this means that we want a
constraint system S
 whose solution space restricted to
E is equivalent to that of S� restricted to E	

Soln�S�� jE � Soln�S
� jE �

or� with the notation from section �� S� and S
 are
observably equivalent on E	

S� ��E S


We can translate this compaction idea into an addi�
tional rule for the constraint derivation system	

� ��� M 	 ��S�
S� ��E S
 where E � Label � FV �rng���� � f�g

� ��� M 	 ��S

����

This rule is admissible in that any derivation �denoted
using ���� in the extended constraint derivation system
produces information that is equivalent to the informa�
tion produced by the original analysis�

Lemma ��� If � ��� P 	 ��S� then�

sba�P ��l� � const�LeastSoln�S��l��

��� Proof�Theoretic Characterization

Since the new derivation rule ���� involves the semantic
notion of observably equivalent constraint systems� it
cannot be used directly� To make this rule useful� we
must 
rst reformulate the observable equivalence rela�
tion as a syntactic proof system�

The key properties of the observational equivalence
relation are re�ections of the properties of the ordering
relation �v� and the functions dom and rng � respec�
tively� We can reify these properties into a syntactic
proof system via the following inference rules	

� � � �re�ex �
�� � � � � �


�� � �

�trans ��

	� � 	


rng�	�� � rng�	
�
dom�	
� � dom�	��

�compat�

where we restrict 	 to non�constant set expressions to
avoid inferring useless tautologies	

	 		� � j dom�	� j rng�	�

Many of the inferred constraints lie outside of the orig�
inal language of simple constraints� The extended lan�
guage of compound constraints is	

C 		� c � 	 j 	 � 	

While this proof system obviously captures the prop�
erties of v� it does not lend itself to an e�cient imple�

� 	 rng��� � 	 �

� 	 rng���
�compose��

� 	 dom��� � � �

� 	 dom���
�compose��

� � rng��� � � �

� � rng���
�compose��

� � dom��� � 	 �

� � dom���
�compose��

� 	 � �re�ex �

�� 	 � � 	 ��

�� 	 ��
�trans�

�� 	 ��

rng���� 	 rng����

dom���� 	 dom����

�compat �

Figure �	 The inference rule system ��

mentation� Speci
cally� checking if two potential an�
tecedents of �trans �� contain the same set expression
� involves comparing two potentially large set expres�
sions� Hence we use an alternative proof system that
can easily be implemented� yet infers the same con�
straints as the above� The alternative system consists
of the inference rules � described in Figure �� together
with the rules � from Figure �� The rules �compose������
replace a reference to a set variable by an upper or lower
�non�constant� bound for that variable� as appropriate�
The rule �trans� of � provides a weaker characteriza�
tion of transitivity than the previous rule �trans ��� but
the additional rules compensate for this weakness�

The proof system � � � is sound and complete in
that it infers all true compound constraints�

Lemma ��� �Soundness and Completeness of ���
For a simple constraint system S and compound con�

straint C� S ��� C if and only if S j� C�

This lemma implies that ���S�� which denotes the
closure of S with respect to ���� contains exactly those
�compound� constraints that hold in all environments
in Soln�S�� For a collection of external set variables
E� ���S� jE contains all �compound� constraints that
hold in all environments in Soln�S� jE �

Lemma ��� S ��E ���S� jE�

We could use this result to de
ne a proof�theoretic
equivalent of restricted entailment as follows	

S� �
E
�� S
 i
 ���S�� jE � ���S
� jE



and then show that S� �
E
�� S
 if and only if S� j�E

S
� However� a variant of the above de
nition yields a
relation that is easier to compute� Speci
cally� suppose
���S�� jE contains the constraint �rng���� � rng��
��
inferred by �compat�� Then� since Vars�����Vars��
� �
E� the corresponding antecedent ��� � �
� is also in
���S� jE � and therefore	

���S� jE n frng���� � rng��
�g ��E ���S� jE

Put di
erently� because �compat� does not eliminate
any variables� any �compat��consequent in ���S� jE is
subsumed by its antecedent� If we de
ne	

� � � n fcompatg

then this argument implies that ���S� jE ��E ���S� jE �
Hence we get the following lemma�

Lemma ��� S ��E ���S� jE�

Together� lemmas ��� and ��� provide the basis to
introduce proof�theoretic equivalents of restricted en�
tailment and observable equivalence	

� S� �
E
�� S
 i
 ���S�� jE � ���S
� jE �

� S� �E
�� S
 i
 S� �E�� S
 and S
 �E�� S��

The two relations completely characterize restricted en�
tailment and observable equivalence�

Theorem ��� �Soundness and Completeness�

�� S� �E�� S
 if and only if S� j�E S
�

�� S� �
E
�� S
 if and only if S� ��E S
�

��� Deciding Observable Equivalence

The relation �E
�� completely characterizes the model�

theoretic observable equivalence relation ��E � but for an
implementation of the extended constraint derivation
system we need a decision algorithm for �E

