
The Essence of Compiling with Continuations

Cormac Flanagan� Amr Sabry� Bruce F� Duba Matthias Felleisen�

Department of Computer Science

Rice University

Houston� TX ����������

Abstract

In order to simplify the compilation process� many com�
pilers for higher�order languages use the continuation�
passing style �CPS� transformation in a �rst phase to
generate an intermediate representation of the source
program� The salient aspect of this intermediate form
is that all procedures take an argument that represents
the rest of the computation �the �continuation��� Since
the na�	ve CPS transformation considerably increases
the size of programs� CPS compilers perform reductions
to produce a more compact intermediate representation�
Although often implemented as a part of the CPS trans�
formation� this step is conceptually a second phase� Fi�
nally� code generators for typical CPS compilers treat
continuations specially in order to optimize the inter�
pretation of continuation parameters�
A thorough analysis of the abstract machine for CPS

terms shows that the actions of the code generator in�
vert the na�	ve CPS translation step� Put di
erently�
the combined e
ect of the three phases is equivalent
to a source�to�source transformation that simulates the
compaction phase� Thus� fully developed CPS compil�
ers do not need to employ the CPS transformation but
can achieve the same results with a simple source�level
transformation�

� Compiling with Continuations

A number of prominent compilers for applicative higher�
order programming languages use the language of
continuation�passing style �CPS� terms as their inter�
mediate representation for programs ��� �� �� ��� This
strategy apparently o
ers two major advantages� First�
Plotkin ��� showed that the ��value calculus based on

�Supported in part by NSF grants CCR �������� and CCR
�������� and Texas ATP grant ������	�
��
�

To appear in�
���� Conference on ProgrammingLanguage Design and Imple�

mentation�
June ����� ����
Albuquerque� New Mexico

the ��value rule is an operational semantics for the
source language� that the conventional full ��calculus
is a semantics for the intermediate language� and� most
importantly� that the ��calculus proves more equations
between CPS terms than the �v�calculus does between
corresponding terms of the source language� Translated
into practice� a compiler can perform more transforma�
tions on the intermediate language than on the source
language �������� Second� the language of CPS terms is
basically a stylized assembly language� for which it is
easy to generate actual assembly programs for di
erent
machines ��� �� ���� In short� the CPS transformation
provides an organizational principle that simpli�es the
construction of compilers�

To gain a better understanding of the role that the
CPS transformation plays in the compilation process�
we recently studied the precise connection between the
�v�calculus for source terms and the ��calculus for CPS
terms� The result of this research ��� was an extended
�v�calculus that precisely corresponds to the ��calcu�
lus of the intermediate CPS language and that is still
semantically sound for the source language� The ex�
tended calculus includes a set of reductions� called the
A�reductions� that simplify source terms in the same
manner as realistic CPS transformations simplify the
output of the na�	ve transformation� The e
ect of these
reductions is to name all intermediate results and to
merge code blocks across declarations and conditionals�
Direct compilers typically perform these reductions on
an ad hoc and incomplete basis��

The goal of the present paper is to show that the true
purpose of using CPS terms as an intermediate repre�
sentation is also achieved by using A�normal forms� We
base our argument on a formal development of the ab�
stract machine for the intermediate code of a CPS�based
compiler� The development shows that this machine is
identical to a machine for A�normal forms� Thus� the
back end of an A�normal form compiler can employ the
same code generation techniques that a CPS compiler
uses� In short� A�normalization provides an organiza�

�Personal communication� H� Boehm �also �
��� K� Dybvig�
R� Hieb �April ����

Page

M ��� V

j �let �x M�� M��
j �if� M� M� M��
j �M M� � � � Mn�
j �O M� � � � Mn�

V ��� c j x j ��x� � � � xn�M�

V � Values

c � Constants

x � Variables

O � Primitive Operations

Figure � Abstract Syntax of Core Scheme �CS �

tional principle for the construction of compilers that
combines various stages of fully developed CPS compil�
ers in one straightforward transformation�

The next section reviews the syntax and semantics of
a typical higher�order applicative language� The follow�
ing section analyses CPS compilers for this language�
Section � introduces the A�reductions and describes A�
normal form compilers� Section � proves the equiva�
lence between A�normal form compilers and realistic
CPS compilers� The bene�ts of using A�normal form
terms as an intermediate representation for compilers is
the topic of Section �� The appendix includes a linear
A�normalization algorithm�

� Core Scheme

The source language is a simple higher�order applicative
language� For our purposes� it su�ces to consider the
language of abstract syntax trees that is produced by
the lexical and syntactic analysis module of the com�
piler� see Figure for the context�free grammar of this
language� The terms of the language are either val�
ues or non�values� Values include constants� variables�
and procedures� Non�values include let�expressions
�blocks�� conditionals� function applications and prim�
itive operations�� The sets of constants and primitive
procedures are intentionally unspeci�ed� For our pur�
poses� it is irrelevant whether the language is statically
typed like ML or dynamically typed like Scheme�

The language Core Scheme has the following context�
sensitive properties� which are assumed to be checked
by the front�end of the compiler� In the procedure
��x� � � �xn�M � the parameters x�� � � � � xn are mutually
distinct and bound in the body M � Similarly� the ex�
pression �let �x M��M�� binds x inM�� A variable that
is not bound by a � or a let is free� the set of free vari�
ables in a termM is FV �M �� Like Barendregt ���ch �����
we identify terms modulo bound variables and we as�
sume that free and bound variables of distinct terms do

�The language is overly simple but contains all ingredients that
are necessary to generate our result for full ML or Scheme� In par�
ticular� the introduction of assignments� and even control opera�
tors� is orthogonal to the analysis of the CPS�based compilation
strategy�

not interfere in de�nitions or theorems�

The semantics of the language is a partial function
from programs to answers� A program is a term with
no free variables and an answer is a member of the
syntactic category of constants� Following conventional
tradition ��� we specify the operational semantics of
Core Scheme with an abstract machine� The machine
we use� the CEK machine ���� has three components� a
control string C� an environment E that includes bind�
ings for all free variables in C� and a continuation K

that represents the �rest of the computation��

The CEK machine changes state according to the
transition function in Figure �� For example� the state
transition for the block �let �x M��M�� starts the eval�
uation ofM� in the current environment E and modi�es
the continuation register to encode the rest of the com�
putation hlt x�M�� E�Ki� When the new continuation
receives a value� it extends the environment with a value
for x and proceeds with the evaluation of M�� The re�
maining clauses have similarly intuitive explanations�

The relation ���� is the re�exive transitive closure
of the transition function� The function � constructs
machine values from syntactic values and environments�
The notation E�x� refers to an algorithm for looking up
the value of x in the environment E� The operation
E�x� �� V �

� � � � � � xn �� V �

n � extends the environment E
such that subsequent lookups of xi return the value V �

i �
The object hcl x� � � �xn�M�Ei is a closure� a record that
contains the code forM and values for the free variables
of ��x� � � � xn�M �� The partial function � abstracts the
semantics of the primitive operations�

The CEK machine provides a model for designing di�
rect compilers ��� � ��� A compiler based on the CEK
machine implements an e�cient representation for en�
vironments� e�g�� displays� and for continuations� e�g�� a
stack�� The machine code produced by such a compiler
realizes the abstract operations speci�ed by the CEK
machine by manipulating these concrete representations
of environments and continuations�

�The machine also characterizes compilers for �rst�order lan�
guages� e�g�� Fortran� In this case� the creation and deletion of
the environment and continuation components always follows a
stack�like behavior� Hence the machine reduces to a traditional
stack machine�

Page �

Semantics� Let M � CS �
evald�M� � c if hM� �� stopi ���� hstop� ci�

Data Speci�cations�

S � Stated � CS � Envd �Contd j Contd �Valued �machine states�
E � Envd � Variables��� Valued �environments�
V � � Valued � c j hcl x� � � � xn�M�Ei �machine values�
K � Contd � stop j hap h� � � � V �� ��M� � � �i� E�Ki j hlt x�M�E�Ki �continuations�

j hif M��M�� E�Ki j hpr O� h� � � � V �� ��M� � � �i� E�Ki

Transition Rules�

hV� E�Ki ��� hK���V�E�i

h�let �x M�� M��� E�Ki ��� hM�� E� hlt x�M�� E�Kii

h�if� M� M� M��� E�Ki ��� hM�� E� hif M��M�� E�Kii

h�M M� � � � Mn�� E�Ki ��� hM�E� hap h��M�� � � � �Mni� E�Kii

h�O M� M� � � � Mn�� E�Ki ��� hM�� E� hpr O� h��M�� � � � �Mni� E�Kii

hhlt x�M�E�Ki� V �i ��� hM�E�x �� V
���Ki

hhif M��M�� E�Ki��i ��� hM�� E�Ki

hhif M��M�� E�Ki� V �i ��� hM�� E�Ki where V � �� �

hhap h� � � � V �

i � ��M� � � �i� E�Ki� V �

i��i ��� hM�E� hap h� � � � V �

i � V
�

i��� �� � � �i� E�Kii

hhap V
�

� V
�

� � � � � � �i� E�Ki� V �

n i ��� hM �

� E
��x� �� V

�

� � � � � � xn �� V
�

n ��Ki if V � � hcl x� � � � xn�M
�� E�i

hhpr O� h� � � � V �

i � ��M� � � �i� E�Ki� V �

i��i ��� hM�E� hpr O� h� � � � V �

i � V
�

i��� �� � � �i� E�Kii

hhpr O� hV �

� � � � � � �i� E�Ki� V �

n i ��� hK���O�V �

� � � � � � V
�

n �i if ��O� V �

� � � � � � V
�

n � is de�ned

Converting syntactic values to machine values�

��c�E� � c

��x�E� � E�x�

����x� � � � xn�M�� E� � hcl x� � � � xn�M�Ei

Figure �� The CEK�machine

� CPS Compilers

Several compilers map source terms to a CPS intermedi�
ate representation before generating machine code� The
function F ��� in Figure � is the basis of CPS trans�
formations used in various compilers ��� �� ��� It uses
special ��expressions or continuations to encode the rest
of the computation� thus shifting the burden of main�
taining control information from the abstract machine
to the code� The notation ��x� � � �� marks the admin�

istrative ��expressions introduced by the CPS transfor�
mation� The primitive operation O� used in the CPS
language is equivalent to the operation O for the source
language� except that O� takes an extra continuation ar�
gument� which receives the result once it is computed�

The transformation F introduces a large number of
administrative ��expressions� For example� F maps the
code segment

N
df
� �� �� � �� �let �x �� �f x ���

into the CPS term

���k�� ���k�� �k� ���
��t�� ���k�� �k� ���

��t�� ��� k� t� t�������
��t�� ���k��

���k�� �k� ���
��t�� �let �x t��

���k�� ���k�� �k� f ��
��t�� ���k�� �k� x ��

��t�� �t� k� t�������
k������

��t�� ��� k t� t�������

By convention� we ignore the context ��k�� �� enclosing
all CPS programs�

To decrease the number of administrative ��
abstractions� realistic CPS compilers include a simpli��
cation phase for compacting CPS terms ��������� ����
�� �������� For an analysis of this simpli�cation phase�
its optimality� and how it can be combined with F � we
refer the reader to Danvy and Filinski ��� and Sabry
and Felleisen ���� This phase simpli�es administrative

Page �

F ��V �� � �k��k 	��V ���

F ���let �x M�� M���� � �k��F ��M��� �t��let �x t� �F ��M��� k���

F ���if�M� M� M���� � �k��F ��M��� �t��if� t �F ��M��� k� �F ��M��� k���

F ���M M� 	 	 	 Mn��� � �k��F ��M �� �t��F ��M��� �t�� 	 	 	 �F ��Mn�� �tn��t k t� � � � tn����

F ���O M� 	 	 	 Mn��� � �k��F ��M��� �t�� 	 	 	 �F ��Mn�� �tn��O
�

k t� � � � tn���

	��c�� � c

	��x�� � x

	���x� 	 	 	xn�M �� � �kx� 	 	 	xn�F ��M ��

Figure �� The CPS transformation F

redexes of the form ���x�P � Q� according to the rule�

���x�P � Q� �� P �x �� Q� ���

The term P �x �� Q� is the result of the capture�free
substitution of all free occurrences of x in P by Q� for
example� ��x�xz��z �� ��y�x�� � ��u�u��y�x��� Apply�
ing the reduction � to all the administrative redexes in
our previous example produces the following ��normal
form term�

cps�N � � ��� ��t�� �let �x �� �f ��t�� ��� k t� t��� x ���
� ��

The reduction � is strongly�normalizing on the lan�
guage of CPS terms ���� Hence� the simpli�cation
phase of a CPS compiler can remove all ��redexes from
the output of the translation F �� After the simpli�
�cation phase� we no longer need to distinguish be�
tween regular and administrative ��expressions� and use
the notation ��� � � �� for both classes of ��expression�
With this convention� the language of ��normal forms�
CPS�CS �� is the following ����

P ��� �k W � �return�

j �let �x W � P � �bind �

j �if� W P� P�� �branch�

j �W k W� � � � Wn� �tail call�

j �W ��x�P � W� � � � Wn� �call�

j �O� k W� � � � Wn� �prim�op�

j �O� ��x�P � W� � � � Wn� �prim�op�

W ��� c j x j ��kx� � � �xn�P � �values�

Indeed� this language is typical of the intermediate rep�
resentation used by CPS compilers ��� �� ���

�The CPS translation of a conditional expression contains
two references to the continuation variable k� Thus� the ��
normalization phase can produce exponentially larger output�
Modifying the CPS algorithm to avoid duplicating k removes the
potential for exponential growth� The rest of our technical devel�
opment can be adapted mutatis mutandis�

Na��ve CPS Compilers The abstract machine that
characterizes the code generator of a na�	ve CPS com�
piler is the CcpsE machine� Since terms in CPS�CS �
contain an encoding of control��ow information� the
machine does not require a continuation component
�K� to record the rest of the computation� Evalua�
tion proceeds according to the state transition func�
tion in Figure �� For example� the state transition
for the tail call �W k W� � � � Wn� computes a closure
hcl k�x� � � �xn� P �� E�i corresponding to W � extends E�

with the values of k�W�� � � � �Wn and starts the inter�
pretation of P ��

Realistic CPS Compilers Although the CcpsE ma�
chine describes what a na�	ve CPS compiler would do�
typical compilers deviate from this model in two re�
gards�
First� the na�	ve abstract machine for CPS code repre�

sents the continuation as an ordinary closure� Yet� real�
istic CPS compilers �mark� the continuation closure as
a special closure� For example� Shivers partitions pro�
cedures and continuations in order to improve the data
�ow analysis of CPS programs ���sec ������� Also� in
both Orbit ��� and Rabbit ���� the allocation strategy
of a closure changes if the closure is a continuation� Sim�
ilarly� Appel �������� describes various techniques for
closure allocation that treat the continuation closure in
a special way�
In order to re�ect these changes in the machine� we

tag continuation closures with a special marker �ar�
that describes them as activation records�
Second� the CPS representation of any user�de�ned

procedure receives a continuation argument� However�
Steele ��� modi�es the CPS transformation with a
�continuation variable hack� ������ that recognizes in�
stances of CPS terms like ���k� � � � �P � k� � � �� and trans�
forms them to ��� � � � �P �k� �� k��� � � ��� This �optimiza�
tion� eliminates �some of the register shu�ing� ������
during the evaluation of the term� Appel ��� achieves
the same e
ect without modifying the CPS transforma�
tion by letting the variables k� and k� share the same

Page �

Semantics� Let P � CPS�CS��

evaln�P � � c if hP���k �� hcl x� �k x�� ��k �� stop�i�i ���� h�k x�� ��x �� c� k �� stop�i�

Data Speci�cations�

Sn � Staten � CPS�CS�� Envn �machine states�
E � Envn � Variables��� Valuen �environments�

W � � Valuen � c j hcl kx� � � � xn� P�Ei j hcl x�P�Ei j stop �machine values�

Transition Rules�

h�k W �� Ei ��� hP �

� E
��x �� ��W�E��i where E�k� � hcl x�P �

� E
�i

h�let �x W � P �� Ei ��� hP�E�x �� ��W�E��i

h�if� W P� P��� Ei ��� hP�� Ei where ��W�E� � �

or hP�� Ei where ��W�E� �� �

h�W k W� � � � Wn�� Ei ��� hP �

� E
��k� �� E�k�� x� �� W

�

� � � � � � xn ��W
�

n �i

where ��W�E� � hcl k�x� � � � xn� P
�

� E
�i and for

 i
 n� W

�

i � ��Wi� E�

h�W ��x�P � W� � � � Wn�� Ei ��� hP �

� E
��k� �� hcl x�P�Ei� x� ��W

�

� � � � � � xn �� W
�

n �i

where ��W�E� � hcl k�x� � � � xn� P
�

� E
�i and for

 i
 n� W

�

i � ��Wi� E�

h�O�

k W� � � � Wn�� Ei ��� hP �

� E
��x �� �c�O

�

�W
�

� � � � � �W
�

n ��i if �c�O��W �

� � � � � �W
�

n� is de�ned�

where E�k� � hcl x�P �

� E
�i and for

 i
 n� W

�

i � ��Wi� E�

h�O� ��x�P � W� � � � Wn�� Ei ��� hP�E�x �� �c�O
�

�W
�

� � � � � �W
�

n��i if �c�O
��W �

� � � � � �W
�

n � is de�ned�

and for

 i
 n� W
�

i � ��Wi� E�

Converting syntactic values to machine values�

��c�E� � c

��x�E� � E�x�

����kx� � � � xn�P �� E� � hcl kx� � � � xn� P�Ei

Figure �� The na�	ve CPS abstract machine� the CcpsE machine�

register during the procedure call�

In terms of the CPS abstract machine� the opti�
mization corresponds to a modi�cation of the oper�
ation E��k� �� E�k�� x� �� W �

� � � � � � xn �� W �

n � to
E��x� �� W �

� � � � � � xn �� W �

n � such that E and E� share
the binding of k� In order to make the sharing explicit�
we split the environment into two components� a com�
ponent Ek that includes the binding for the continu�
ation� and a component E� that includes the rest of
the bindings� and treat each component independently�
This optimization relies on the fact that every control
string has exactly one free continuation variable� which
implies that the corresponding value can be held in a
special register��

Performing these modi�cations on the na�	ve abstract
machine produces the realistic CPS abstract machine
in Figure �� The new CcpsEK machine extracts the
information regarding the continuation from the CPS
terms and manages the continuation in an optimized
way� For example� the state transition for the tail
call �W k W� � � � Wn� evaluates W to a closure

�This fact also holds in the presence of control operators as
there is always one identi�able current continuation�

hcl kx� � � � xn� P
�� E�

� i� extends E
�

� with the values of
W�� � � � �Wn and starts the execution of P �� In particu�
lar� there is no need to extend E�

� with the value of k as
this value remains in the environment component Ek�

� A�Normal Form Compilers

A close inspection of the CcpsEK machine reveals that
the control strings often contain redundant information
considering the way instructions are executed� First� a

return instruction� i�e�� the transition ���
	�

c� dispatches
on the term �k W �� which informs the machine that the
�return address� is denoted by the value of the variable
k� The machine ignores this information since a re�

turn instruction automatically uses the value of register
Ek as the �return address�� Second� the call instruc�

tions� i�e�� transitions ���	�
 c and ���	�
 c� invoke closures
that expect� among other arguments� a continuation k�
Again� the machine ignores the continuation parameter
in the closures and manipulate the �global� register Ek

instead�

Page �

Semantics� Let P � CPS�CS��

evalc�P � � c if hP��� har x� �k x���� stopii ����

c h�k x����x �� c��stopi�

Data Speci�cations�

Sc � Statec � CPS�CS�� Envc �Contc �machine states�
E� � Envc � Variables��� Valuec �environments�
W � � Valuec � c j hcl kx� � � � xn� P�E

�i �machine values�
Ek � Contc � stop j har x�P�E�� Eki �continuations�

Transition Rules�

h�k W �� E�

� E
ki ������ c hP �

� E
�

� �x �� ��W�E
���� Ek

� i where Ek � har x�P �

� E
�

� � E
k

� i

h�let �x W � P �� E�

� E
ki ������ c hP�E��x �� ��W�E

���� Eki

h�if� W P� P��� E
�

� E
ki ������ c hP�� E

�

� E
ki where ��W�E

�� � �

or hP�� E
�

� E
ki where ��W�E

�� �� �

h�W k W� � � � Wn�� E
�

� E
ki ������ c hP �

� E
�

� �x� ��W
�

� � � � � � xn �� W
�

n �� E
ki

where ��W�E
�� � hcl k�x� � � � xn� P

�

� E
�

� i and for

 i
 n� W
�

i � ��Wi� E
��

h�W ��x�P � W� � � � Wn�� E
�

� E
ki ������ c hP �

� E
�

� �x� ��W
�

� � � � � � xn �� W
�

n �� har x�P�E
�

� E
kii

where ��W�E
�� � hcl k�x� � � � xn� P

�

� E
�

� i and for

 i
 n� W
�

i � ��Wi� E
��

h�O�

k W� � � � Wn�� E
�

� E
ki ������ c hP �

� E
�

� �x �� �c�O
�

�W
�

� � � � � �W
�

n ���E
k

� i if �c�O
��W �

� � � � � �W
�

n� is de�ned�

where Ek � har x�P �

� E
�

� � E
k

� i and for

 i
 n� W
�

i � ��Wi� E
��

h�O� ��x�P � W� � � � Wn�� E
�

� E
ki ����	� c hP�E��x �� �c�O

�

�W
�

� � � � � �W
�

n��� E
ki if �c�O��W �

� � � � � �W
�

n � is de�ned�

and for

 i
 n� W
�

i � ��Wi� E
��

Figure �� The realistic CPS abstract machine� the CcpsEK machine�

Undoing CPS The crucial insight is that the
elimination of the redundant information from the
CcpsEK machine corresponds to an inverse CPS trans�
formation ��� �� on the intermediate code� The func�
tion U in Figure � realizes such an inverse ���� The in�
verse transformation formalizes our intuition about the
redundancies in the CcpsEK machine� It eliminates the
variable k from return instructions as well as the param�
eter k from procedures� The latter change implies that
continuations are not passed as arguments in function
calls but rather become contexts surrounding the calls�
For example� the code segment cps�N � in Section � be�
comes�

A�N � � �let �t� �� � ���
�let �x ��
�let �t� �f x ��
�� t� t�����

Based on the above argument� it appears that CPS
compilers perform a sequence of three steps�

�
�

�

�

A

CPS�CS �

CPS

��normalization

un�CPS

CS

� �

� �

A�CS �

The diagram naturally suggests a direct translation A

that combines the e
ects of the three phases� The iden�
ti�cation of the translation A requires a theorem re�
lating ��reductions on CPS terms to reductions on the
source language� This correspondence of reductions was
the subject of our previous paper ���� The resulting set
of source reductions� the A�reductions� is in Figure ���

Since the A�reductions are strongly normalizing� we can
characterize the translation A as any function that ap�
plies the A�reductions to a source term until it reaches
a normal form ���Theorem �����
The de�nition of the A�reductions refers to the con�

cept of evaluation contexts� An evaluation context is a
term with a �hole� �denoted by � �� in the place of one
subterm� The location of the hole points to the next

�Danvy ��� and Weise ���� also recognize that the compaction
of CPS terms can be expressed in the source language� but do not
explore this topic systematically�

Page �

The inverse CPS transformation�

U � CPS�CS� � A�CS�

U ���k W ��� � ���W ��

U ���let �x W � P ��� � �let �x ���W ��� U ��P ���

U ���if�W P� P���� � �if� ���W �� U ��P��� U ��P����

U ���W k W� � � � Wn��� � ����W �� ���W��� � � � ���Wn���

U ���W ��x�P � W� � � � Wn��� � �let �x ����W �� ���W��� � � � ���Wn���� U ��P ���

U ���O�

k W� � � � Wn��� � �O ���W��� � � � ���Wn���

U ���O� ��x�P � W� � � � Wn��� � �let �x �O ���W��� � � � ���Wn���� U ��P ���

� �W � V

���c�� � c

���x�� � x

����kx� � � � xn�P �� � �x� � � � xn�U ��M ��

The language A�CS�

�

M ��� V �return�

j �let �x V � M� �bind�

j �if� V M M� �branch�

j �V V� � � � Vn� �tail call�

j �let �x �V V� � � � Vn�� M� �call�

j �O V� � � � Vn� �prim�op�

j �let �x �O V� � � � Vn�� M� �prim�op�

V ��� c j x j ��x� � � � xn�M� �values�

Figure �� The inverse CPS transformation and its output

Evaluation Contexts�

E ��� � � j �let �x E� M� j �if� E M M� j �F V 	 	 	 V E M 	 	 	 M� where F � V or F � O

The A�reductions�

E��let �x M� N�� �� �let �x M� E�N �� where E �� � �� x �� FV �E� �A��

E��if� V M� M��� �� �if� V E�M�� E�M��� where E �� � � �A��

E��F V� � � � Vn�� �� �let �t �F V� � � � Vn�� E�t�� �A��

where F � V or F � O�E �� E ���let �z � �� M���E �� � �� t �� FV �E�

Figure �� Evaluation contexts and the set of A�reductions

subexpression to be evaluated according to the CEK se�
mantics� For example� in an expression �let �x M��M���
the next reducible expression must occur within M��
hence the de�nition of evaluation contexts includes the
clause �let �x E� M ��

The A�reductions transform programs in a natu�
ral and intuitive manner� The �rst two reductions
merge code segments across declarations and condi�
tionals� The last reduction lifts redexes out of eval�
uation contexts and names intermediate results� Us�
ing evaluation contexts and the A�reductions� we can

Page �

Semantics� Let M � A�CS��

evala�M� � c if hM� �� har x� x� �� stopii ����

a hx� ��x �� c�� stopi�

Data Speci�cations�

Sa � Statea � A�CS�� Enva �Conta �machine states�
E � Enva � Variables��� Valuea �environments�
V � � Valuea � c j hcl x� � � � xn�M�Ei �machine values�
K � Conta � stop j har x�M�E�Ki �continuations�

Transition Rules�

hV�E�Ki ������ a hM �

� E
��x �� ��V� E���K �i where K � har x�M �

� E
�

�K
�i

h�let �x V � M�� E�Ki ������ a hM�E�x �� ��V�E���Ki

h�if� V M� M��� E�Ki ������ a hM�� E�Ki where ��V�E� � �

or hM�� E�Ki where ��V�E� �� �

h�V V� � � � Vn�� E�Ki ������ a hM �

� E
��x� �� V

�

� � � � � � xn �� V
�

n ��Ki

where ��V� E� � hcl x� � � � xn�M
�

� E
�i and for

 i
 n� V

�

i � ��Vi� E�

h�let �x �V V� � � � Vn�� M�� E�Ki ������ a hM �

� E
��x� �� V

�

� � � � � � xn �� V
�

n �� har x�M�E�Kii

where ��V� E� � hcl x� � � � xn�M
�

� E
�i and for

 i
 n� V

�

i � ��Vi� E�

h�O V� � � � Vn�� E�Ki ������ a hM �

� E
��x �� ��O� V �

� � � � � � V
�

n ���K
�i if ��O� V �

� � � � � � V
�

n � is de�ned�

where K � har x�M �

� E
�

�K
�i and for

 i
 n� V

�

i � ��Vi� E�

h�let �x �O V� � � � Vn�� M�� E�Ki ����	� a hM�E�x �� ��O� V �

� � � � � � V
�

n ���Ki if ��O� V �

� � � � � � V
�

n � is de�ned�

and for

 i
 n� V
�

i � ��Vi� E�

Figure �� The CaEK machine

rewrite our sample code segment N in Section � as fol�
lows� For clarity� we surround the reducible term with
a box�

N � �� �� � �� �let �x �� �f x ���

�� �let �t� �� � ���

�� t� �let �x �� �f x ��� �
�A��

�� �let �t� �� � ���
�let �x ��

�� t� �f x �� ��

�A��

�� �let �t� �� � ���
�let �x ��
�let �t� �f x ��
�� t� t�����

�A��

The appendix includes a linear algorithm that maps
Core Scheme terms to their normal form with respect
to the A�reductions�

Compilers In order to establish that the A�
reductions generate the actual intermediate code of CPS
compilers� we design an abstract machine for the lan�
guage ofA�normal forms� the CaEK machine� and prove
that this machine is �equivalent� to the CPS machine
in Figure ��

The CaEK machine is a CEK machine specialized to
the subset of Core Scheme in A�normal form �Figure ���
The machine �see Figure �� has only two kinds of con�
tinuations� the continuation stop� and continuations of
the form har x�M�E�Ki� Unlike the CEK machine�
the CaEK machine only needs to build a continuation
for the evaluation of a non�tail function call� For exam�
ple� the transition rule for the tail call �V V� � � � Vn�
evaluates V to a closure hcl x� � � � xn�M

�� E�i� extends
the environment E� with the values of V�� � � � � Vn and
continues with the execution of M �� The continuation
component remains in the register K� By comparison�
the CEK machine would build a seperate continuation
for the evaluation of each sub�expression V� V�� � � � � Vn�

� Equivalence of Compilation

Strategies

A comparison of Figures � and � suggests a close
relationship between the CcpsEK machine and the
CaEK machine� In fact� the two machines are identi�
cal modulo the syntax of the control strings� as cor�
responding state transitions on the two machines per�
form the same abstract operations� Currently� the tran�
sition rules for these machines are de�ned using pattern

Page �

matching on the syntax of terms� Once we reformulate
these rules using predicates and selectors for abstract
syntax� we can see the correspondence more clearly�
For example� we can abstract the transition rules

���
	�

a and ���
	�

c from the term syntax as the higher�order
functional T��

T��call�var� call�body� call� � call�args� call�fn� �

hC�E�Ki ��� � � � if call� �C�

where x � call�var�C�
M � call�body�C�
V � call�fn�C�

V�� � � � � Vn � call�args�C�

The arguments to T� are abstract�syntax functions for
manipulating terms in a syntax�independent manner�
Applying T� to the appropriate functions produces ei�

ther the transition rule ���	�
 a of the CaEK machine or
the rule ���	�
 c of the CcpsEK machine� i�e��

���	�
 a � T��A�call�var� � � � �A�call�fn�

���	�
 c � T��cps�call�var� � � � � cps�call�fn�

Suitable de�nitions of the syntax�functions for the
language A�CS � are�

A�call�var���let �x �V V� � � � Vn�� M ��� � x

A�call�body���let �x �V V� � � � Vn�� M ��� � M

� � �

A�call�fn���let �x �V V� � � � Vn�� M ��� � V

De�nitions for the language CPS�CS � follow a similar
pattern�

cps�call�var ���W ��x�P � W� � � � Wn��� � x

cps�call�body ���W ��x�P � W� � � � Wn��� � P

� � �

cps�call�fn���W ��x�P � W� � � � Wn��� � W

In the same manner� we can abstract each pair of transi�

tion rules ���
	n

a and ���
	n

c as a higher�order functional Tn�
Let Sa and Sc be abstract�syntax functions appro�

priate for A�normal forms and CPS terms� respectively�
Then the following theorem characterizes the relation�
ship between the two transition functions�

Theorem ��� �Machine Equivalence� For � n �

�� ���
	n

a � Tn�Sa� and ���
	n

c � Tn�Sc��

The theorem states that the transition functions of the
CaEK and CcpsEK machines are identical modulo syn�
tax� However� in order to show that the evaluation of an
A�normal form term M and its CPS counterpart on the
respective machines produces exactly the same behav�
ior� we also need to prove that there exists a bijectionM
between machine states that commutes with the transi�
tion rules�

De�nition ��	� �M� R� V� and K�

M � Statec �� Statea
M�hP�E�� Eki� � hU ��P ���R�E���K�Ek�i

R � Envc �� Enva
R�E�� � E where E�x� � V�E��x��

V � Valuec �� Valuea
V�c� � c

V�hcl kx� � � � xn� P�E
�i� �

hcl x� � � � xn�U ��P ���R�E
��i

K � Contc �� Conta
K�stop� � stop
K�har x� P�E�� Eki� �

har x�U ��P ���R�E���K�Ek�i

Intuitively� the functionMmaps CcpsEK machine states
to CaEK machine states� and R� V and K perform a
similar mapping for environments� machine values and
continuations respectively� We can now formalize the
previously stated requirement that O and O� behave in
the same manner�

Requirement For all W �

� � � � � �W
�

n � Valuec�

V��c�O
��W �

� � � � � �W
�

n�� � ��O�V�W �

� �� � � � �V�W
�

n���

The function M commutes with the state transition
functions�

Theorem ��
 �Commutativity Theorem�

Let S � Statec� S ���
	n

c S� if and only if M�S� ���
	n

a

M�S���

�

�

���
	n

c

�

�

���
	n

a

M

M�S�

S S�

M�S��

M

Proof� The inverse CPS transformations U is bijec�
tive ���� Hence by structural induction� the functions
M� R� V and K are also bijective� The proof proceeds
by case analysis on the transition rules�

Intuitively� the evaluation of a CPS term P on the
CcpsEK machine proceeds in the same fashion as the
evaluation of U ��P �� on the CaEK machine� Together
with the machine equivalence theorem� this implies that
both machines perform the same sequence of abstract
operations� and hence compilers based on these abstract
machines can produce identical code for the same input�
The A�normal form compiler achieves its goal in fewer
passes�

Page �

� A�Normal Forms as an Inter�

mediate Language

Our analysis suggests that the language of A�normal
forms is a good intermediate representation for compil�
ers� Indeed� most direct compilers use transformations
similar to the A�reductions on an ad hoc and incomplete
basis� It is therefore natural to modify such compilers to
perform a complete A�normalization phase� and analyze
the e
ects� We have conducted such an experiment with
the non�optimizing� direct compiler CAML Light ����
This compiler translates ML programs into bytecode via
a ��calculus based intermediate language� and then in�
terprets this bytecode� By performing A�normalization
on the intermediate language and rewriting the inter�
preter as a CaEK machine� we achieved speedups of be�
tween ��� and ��� for each of a dozen small bench�
marks� Naturally� we expect the speedups to be smaller
when modifying an optimizing compiler�

A major advantage of using a CPS�based intermedi�
ate representation is that many optimizations can be
expressed as sequences of � and � reductions� For
example� CPS compilers can transform the non�tail
call �W ��x�kx� W� � � � Wn� to the tail�recursive call
�W k W� � � � Wn� using an ��reduction on the con�
tinuation ���� An identical transformation ��� on the
language of A�normal forms is the reduction �id �

�let �x �V V� � � � Vn�� x� �� �V V� � � � Vn��

where V� V�� � � � � Vn are the A�normal forms correspond�
ing to W�W�� � � � �Wn respectively� Every other opti�
mization on CPS terms that corresponds to a sequence
of ���reductions is also expressible on A�normal form
terms ����

The A�reductions also expose optimization opportu�
nities by merging code segments across block declara�
tions and conditionals� In particular� partial evaluators
rely on the A�reductions to improve their specializa�
tion phase ���� For example� the addition operation and
the constant � are apparently unrelated in the following
term�

�add� �let �x �f ��� ���

The A�normalization phase produces�

�let �x �f ��� �add� ����

which specializes to �let �x �f ��� ��

In summary� compilation with A�normal forms char�
acterizes the critical aspects of the CPS transformation
relevant to compilation� Moreover� it formulates these
aspects in a way that direct compilers can easily use�
Thus� our result should lead to improvements for both
traditional compilation strategies�

A Linear A�Normalization

The linear A�normalization algorithm in Figure � is
written in Scheme extended with a special formmatch�
which performs pattern matching on the syntax of pro�
gram terms� It employs a programming technique for
CPS algorithms pioneered by Danvy and Filinski ����
To prevent possible exponential growth in code size� the
algorithm avoids duplicating the evaluation context en�
closing a conditional expression� We assume the front�
end uniquely renames all variables� which implies that
the condition x �� FV �E� of the reduction A� holds�

AcknowledgmentsWe thank Olivier Danvy� Preston
Briggs� and Keith Cooper for comments on an early
version of the paper�

References

�� Aho� A�� Sethi� R�� and Ullman� J�

Compilers�Principles� Techniques� and Tools�
Addison�Wesley� Reading� Mass�� ����

��� Appel� A� Compiling with Continuations� Cam�
bridge University Press� ����

��� Barendregt� H� The Lambda Calculus� Its Syn�

tax and Semantics� revised ed� Studies in Logic
and the Foundations of Mathematics ��� North�
Holland� ����

��� Boehm� H��J�� and Demers� A� Implement�
ing Russel� In Proceedings of the ACM SIG�

PLAN ���	 Symposium on Compiler Construction

������ vol� ����� Sigplan Notices� pp� ������

��� Bondorf� A� Improving binding times without
explicit CPS�conversion� In Proceedings of the ���

ACM Conference on Lisp and Functional Program�

ming ������ pp� ���

��� Clinger� W� The Scheme � compiler� An ex�
ercise in denotational semantics� In Proceedings of

the ���� ACM Conference on Lisp and Functional

Programming ������ pp� ��������

��� Danvy� O� Back to direct style� In Proceedings

of the �th European Symposium on Programming

�Rennes� ����� Lecture Notes in Computer Sci�
ence� ���� Springer Verlag� pp� ������

��� Danvy� O� Three steps for the CPS transforma�
tion� Tech� Rep� CIS������ Kansas State University�
����

��� Danvy� O�� and Filinski� A� Representing con�
trol� A study of the CPS transformation� Mathe�

matical Structures in Computer Science� � ������
������

Page �

�de�ne normalize�term �lambda �M � �normalize M �lambda �x � x ����

�de�ne normalize

�lambda �M k�
�match M

��lambda �params �body� �k �lambda �params ��normalize�term body����
��let ��x �M�� �M�� �normalize M� �lambda �N�� �let ��x �N�� ��normalize M� k�����
��if� �M� �M� �M�� �normalize�name M� �lambda �t� �k �if� �t ��normalize�term M�� ��normalize�term M�������
���Fn � �M�� �if �PrimOp� Fn�

�normalize�name� M� �lambda �t�� �k ��Fn � �t�����
�normalize�name Fn �lambda �t� �normalize�name� M� �lambda �t�� �k ��t � �t���������

�V �k V �����

�de�ne normalize�name

�lambda �M k�
�normalize M �lambda �N � �if �Value� N � �k N � �let ��t �newvar��� �let ��t �N � ��k t��������

�de�ne normalize�name�

�lambda �M� k�
�if �null� M��

�k ����
�normalize�name �car M�� �lambda �t� �normalize�name� �cdr M�� �lambda �t�� �k ��t � �t����������

Figure �� A linear�time A�normalization algorithm

��� Felleisen� M�� and Friedman� D� Control op�
erators� the SECD�machine� and the ��calculus� In
Formal Description of Programming Concepts III

�Amsterdam� ����� M� Wirsing� Ed�� Elsevier Sci�
ence Publishers B�V� �North�Holland�� pp� ���
���

�� Fessenden� C�� Clinger� W�� Friedman�

D� P�� and Haynes� C� T� Scheme � version �
reference manual� Computer Science Technical Re�
port ��� Indiana University� Bloomington� Indi�
ana� Feb� ����

��� Fischer� M� Lambda calculus schemata� In Pro�

ceedings of the ACM Conference on Proving As�

sertions About Programs ������ vol� ���� Sigplan
Notices� pp� ������

��� Kelsey� R�� and Hudak� P� Realistic com�
pilation by program transformation� In Confer�

ence Record of the �	th Annual ACM Symposium

on Principles of Programming Languages �Austin�
TX� Jan� ����� pp� �������

��� Kranz� D�� Kelsey� R�� Rees� J�� Hudak� P��
Philbin� J�� and Adams� N� Orbit� An op�
timizing compiler for Scheme� In Proceedings of

the ACM SIGPLAN ���	 Symposium on Compiler

Construction ������ vol� ����� Sigplan Notices�
pp� �������

��� Leroy� X� The Zinc experiment� An economical
implementation of the ML language� Tech� Rep�
�� INRIA� ����

��� Plotkin� G� Call�by�name� call�by�value� and the
��calculus� Theoretical Computer Science � ������
������

��� Sabry� A�� and Felleisen� M� Reasoning about
programs in continuation�passing style� In Pro�

ceedings of the ���
 ACM Conference on Lisp

and Functional Programming ������ pp� ��������
Technical Report ������ Rice University�

��� Shivers� O� Control�Flow Analysis of Higher�

Order Languages or Taming Lambda� PhD thesis�
Carnegie�Mellon University� ���

��� Steele� G� L� RABBIT� A compiler for Scheme�
MIT AI Memo ���� Massachusetts Institute of
Technology� Cambridge� Mass�� May ����

���� Wand� M� Correctness of procedure representa�
tions in higher�order assembly language� In Pro�

ceedings of the ���� Conference on the Mathemat�

ical Foundations of Programing Semantics ������
S� Brookes� Ed�� vol� ��� of Lecture Notes in Com�

puter Science� Springer Verlag� pp� ������

��� Weise� D� Advanced compiling techniques�
Course Notes at Stanford University� ����

Page