���
Given S� and S
 closed under �� this algorithm

needs to verify that ��S�� jE � ��S
� jE � The naive
approach to enumerate and to compare the two con�
straint systems does not work� since they are in
nite�
For example� if S � f� � rng���g� then ��S� is the
in
nite set f� � rng���� � � rng�rng����� � � �g�

Fortunately� the in
nite constraint systems inferred
by � exhibit a regular structure� which we exploit to
decide observable equivalence as follows� First� we gen�
erate regular grammars describing the upper and lower
bounds for each set variable� Second� we extend these
grammars to regular tree grammars �RTGs� describ�
ing all constraints in ��S�� jE and ��S
� jE � excluding
those constraints inferred via compat � which we cannot

describe in this manner� Third� we use these RTGs to
decide entailment by checking if ��S�� jE � ��S
� jE
via an adaptation of an RTG containment algorithm�
To decide observable equivalence� we simply check en�
tailment in both directions� These steps are described
in more detail below�

Regular Grammars	 Our 
rst step is to describe
the lower and upper non�constant bounds for each set
variable� Technically� we want to describe the following
two languages of types	

f	 j �	 � �� � ��S� and Vars�	� � Eg
f	 j �� � 	� � ��S� and Vars�	� � Eg

for each set variable �� Both languages are generated
by a regular grammar Gr�S� E�� The grammar con�
tains the non�terminals �U and �L� for each � in S�
which generate the above lower and upper bounds of ��
respectively�

The productions of the grammar are determined by
S and �� To illustrate this idea� suppose S contains
�� � rng����� Then� for each upper bound 	 of �� the
rule �compose�� infers the upper bound rng�	� of ��
Since� by induction� ��s upper bounds are generated by
�U � the production �U �� rng��U � generates the corre�
sponding upper bounds of �� More generally� the collec�
tion of productions f�U �� rng��U � j �� � rng���� � Sg
describes all bounds inferred via �compose��� Bounds
inferred via the remaining �compose � rules can be de�
scribed in a similar manner�

Bounds inferred via the rule �re�ex � imply the pro�
duction rules �U �� �� �L �� � for � � E� The
rule �compat� cannot generate constraints of the form
�	 � �� or �� � 	�� Finally� consider the rule �trans��
and suppose this rule infers an upper bound � on ��
This bound must be inferred from an upper bound �

on �� based on the antecedent �� � ��� Hence the pro�
ductions f�U �� �U j �� � �� � Sg generate all upper
bounds inferred via �trans�� In a similar fashion� the
productions f�L �� �L j �� � �� � Sg generate all
lower bounds inferred via �trans��

De�nition ��
� �Regular Grammar Gr�S� E�� Let
S be a simple constraint system and E a collection of
set variables� The regular grammar Gr�S� E� consists
of the non�terminals f�L� �U j � � Vars�S�g and the
following productions	

�U �� �� �L �� � � � � E

�U �� �U � �L �� �L � �� � �� � S
�U �� dom��L� � �� � dom���� � S
�U �� rng��U � � �� � rng���� � S
�L �� dom��U � � �dom��� � �� � S
�L �� rng��L� � �rng��� � �� � S



The grammar Gr�S� E� describes two languages for
each set variable	 the upper and lower non�constant
bounds� Speci
cally� if ���

G denotes a derivation in the
grammarG� and LG�x� denotes the language f� j x ��

�
G

�g generated by a non�terminal x� then the following
lemma holds�

Lemma ��� If G � Gr�S� E�� then�

LG��L� � f	 j �	 � �� � ��S� and Vars�	� � Eg
LG��U � � f	 j �� � 	� � ��S� and Vars�	� � Eg

Proof	 We prove each containment relation by induc�
tion on the appropriate derivation�

Regular Tree Grammars	 The grammar Gr�S� E�
does not describe all constraints in ��S� jE � In partic�
ular� it does not describe constraints of the form �c � � �
and constraints inferred by �trans� or �compat�� To
represent the constraint system ��S� jE � we extend the
grammar Gr�S� E� to a regular tree grammar Gt�S� E��
It combines upper and lower bounds for set variables in
the same fashion as the �trans� rule� and also generates
constraints of the form �c � � � where appropriate�

De�nition ���� �Regular Tree Grammar Gt�S� E��
The RTG Gt�S� E� extends the grammarGr�S� E� with
the root non�terminalR and the additional productions	

R �� ��L � �U � � � � Vars�S�
R �� �c � �U � � �c � �� � S

where �� � �� is viewed as a binary constructor�

The grammar Gt�S� E� describes all constraints in
��S� jE �

Lemma ��
 If G � Gt�S� E�� then ��S� jE � LG�R��

Before we can exploit the grammar representation of
��S� jE � we must still prove that the closure under ��
��fcompatg can be performed in a sequential manner�
The following lemma justi
es this staging of the closure
algorithm�

Lemma ���� For any simple constraint system S�

���S� � ����S�� � compat�����S���

The Entailment Algorithm	 We can check entail�
ment based on lemmas ��� and ���� as follows� Given
S� and S
� we close them under � and then have	

S
 �E�� S�
�� ���S
� jE � ���S�� jE by defn �E��
�� ����S
�� jE � ����S��� jE by lemma ����
�� ��S
� jE � ��S�� jE as Si � ��Si�
�� compat���S
� jE� � ��S�� jE by lemma ����
�� compat�LG�

�R�� � LG�
�R� by lemma ���

where Gi � Gt�Si� E�

The Entailment Algorithm

In the following� Pfin denotes the 	nite power
set constructor�

Let� G� � Gr�S�� E�

G� � Gt�S�� E�

Li � f�L j � � Vars�Si�g

Ui � f�U j � � Vars�Si�g

Assume G� and G� are pre
processed to remove 	
transitions� For

C � Pfin�L� �U��� de	ne�

L�C� � f��L 	 �U � j h�L� �U i � C� �L ��G�
�L� �U ��G�

�Ug

The relation RS��S� �
� 
� 
� 
� is de	ned as the largest relation on

L� � U� �Pfin�L� �U���Pfin�L� �U�� such that if�

RS��S� ��L� �U � C�D� �L ��G�
X �U ��G�

Y

then one of the following cases hold�

�� L��X 	 Y �� � L�C �D��


� X � rng���
L
�� Y � rng���

U
� and RS��S� ��

�

L
� ��

U
� C�D���

where�

D� � fh��L� 

�

U i j h�L� 
U i � C �D�

�L ��G�
rng���

L
�� 
U ��G�

rng�
�
U
�g

�� X � dom���
U
�� Y � dom���

L
� and RS��S� ��

�

L
� ��

U
� C�D���

where�

D� � fh
�L� �
�

U i j h�L� 
U i � C �D�

�L ��G�
dom���

U
�� 
U ��G�

dom�
�
L
�g

The computable entailment relation S� �Ealg S� holds if and only

if 
� � Vars�S���

RS��S� ��L� �U � fh�L� �U i j � � Vars�S��g� ��

Figure �	 The computable entailment relation �Ealg

The containment question LG�
�R� � LG�

�R� can be
decided via an RTG containment algorithm� To decide
the more di�cult question	

compat�LG�
�R�� � LG�

�R�

we adapt an RTG containment algorithm to allow for
constraints inferred via �compat� on LG�

�R��
The extended algorithm is presented in Figure ��

It 
rst computes the largest relation RS��S� such that
RS��S� ��L� �U � C�D� holds if and only if	

L���L � �U �� � compat�L�C�� � L�D�

where �L� �U describe collections of types� C� D de�
scribe collections of constraints� and L���L � �U �� de�
notes the language f��L � �U � j �L ��

� �L� �U ��� �Ug�
The 
rst case in the de
nition of R uses an RTG con�
tainment algorithm to detect if L���L � �U �� � L�C��
L�D�� The two remaining cases handle constraints of
the form �rng���L� � rng���U �� or �dom��

�
U � � dom���L���



and allow for inferences via �compat�� The relation R
can be computed by starting with a maximal relation
�true at every point�� and then iteratively setting en�
tries to false as required by 
gure �� until the largest
relation satisfying the de
nition is reached�

Based on this relation� the algorithm then de
nes a
computable entailment relation �Ealg on constraint sys�

tems� This relation is equivalent to �E��

Theorem ���� S
 �E� S� if and only if S
 �Ealg S��

The entailment algorithm takes exponential time�
since the size of R is exponential in the number of
set variables in S
� Although faster algorithms for the
entailment may exist� these algorithms must all be in
PSPACE� because the containment problem on NFA�s�
which is PSPACE�complete ���� can be polynomially re�
duced to the entailment problem on constraint systems�

By using the entailment algorithm in both direc�
tions� we can now decide if two constraint systems are
observable equivalent� Thus� given a constraint system�
we can 
nd a minimal� observably equivalent system
by systematically generating all constraint systems in
order of increasing size� until we 
nd one observably
equivalent to the original system� Of course� the pro�
cess of computing the minimal equivalent system with
this algorithm is far too expensive for use in practical
program analysis systems�

� Practical Constraint Simpli�cation

Fortunately� to take advantage of the rule ���� in a pro�
gram analysis tool� we do not need a completely mini�
mized constraint system� Any simpli
cations in a con�
straint system produces corresponding reductions in the
overall analysis time�

For this purpose� we exploit the connection between
constraint systems and RTGs� By Lemmas ��� and ����
any transformation on constraint systems that preserves
the language	

LGt���S��E��R�

also preserves the observable behavior of S with respect
to E� Based on this observation� we transform a vari�
ety of existing algorithms for simplifying RTGs to al�
gorithms for simplifying constraint systems� In the fol�
lowing subsections� we present the four most promising
algorithms found so far� We use G to denote Gt�S� E��
and we let X range over non�terminals and p over paths �
which are sequences of the constructors dom and rng�
Each algorithm assumes that the constraint system S
is closed under �� Computing this closure corresponds
to propagating data �ow information locally within a
program component� This step is relatively cheap� since

program components are typically small �less than a few
thousand lines of code��

��� Empty Constraint Simpli�cation

A non�terminal X is empty if LG�X� � �� Similarly� a
production is empty if it refers to empty non�terminals�
and a constraint is empty if it only induces empty pro�
ductions� Since empty productions have no e
ect on the
language generated by G� an empty constraint in S can
be deleted without changing S�s observable behavior�

To illustrate this idea� consider the program compo�
nent P � ��gy����fx��� y��� where f and g are function
tags� Although this example is unrealistic� it illustrates
the behavior of our simpli
cation algorithms� Analyz�
ing P according to the constraint derivation rules yields
a system S containing ten constraints� Closing S un�
der � yields an additional three constraints� Figure �
displays the resulting constraint system ��S�� together
with the corresponding grammar Gt���S�� f�P g�� An
inspection of this grammar shows that the set of non�
empty non�terminals is	

f�PL� �
P
U � �

y
L� �

a
U � �

r
L� �

�
U � �

x
L� Rg

Five of the constraints in ��S� are empty� and are re�
moved by this simpli
cation algorithm� yielding a sim�
pli
ed system of eight non�empty constraints�

��� Unreachable Constraint Simpli�cation

A non�terminal X is unreachable if there is no pro�
duction R �� �Y � Z� or R �� �Z � Y � such that
LG�Y � �� � and Z ��

G p�X�� Similarly� a production
is unreachable if it refers to unreachable non�terminals�
and a constraint is unreachable if it only induces un�
reachable productions� Unreachable productions have
no e
ect on the language LG�R�� and hence unreach�
able constraints in S can be deleted without changing
the observable behavior of S�

In the above example� the reachable non�terminals
are ��U � �

a
U and �gU � Three of the constraints are un�

reachable� and are removed by this algorithm� yielding
a simpli
ed system with 
ve reachable constraints�

��� Removing ��Constraints

A constraint of the form �� � �� � S is an 
�constraint �
Suppose � �� E and the only upper bound on � in S
is the 
�constraint �� � ��� i�e�� there are no other con�
straints of the form � � � � rng��� � �� or � � dom���
in S� Then� for any solution � of S� the set environment



Constraints Production Rules Non
empty Reachable

f 	 �f R �� �f 	 �fU �

dom��f � 	 �x �xL �� dom��fU �

� 	 �� R �� �� 	 ��U � � 	 �� � 	 ��

�� 	 rng��f � ��U �� rng��fU �

rng��f � 	 �a �aL �� rng��fL�

�y 	 �r �yU �� �rU �rL �� �yL �y 	 �r

�r 	 dom��f � �rU �� dom��fL�

g 	 �P R �� �g 	 �PU � g 	 �P g 	 �P

dom��P � 	 �y �yL �� dom��PU � dom��P � 	 �y

�a 	 rng��P � �aU �� rng��PU � �a 	 rng��P � �a 	 rng��P �

�r 	 �x �rU �� �xU �xL �� �rL �r 	 �x

�� 	 �a ��U �� �aU �aL �� ��L �� 	 �a �� 	 �a

� 	 �a R �� �� 	 �aU � � 	 �a � 	 �a

�PL �� �P �PU �� �P

Figure �	 The original constraint system� grammar and simpli
ed constraint systems for P � ��gy����fx��� y��

�� de
ned by	

����� �

�
���� if � �� �

���� if � � �

is also a solution of S� Therefore we can replace all
occurrences of � in S by � while still preserving the ob�
servable behavior Soln�S� jE � This substitution trans�
forms the constraint �� � �� to the tautology �� � ���
which can be deleted� Dually� if �� � �� � S with � �� E

and � having no other lower bounds� then we can re�
place � by �� again eliminating the constraint �� � ���

To illustrate this idea� consider the remaining con�
straints for P � In this system� the only upper bound
for the set variable �� is the 
�constraint ��� � �a��
Hence this algorithm replaces all occurrences of �� by
�a� which further simpli
es this constraint system into	

f� � �a� �a � rng��P �� g � �P g

This system is the smallest simple constraint system
observably equivalent to the original system ��S��

��� Hopcroft	s Algorithm

The previous algorithm merges set variables under cer�
tain circumstances� and only when they are related by
an 
�constraint� We would like to identify more general
circumstances under which set variables can be merged�
To this end� we de
ne a valid uni�er for S to be an
equivalence relation � on the set variables of S such
that we can merge the set variables in each equivalence
class of � without changing the observable behavior
of S� Using a model�theoretic argument� we can show
that an equivalence relation � is a valid uni
er for S if

�� Use a variant of Hopcroft�s algorithm ��
� to compute an

equivalence relation � on the set variables of S that satis	es

the following conditions�

�a� Each set variable in E is in an equivalence class by

itself�

�b� If �� 	 �� � S then 
� � �� �� � �� such that

��� 	 ��� � S�

�c� If �� 	 rng���� � S then 
� � �� �� � �� such that

��� 	 rng����� � S�

�d� If �rng��� 	 �� � S then 
� � �� �� � �� such that

�rng���� 	 ��� � S�

�e� If �� 	 dom���� � S then 
� � �� 
� � �� such that

��� 	 dom����� � S�


� Merge set variables according to their equivalence class�

Figure �	 The Hopcroft algorithm

for all solutions � � Soln�S� there exists another solu�
tion �� � Soln�S� such that �� agrees with � on E and
����� � ����� for all � � ��

A natural strategy for generating �� from � is to map
each set variable to the least upper bound of the set
variables in its equivalence class	

����� �
F

����

�����

Figure � describes su�cient conditions to ensure that ��

is a solution of S� and hence that � is a valid uni
er for
S� To produce an equivalence relation satisfying these
conditions� we use a variant of Hopcroft�s O�n lgn� time



algorithm ���� for computing an equivalence relation on
states in a DFA and then merge set variables according
to their equivalence class��

��� Simpli�cation Benchmarks

To test the e
ectiveness of the simpli
cation algorithms�
we extended MrSpidey with the four algorithms that
we have just described	 empty � unreachable� 
�removal �
and Hopcroft � Each algorithm also implements the pre�
ceding simpli
cation strategies� The 
rst three algo�
rithms are linear in the number of non�empty constraints
in the system� and Hopcroft is log�linear�

We tested the algorithms on the constraint systems
for nine program components on a ���MHz Sparc Ul�
tra � with ���M of memory� using the MzScheme byte
code compiler ����� The results are described in 
g�
ure �� The second column gives the number of lines in
each program component� and the third column gives
the number of constraints in the original �unsimpli
ed�
constraint system after closing it under the rules �� The
remaining columns describe the behavior of each simpli�

cation algorithm� presenting the factor by which the
number of constraints was reduced� and the time �in
milliseconds� required for this simpli
cation�

The results demonstrate the e
ectiveness and e��
ciency of our simpli
cation algorithms� The resulting
constraint systems are typically at least an order of
magnitude smaller than the original system� The cost
of these algorithms is reasonable� particularly consid�
ering that they were run on a byte code compiler� As
expected� the more sophisticated algorithms are more
e
ective� but are also more expensive�


 Componential Set�Based Analysis

Equipped with the simpli
cation algorithms� we return
to our original problem of developing a componential
set�based analysis� The new analysis tool processes pro�
grams in three steps�

�� For each component in the program� the analy�
sis derives and simpli
es the constraint system for
that component and saves the simpli
ed system in
a constraint �le� for use in later runs of the analy�
sis� The simpli
cation is performed with respect to
the external variables of the component� excluding
expression labels� in order to minimize the size of
the simpli
ed system� Thus� the simpli
ed system

�A similar development based on the de�nition ����� �

uf����� j � � ��g results in an alternative algorithm� which is less

e�ective in practice	

only needs to describe how the component inter�
acts with the rest of the program� and the simpli�

cation algorithm can discard constraints that are
only necessary to infer local value set invariants�
These discarded constraints are reconstructed later
as needed�

This step can be skipped for each program com�
ponent that has not changed since the last run of
the analysis� since its constraint 
le can be used
instead�

�� The analysis combines the simpli
ed constraint
systems of the entire program and closes the com�
bined collection of constraints under �� thus prop�
agating data �ow information between the con�
straint systems for the various program compo�
nents�

�� Finally� to reconstruct the full analysis results for
the program component that the programmer is
focusing on� the analysis tool combines the con�
straint system from the second step with the un�
simpli
ed constraint system for that component�
It closes the resulting system under �� which yields
appropriate value set invariants for each labeled
expression in the component�

The new analysis can easily process programs that
consist of many components� For its 
rst step� it elim�
inates all those constraints that have only local rele�
vance� thus producing a small combined constraint sys�
tem for the entire program� As a result� the analysis
tool can solve the combined system more quickly and
using less space than traditional set�based analysis �����
Finally� it recreates as much precision as traditional set�
based analysis as needed on a per�component basis�

The new analysis performs extremely in an inter�
active setting because it exploits the saved constraint

les where possible and thus avoids re�processing many
program components unnecessarily�

We implemented four variants of this analysis� Each
analysis uses a particular simpli
cation algorithm to
simplify the constraint systems for the program com�
ponents�


�� Benchmarks

We tested the componential analyses with 
ve bench�
mark programs� ranging from ����� to ������ lines� For
comparison purposes� we also analyzed each benchmark
with the standard set�based analysis that performs no
simpli
cation� The analyses handled library functions
in a context�sensitive� polymorphic manner according to
the constraint derivation rules �let� and �inst� to avoid
merging information between unrelated calls to these



empty unreachable 	�removal Hopcroft

De	nition lines size factor time factor time factor time factor time

map � 

� � ��� � 
� �� �� �� ��

reverse � 
�� � ��� � 
� 
� �� 
� ��

substring � ��� �
 �� �� �� �� �� �� 
�

qsort �� ���� �� ��� �� �� �� �� �� ��

unify �� 
�
� �� �� �� �� �� �
� �� ���

hopcroft 
�� ��
� 
� �� �
 ��� ��� ��� �
� 
��

check 
�� 
���� � �� � ���� 
� ��� ��� ���

escher�fish ��� ����� ��� �� ��� �� ��� �� ��� ��

scanner �
�� ��
�� � ��� �� ��� �� 
��� �� 
�
�

Figure �	 Behavior of the constraint simpli
cation algorithms�

functions� The remaining functions were analyzed in a
context�insensitive� monomorphic manner� The results
are documented in 
gure ��

The third column in the 
gure shows the maximum
size of the constraint system generated by each analysis�
and also shows this size as a percentage of the constraint
system generated by the standard analysis� The analy�
ses based on the simpli
cation algorithms produce sig�
ni
cantly smaller constraint systems� and can also an�
alyze more programs� such as sba and poly� for which
the standard analysis exhausted heap space�

The fourth column shows the time required to ana�
lyze each program from scratch� without using any ex�
isting constraint 
les�� The analyses that exploit con�
straint simpli
cation yield signi
cant speed�ups over
the standard analysis because they manipulate much
smaller constraint systems� The results indicate that�
for these benchmarks� the 
�removal algorithm yields
the best trade�o
 between e�ciency and e
ectiveness
of the simpli
cation algorithms� The additional sim�
pli
cation performed by the more expensive Hopcroft

algorithm is out�weighed by the overhead of running
the algorithm� The tradeo
 may change as we analyze
larger programs�

To test the responsiveness of the componential anal�
yses in an interactive setting based on an analyze�debug�
edit cycle� we re�analyzed each benchmark after chang�
ing a randomly chosen component in that benchmark�
The re�analysis times are shown in the 
fth column of

gure �� These times show an order�of�magnitude im�
provement in analysis times over the original� standard
analysis� since the saved constraint 
les are used to
avoid reanalyzing all of the unchanged program com�
ponents� For example� the analysis of zodiac� which
used to take over two minutes� now completes in un�
der four seconds� Since practical debugging sessions
using MrSpidey typically involve repeatedly analyzing
the project each time the source code of one module is

�These times exclude scanning and parsing time	

Number Analysis� File

Program of Re
analysis size

�� lines� Analysis constraints time �s� �bytes�

scanner standard ��K ���� ��� ��
K

��
��� empty 
�K ����� �
�� ��� ���K

unreachable ��K �
��� ��� 
�� ��K

	�removal ��K �
��� ��� ��� 
�K

Hopcroft ��K �
��� ���� ��� 
�K

zodiac standard ���K ����� ����� ����K

������ empty �
K ���� ���� ��� �
�K

unreachable 
�K ���� 
��� ��� ���K

	�removal ��K �
�� 
��� ��� ���K

Hopcroft ��K �
�� ���� ��� ���K

nucleic standard ���K ���� ���
 
��
K

����
� empty ��K �
��� �
�� ���� ��
K

unreachable ��K �
��� ���� ���� ���K

	�removal ��K ����� ���� ���� ���K

Hopcroft ��K ����� ���� ���
 �
�K

sba standard ��M � � � �

������� empty ����K ������ ����� ���� ����K

unreachable ���K ��
�� ����� ���� �
�K

	�removal ��K ��
�� ����� �
�
 ���K

Hopcroft ��K ����� ����� ���� ���K

poly standard ��M � � � �

������� empty ��M � � � �

unreachable 
��K ����� 
���� 
��� ����K

	�removal ��K ����� 
���� ���� ����K

Hopcroft ��K ����� 
���� ���� ���K

� indicates the analysis exhausted heap space

Figure �	 Behavior of the componential analyses�

modi
ed� e�g�� when a bug is identi
ed and eliminated�
using separate analysis substantially improves the us�
ability of MrSpidey�

The disk�space required to store the constraint 
les
is shown in column six� Even though these 
les use
a straight�forward� text�based representation� their size
is typically within a factor of two or three of the corre�
sponding source 
le�



copy Relative time of smart polymorphic analyses Mono�

Program lines analysis empty unreachable 	�removal Hopcroft analysis

lattice 
�� ��
s ��� ��� ��� ��� �
�

browse 
�� 
��s ��� ��� ��� ��� ���

splay 
�� ���s ��� ��� ��� �
� ���

check 
�� ����s 
�� 
�� ��� ��� 
��

graphs �
� 
��s ��� ��� �
� ��� �
�

boyer �
� ���s ��� ��� ��� ��� ���

matrix ��� ���s ��� ��� ��� �
� ���

maze ��� ��
s ��� ��� ��� ��� ���

nbody ��� ����s ��� 
�� 
�� 
�� 
��

nucleic ���� � � 
��s � �
s � �
s � ��s � ��s

� indicates the copy analysis exhausted heap space�

and the table contains absolute times for the other analyses

Figure ��	 Times for the smart polymorphic analyses� relative to the copy analysis�

� E�cient Polymorphic Analysis

The constraint simpli
cation algorithms also enables an
e�cient polymorphic� or context�sensitive� analysis� To
avoid merging information between unrelated calls to
functions that are used in a polymorphic fashion� a poly�
morphic analysis duplicates the function�s constraints
at each call site� We extended MrSpidey with 
ve poly�
morphic analyses� The 
rst analysis is copy � which
duplicates the constraint system for each polymorphic
reference via a straightforward implementation of the
rules �let� and �inst��� The remaining four analyses are
smart analyses that simplify the constraint system for
each polymorphic de
nition�

We tested the analyses using a standard set of bench�
marks ����� The results of the test runs are documented
in 
gure ��� The second column shows the number of
lines in each benchmark� the third column presents the
time for the copy analysis� and columns four to seven
show the times for each smart polymorphic analysis� as
a percentage of the copy analysis time� For comparison
purposes� the last column shows the relative time of the
original� but less accurate� monomorphic analysis�

The results again demonstrate the e
ectiveness of
our constraint simpli
cation algorithms� The smart
analyses that exploit constraint simpli
cation are al�
ways signi
cantly faster and can analyze more programs
than the copy analysis� For example� while copy ex�
hausts heap space on the nucleic benchmark� all smart
analyses successfully analyzed this benchmark�

Again� it appears that the 
�removal analysis yields
the best trade�o
 between e�ciency and e
ectiveness
of the simpli
cation algorithms� This analysis provides
the additional accuracy of polymorphism without much

�We also implemented a polymorphic analysis that re�analyzes a

de�nition at each reference� but found its performance to be compa�

rable to� and sometimes worse than� the copy analysis	

additional cost over the coarse� monomorphic analysis�
With the exception of the benchmarks browse� splay
and graphs� which do not re�use many functions in a
polymorphic fashion� this analysis is a factor of � to
� times faster than the copy analysis� and it is also
capable of analyzing larger programs�


 Competitive Work

F ahndrich and Aiken ��� examine constraint simpli
�
cation for an analysis based on a more complex con�
straint language� They develop a number of heuristic
algorithms for constraint simpli
cation� which they test
on programs of up to ���� lines� Their fastest approach
yields a factor of � saving in both time and space� but
is slow in absolute times compared to other analyses�

Pottier ���� studies an ML�style language with a sub�
type system based on constraints� and and presents an
incomplete algorithm for deciding entailment on con�
straint systems� He proposes some ad hoc algorithms
for simplifying constraints� but does not present results
on the cost or e
ectiveness of these algorithms�

Eifrig� Smith and Trifonov ��� ��� describe a subtyp�
ing relation between constrained types that are simi�
lar to our constraint systems� and they present an in�
complete decision algorithm for subtyping� They de�
scribe three algorithms for simplifying constraint sys�
tems� two of which which are similar to the empty and

�removal algorithms� and the third is a special case of
the Hopcroft algorithm� They do not present results on
the cost or e
ectiveness of these algorithms�

Duesterwald et al ��� describe algorithms for simpli�
fying data �ow equations� These algorithms are similar
to the 
�removal and Hopcroft algorithms� Their ap�
proach only preserves the greatest solution of the equa�
tion system and assumes that the control �ow graph



is already known� Hence it cannot be used to analyze
programs in a componential manner or to analyze pro�
grams with advanced control��ow mechanisms such as

rst�class functions and virtual methods� The paper
does not present results on the cost or e
ectiveness of
these algorithms�

� Future Work

All our constraint simpli
cation algorithms preserve the
observable behavior of constraint systems� and thus do
not a
ect the accuracy of the analysis� If we were willing
to tolerate a less accurate analysis� we could choose a
compressed constraint system that does not preserve
the observable behavior of the original� but only entails

that behavior� This approach allows the use of much
smaller constraint systems� and hence yields a faster
analysis�

A promising approach for deriving such approximate
constraint systems is to rely on a programmer�provided
signature describing the behavior of each program com�
ponent� and to derive the new constraint system from
that signature� After checking the entailment condi�
tion to verify that signature�based constraints correctly
approximates the behavior of the module� we could use
those constraints in the remainder of the analysis� Since
the signature�based constraints are smaller than the
derived ones� this approach could signi
cantly reduce
analysis times for large projects� We are investigating
this approach for developing a typed module language
on top of Scheme�

References

��� Aho� A�� J� Hopcroft and J� Ullman� The Design and

Analysis of Computer Algorithms� Addison
Wesley� Read


ing� Mass�� �����

�
� Aiken� A�� Wimmers� E� L�� and Lakshman� T� K� Soft

typing with conditional types� In Proceedings of the ACM

Sigplan Conference on Principles of Programming Lan�

guages ������� pp� ��������

��� Cousot� P�� and Cousot� R� Formal language� grammar�

and set
constraint
based program analysis by abstract inter


pretation� In Proceedings of the ���� Conference on Func�

tional Programming and Computer Architecture �������

pp� ��������

��� Duesterwald� E�� Gupta� R�� and Soffa� M� L� Reducing

the cost of data �ow analysis by congruence partitioning� In

International Conference on Compiler Construction �April

������

��� Eifrig� J�� Smith� S�� and Trifonov� V� Sound polymor


phic type inference for objects� In Conference on Object�

Oriented Programming Systems� Languages� and Applica�

tions �������

��� F�ahndrich� M�� and Aiken� A� Making set
constraint based

program analyses scale� Technical Report UCB�CSD
��
����

University of California at Berkeley� �����

��� Flanagan� C�� and Felleisen� M� Set
based analysis for

full Scheme and its use in soft
typing� Technical Report

TR��

��� Rice University� �����

��� Flanagan� C�� and Felleisen� M� Modular and polymor


phic set
based analysis� Theory and practice� Technical Re


port TR
��

��� Rice University� �����

��� Flanagan� C�� Flatt� M�� Krishnamurthi� S�� Weirich�

S�� and Felleisen� M� Finding bugs in the web of pro


gram invariants� In Proceedings of the ACM Conference on

Programming Language Design and Implementation �������

pp� 
���
�

���� Flatt� M� MzScheme Reference Manual� Rice University�

���� Heintze� N� Set
based analysis of ML programs� In Pro�

ceedings of the ACM Conference on Lisp and Functional

Programming ������� pp� ��������

��
� Hopcroft� J� E� An n log n algorithm for minimizing the

states of a 	nite automaton� The Theory of Machines and

Computations ������� ��������

���� Jagannathan� S�� and Wright� A� K� E�ective �ow analy


sis for avoiding run
time checks� In Proc� �nd International

Static Analysis Symposium� LNCS ��	 �September ������

Springer
Verlag� pp� 
���

��

���� Jones� N�� and Muchnick� S� A �exible approach to inter


procedural data �ow analysis and programs with recursive

data structures� In Conference Record of the Ninth Annual

ACM Symposium on Principles of Programming Languages

�January ���
�� pp� ������

���� Palsberg� J� Closure analysis in constraint form� Transac�

tions on Programming Languages and Systems �
� � �������

����
�

���� Palsberg� J�� and O�Keefe� P� A type system equiva


lent to �ow analysis� In Proceedings of the ACM SIGPLAN

��� Conference on Principles of Programming Languages

������� pp� ��������

���� Pottier� F� Simplifying subtyping constraints� In Proceed�

ings of the ���� ACM SIGPLAN International Conference

on Functional Programming ������� pp� �

�����

���� Reynolds� J� Automatic computation of data set de	ntions�

Information Processing��� ������� ��������

���� Shivers� O� Control��ow Analysis of Higher�Order Lan�

guages� or Taming Lambda� PhD thesis� Carnegie
Mellon

University� �����

�
�� Tofte� M� Type inference for polymorphic references� In�

formation and Computation ��� � �November ������ �����

�
�� Trifonov� V�� and Smith� S� Subtyping constrained types�

In Third International Static Analysis Symposium 
LNCS

����� ������� pp� ��������

�

� Wright� A�� and Felleisen� M� A syntactic approach

to type soundness� Information and Computation ���� �

������� ������

�
�� Wright� A� K� Simple imperative polymorphism� Lisp and

Symbolic Computation �� � �Dec� ������ ��������


