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Abstract
Atomicity is a fundamental correctness property in multithreaded
programs, both because atomic code blocks are amenable to se-
quential reasoning (which significantly simplifies correctness argu-
ments), and because atomicity violations often reveal defects in a
program’s synchronization structure. Unfortunately, all atomicity
analyses developed to date are incomplete in that they may yield
false alarms on correctly synchronized programs, which limits their
usefulness.
We present the first dynamic analysis for atomicity that is both

sound and complete. The analysis reasons about the exact depen-
dencies between operations in the observed trace of the target pro-
gram, and it reports error messages if and only if the observed trace
is not conflict-serializable. Despite this significant increase in pre-
cision, the performance and coverage of our analysis is competitive
with earlier incomplete dynamic analyses for atomicity.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification–reliability; D.2.5 [Software
Engineering]: Testing and Debugging–monitors, testing tools;
F.3.1 [Logics and Meanings of Programs]: Specifying and Veri-
fying and Reasoning about Programs

General Terms Languages, Algorithms, Verification

Keywords Atomicity, serializability, dynamic analysis

1. Introduction
Reasoning about the behavior and correctness of multithreaded
programs is notoriously difficult, due to both memory-model is-
sues and the non-deterministic interleaving of the various threads.
The widespread adoption of multicore processors and increasingly-
multithreaded software significantly exacerbates this reliability
problem. Indeed, the advent of multi-core processors may actually
degrade the reliability of our software infrastructure. To avoid this
undesirable outcome, better tools for building reliable concurrent
systems are clearly needed.
For most multithreaded programs, an important first step is to

verify the key correctness properties of race-freedom and atomicity.
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• Race-freedom guarantees that the program’s behavior can be
understood as if it executes on a sequentially-consistent mem-
ory model [17].

• Atomicity guarantees that the program’s behavior can be un-
derstood as if each atomic block executes serially (without in-
terleaved steps of other threads), which enables straightforward
sequential reasoning.

Race-freedom and atomicity are complementary properties. For
example, the following method Set.add is free of race conditions
because all shared mutable variables are correctly synchronized.
However, Set.add still violates its atomicity specification because
other threads could update the underlying vector elems between
the calls to elems.contains and elems.add.

class Set {
final Vector elems = new Vector();
atomic void add(Object x) {
if (!elems.contains(x)) elems.add(x);

}
}
class Vector {

synchronized void add(Object o) { ... }
synchronized boolean contains(Object o) { ... }

}

For race conditions, a variety of dynamic race detection tools
have been developed [36, 33, 47], including complete race detectors
that never produce false alarms [34, 37, 7].
For atomicity, a variety of dynamic analyses have also been de-

veloped (e.g. [11, 44, 1, 43, 46]), but these tools are all incomplete
in that they report false alarms on some correctly-synchronized
programs. For example, the Atomizer [11] uses the Lockset al-
gorithm [36] to reason about standard mutual-exclusion locks, but
may report false alarms if the target program uses additional syn-
chronization idioms to protect its data.
Indeed, it has proven surprisingly difficult and time consuming

to identify real errors among the spurious warnings produced by
these tools. Even if a code block looks suspicious, it may still be
atomic due to some subtle synchronization discipline that is not
(yet) understood by the current programmer or code maintainer.
Additional real bugs (e.g., deadlocks) could be easily introduced
while attempting to “fix” a spurious warning produced by these
tools. Conversely, real errors could be ignored because they appear
to be false alarms.

Sound and Complete Atomicity Checking. To address these
problems, this paper presents the first dynamic analysis for atom-
icity that is both sound (it reports an error if the observed trace
is non-serializable) and complete (it reports an error only for



non-serializable traces). An execution trace is considered serial-
izable (also referred to as conflict-serializable) if it can be trans-
formed into an equivalent serial trace by commuting adjacent, non-
conflicting operations of different threads [4].
We illustrate the behavior of our analysis in terms of the fol-

lowing trace diagram, where the vertical ordering of instructions
reflects their interleaved execution. The operations begin and end
demarcate atomic blocks, which are intended to be serializable.
Atomic blocks may be nested (due to function calls, etc), and the
outermost block starts a new transaction. Transactions are indi-
cated via boxes with associated labels A, B, B′, etc. Operations
outside an atomic block execute in their own unary transaction. The
primary goal of our analysis is to verify that each transaction (and
thus each atomic block) in the observed trace is serializable.
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Our analysis infers happens-before edges [26] between program
operations. These edges reflect synchronization, communication,
and thread ordering, as shown via arrows in the above diagram. We
then lift this relation from operations to a transactional happens-
before relation �. For the above trace, our analysis infers that
A � B′ (via the release-acquire edge on m),B′

� C′ (via the write-
read edge on y), and finally that C′

� A (via the write-read edge
on x). At this stage, our analysis detects a cycle A � B′

� C′
� A

in the transactional happens-before graph, which reveals that the
observed trace is not serializable.1

Blame Assignment. Given the difficulty in understanding the
warnings produced by prior tools, a particular focus of this work is
on blame assignment, e.g. how to further localize the error in the
above cycleA�B′

�C′
�A. In particular, our analysis detects that

this cycle reflects the following happens-before path on operations:

A :rel(m) < B′ :acq(m) < B′ :y=1 < C′ :x=y < A :t=x

Since the above path interleaves transaction A with other conflict-
ing operations, there is no equivalent trace where A executes se-
rially, and so we blame transaction A for this atomicity violation.
Furthermore, only the outermost atomic block in A is blamed; no
error is reported for the inner block, which is serializable.

Transactional Happens-Before Representation. A key contribu-
tion of this work is an efficient and scalable representation of the
transactional happens-before relation. The traditional representa-
tion technique of clock vectors [30] is not applicable because our
happens-before relation is over compound transactions and not in-
dividual operations. Moreover, a trace may contain millions of

1 Similar ideas have been explored in the database literature [4]; our work
adapts these ideas to general-purpose programming languages, in a similar
spirit to much recent work on transactional memory.

transactions, and storing the entire happens-before graph would be
infeasible. Our analysis uses two techniques to avoid this:

• The analysis garbage collects transactions as soon as it can
guarantee they will never occur on a cycle. In the above graph,
transactions B and C are collected as soon as they terminate,
but transactions B′, B′′, C′, and C′′ are kept alive until A
terminates.

• The analysis dynamically detects when transaction allocation is
not even necessary. For example, since transaction B would be
collected as soon as it terminates, it is not allocated in the first
place, and transaction C′′ is merged with its predecessor C′.

Empirical Validation. Combining the above techniques with
careful data-representation choices yields a sound and complete
atomicity analysis whose performance is competitive with earlier
atomicity analyses, and which provides a significant increase in
accuracy. On a range of benchmarks, the Atomizer [11] detects
154 non-atomic methods but produces 84 false alarms. In contrast,
Velodrome (our prototype checker for Java) detects 133 non-atomic
methods (and misses the remaining 21 by not generalizing from the
observed traces), but produces zero false alarms. Thus, in the termi-
nology of information retrieval, Velodrome provides slightly less
recall but vastly increased precision — a trade-off that we believe
is quite appropriate for all but the most safety-critical applications.
In addition, Velodrome and the Atomizer are complementary

tools. A promising approach is to run both tools simultaneously,
correcting real Velodrome-reported errors as a top priority, and
investigating the additional Atomizer-reported warnings as a lower
priority task.
We also enhance coverage by extending our analysis to explore

interleavings that are more likely to be non-serializable. In particu-
lar, we use the Atomizer to recognize potential atomicity violations,
such as an unsynchronized read-modify-write sequence. Our tool
then temporarily blocks the thread performing those operations in
the hope that an interleaved write by a second thread will provide a
concrete witness to the violation. Preliminary experience with this
technique is quite promising. It enabled us to find several additional
atomicity violations in our benchmarks, and it substantially im-
proved Velodrome’s success rate at finding randomly-inserted syn-
chronization defects in several small programs.

Summary. This paper makes the following main contributions:

• We present the first dynamic analysis for atomicity that is both
sound and complete: the analysis identifies exactly those traces
that are not conflict-serializable.

• The analysis performs precise blame assignment, and can typ-
ically assign blame for each violation to particular instructions
in a particular atomic block.

• We show that completeness can be achieved with little addi-
tional overhead: the performance of our analysis is competitive
with earlier dynamic analyses.

• On a range of standard benchmarks, we showed that our anal-
ysis detects almost all (85%) non-atomic methods detected by
the Atomizer, while reducing the false alarm ratio from roughly
40% to 0%.

• We leverage the Atomizer’s dynamic analysis to heuristically
guide our checker to explore traces more likely to exhibit atom-
icity violations. This technique provides increased coverage
with no loss of completeness.

Outline. The following section formalizes the semantics of mul-
tithreaded programs. Section 3 describes an initial version of our
analysis, and Section 4 refines it to achieve better performance and



more precise blame assignment. Sections 5 and 6 describe and eval-
uate our implementation, respectively. Sections 7 and 8 conclude
with a discussion of related work and potential future work.

2. Atomicity in Multithreaded Programs
To provide a formal basis for our dynamic analysis, we first de-
fine the execution semantics of multithreaded programs in a style
similar to [11]. A program consists of a number of concurrently ex-
ecuting threads, each of which has an associated thread identifier
t ∈ Tid .2 Each thread has its own local store π containing thread-
local data, such as the program counter and call stack. In addition,
the threads communicate through a global store σ, which is shared
by all threads. The global store maps program variables x to val-
ues v. The global store also records the state of each lock variable
m ∈ Lock . If σ(m) = t, then the lock m is held by thread t; if
σ(m) = ⊥, then that lock is not held by any thread.
A state Σ = (σ, Π) of the multithreaded system consists of a

global store σ and a mapping Π from thread identifiers t to the
local store Π(t) of each thread. Execution starts in an initial state
Σ0 = (σ0, Π0).

Transitions. The behavior of each thread is captured via the tran-
sition relation T ⊆ Tid×LocalStore ×Operation ×LocalStore .
The relation T (t, π, a, π′) holds if the thread t can take a step from
a local store π to a new local store π′ by performing the operation
a ∈ Operation on the global store. The set of possible operations
that a thread t can perform on the global store include:

• rd(t, x, v) and wr(t, x, v), which read a value v from variable
x and write a value v to x, respectively.

• acq(t, m) and rel(t, m), which acquire and release a lockm.

• begin l (t) and end(t), which mark the beginning and end of an
atomic block. (The label l identifies a particular atomic block,
and is used for error reporting.)

In code examples, we often omit t and l when they are clear from
the context or irrelevant, and we use more familiar syntax, such as
x = v, for reads and writes. We use the function tid(a) to extract
the thread identifier from an operation.
The relation σ →a σ′ models the effect of an operation a on

the global store σ: see Figure 1. In these rules, the global store
σ[x := v] is identical to σ but maps the variable x to the value v.
The transition relation Σ →a Σ′ performs a single step of

computation. It chooses an operation a by thread t that is applicable
in the local storeΠ(t), performs that operation on the current global
store σ yielding a new global store σ′, and returns a new state
(σ′, Π[t := π′]) containing the new global and local stores σ′ and
π′.

Traces. A trace α is a sequence of operations that captures an
execution of a multithreaded program by describing the operations
performed by each thread and their ordering. The behavior of a
trace α = a1.a2. · · · .an is defined by the relation Σ0 →α Σn,
which holds if there exist intermediate states Σ1, . . . , Σn−1 such
that Σ0 →a1 Σ1 →a2 · · · →an Σn.
A transaction in a trace α is the sequence of operations executed

by a thread t starting with a begin l (t) operation and containing all
t operations up to and including a matching end(t) operation, or
up to the end of the trace, if there is no matching end(t) operation.
In addition, if an operation a by thread t does not occur within an
atomic block for t, then the operation a by itself is considered a
(unary) transaction. Thus, each transaction is non-empty.

2 Although dynamic thread creation is not explicitly supported by the se-
mantics, it can be modeled within the semantics in a straightforward way.

Figure 1: Semantics of Multithreaded Programs

Domains:
u, t ∈ Tid x ∈ Var v ∈ Value
m ∈ Lock π ∈ LocalStore

Π ∈ LocalStores = Tid → LocalStore
σ ∈ GlobalStore = (Var →Value) ∪ (Lock → (Tid ∪ {⊥}))
Σ ∈ State = GlobalStore × LocalStores

Operations:
a ∈ Operation ::= rd(t, x, v) | wr(t, x, v)

| acq(t,m) | rel(t, m)
| begin l (t) | end(t)

l ∈ Label

Effect of operations: σ →a σ′

[ACT READ]
σ(x) = v

σ →rd(t,x,v) σ

[ACT WRITE]

σ →wr(t,x,v) σ[x := v]

[ACT ACQUIRE]
σ(m) = ⊥

σ →acq(t,m) σ[m := t]

[ACT RELEASE]
σ(m) = t

σ →rel(t,m) σ[m := ⊥]

[ACT OTHER]
a ∈ {begin l (t), end(t)}

σ →a σ

State transition relation: Σ →a Σ′

[STD STEP]
t = tid(a) T (t, Π(t), a, π′) σ →a σ′

(σ, Π) →a (σ′, Π[t := π′])

Serializable Traces. A trace is serial if each transaction’s opera-
tions execute contiguously, without interleaved operations of other
threads. The notion of serializability is based on the idea of con-
flicting operations. Two operations in a trace conflict if:

1. they access (read or write) the same variable, and at least one of
the accesses is a write;

2. they operate on (acquire or release) the same lock; or

3. they are performed by the same thread.

If two operations do not conflict, they commute. Two traces are
equivalent if one can be obtained from the other by repeatedly
swapping adjacent commuting operations. Equivalent traces exhibit
equivalent behavior. A trace is serializable if it is equivalent to
some serial trace.

Examples. In the following trace, the read-modify-write se-
quence of Thread 1 is interleaved with a write by Thread 2. This
trace is clearly not serial; it is also not serializable, because the
write by Thread 2 conflicts with both the read and write by Thread
1 and cannot be commuted outside the atomic block.

Thread 1 Thread 2
begin

tmp = x

x = tmp + 1
end

x = 0



Atomicity violations such as this one can be caught by the At-
omizer [11] and other dynamic atomicity tools [44, 43], but these
tools are prone to false alarms. For example, the Atomizer uses
Eraser’s LockSet algorithm [36] to reason about lock-based syn-
chronization and cannot understand more complex synchronization
patterns. To illustrate this limitation, the following program uses a
volatile variable b to indicate whether thread 1 or thread 2 has ex-
clusive access to the shared variable x.

Thread 1 Thread 2
while (true) {

while (b != 1) {
skip;

}
begin
int tmp = x;
x = tmp + 1;
b = 2;

end
}

while (true) {
while (b != 2) {
skip;

}
begin
int tmp = x;
x = tmp + 1;
b = 1;

end
}

Even though this program yields only serializable traces, the At-
omizer will report false alarms because it cannot understand the
program’s synchronization discipline; other atomicity tools behave
in a similar fashion.

3. Dynamic Analysis for Serializability
We now describe our dynamic analysis for precisely identifying
non-serializable traces. Given a traceα, the happens-before relation
<α for α is the smallest transitively-closed relation on operations
such that if an operation a occurs before b in α, and a conflicts
with b, then a happens-before b.3 The transactional structure of
traces induces an equivalence relation on operations: a ∼α b if
a and b occur in the same transaction in α. Since all operations in a
transaction are intended to (conceptually) happen contiguously, we
combine these two relations into a (transitively-closed) extended
happens-before relation:

<∼α
def
= (<α ∪ ∼α)∗

We lift this extended happens-before relation from operations to
transactions, and so a transaction A happens-before transaction B
in α (written A �α B) if A �= B and there exists some operations
a of A and b of B such that a <∼α b. We then leverage existing
results in database theory [4] to show that α is serializable if and
only if the transactional happens-before order �α is acyclic.

Analysis Details. Our analysis is an online algorithm that main-
tains an analysis state φ; when the target program performs an op-
eration a, the analysis updates its state via the relation φ ⇒a φ′.
For clarity, we initially present a basic version of our analysis.

This initial analysis allocates a node in the happens-before graph
for each transaction in the observed trace. We let Node denote the
set of such nodes, andNode⊥ = Node∪{⊥}. The instrumentation
store φ = (C,L,U ,R,W,H) is a tuple of six components:

• C : Tid → Node⊥ identifies the current transaction node (if
any) for each thread;

• L : Tid → Node⊥ identifies the transaction that executed the
last operation (if any) of each thread;

• U : Lock → Node⊥ identifies the last transaction (if any) to
release or unlock each lock;

3 In theory, a particular operation a could occur multiple times in a trace. We
avoid this complication by assuming that each operation includes a unique
identifier, but, to avoid clutter, we do not include this unique identifier in
the concrete syntax of operations.

Figure 2: Instrumentation Relation: φ ⇒a φ

[INS ENTER]
C(t) = ⊥ n is fresh
H′ = H 
 {(L(t), n)} C′ = C[t := n]

(C,L,U ,R,W,H) ⇒beginl (t) (C′,L,U ,R,W,H′)

[INS EXIT]
n = C(t) n �= ⊥
C′ = C[t := ⊥] L′ = L[t := n]

(C,L,U ,R,W,H) ⇒end(t) (C′,L′,U ,R,W,H)

[INS ACQUIRE]
n = C(t) n �= ⊥ H′ = H 
 {(U(m), n)}
(C,L,U ,R,W,H) ⇒acq(t,m) (C,L,U ,R,W,H′)

[INS RELEASE]
n = C(t) n �= ⊥ U ′ = U [m := n]

(C,L,U ,R,W,H) ⇒rel(t,m) (C,L,U ′,R,W,H)

[INS READ]
n = C(t) n �= ⊥

R′ = R[(x, t) := n] H′ = H
 {(W(x), n)}
(C,L,U ,R,W,H) ⇒rd(t,x,v) (C,L,U ,R′,W,H′)

[INS WRITE]
n = C(t) n �= ⊥

W ′ = W[x := n]
H′ = H 
 ({(R(x, t′), n) | t′ ∈ Tid} ∪ {(W(x), n)})

(C,L,U ,R,W,H) ⇒wr(t,x,v) (C,L,U ,R,W ′H′)

[INS OUTSIDE]
C(t) = ⊥ l is a fresh label

a ∈ {acq(t,m), rel(t, m), rd(t, x, v),wr(t, x, v)}
φ ⇒beginl (t) φ1 φ1 ⇒a φ2 φ2 ⇒end(t) φ′

φ ⇒a φ′

• R : Var×Tid → Node⊥ identifies the last transaction of each
thread to read from each variable;

• W : Var → Node⊥ identifies the last transaction (if any) to
write to each variable; and

• H ⊆ Node × Node is the happens-before relation on trans-
actions. (More precisely, the transitive closure H∗ of H is the
happens-before relation, since, for efficiency, H is not transi-
tively closed.)

In the initial analysis state φ0, these components are all empty:

φ0 = (λt.⊥, λt.⊥, λm.⊥, λx, t.⊥, λx.⊥, ∅)
The relation φ ⇒a φ′ shown in Figure 2 updates the analysis

state appropriately for each operation a of the target program. The
first rule [INS ENTER] handles a begin l(t) operation, which starts
a new transaction by thread t. The rule checks that thread t is not
already in a transaction (i.e., C(t) = ⊥) and updates C to record that
thread t is inside a fresh transaction n. (We defer handling nested
atomic blocks to the following section.) This rule uses the operation
H 
 E to extend the happens-before graph with additional edges
E ⊆ Node⊥ ×Node⊥, filtering out self-edges and edges that start
or end on ⊥:

H 
 E
def
= H ∪ {(n1, n2) ∈ E | n1 �= n2, n1 �= ⊥, n2 �= ⊥}



Thus, in [INS ENTER], if L(t) = ⊥, then the happens-before graph
is unchanged. Otherwise it is extended with an edge from the
last transaction of thread t to the current transaction of t. The
rule [INS EXIT] handles end(t) simply by updating C(t) and L(t)
appropriately. The rule [INS ACQUIRE] for a lock acquire acq(t, m)
updates the happens-before graph with an edge from the last release
U(m) of that lock. Conversely, the rule [INS RELEASE] for a lock
release rel(t, m) updates U(m) with the current transaction n.
The rule [INS READ] for a read operation rd(t, x, v) records

(1) that the last read of the variable x by thread t occurs in the
current transaction n, and (2) that the last write to x happens before
the current transaction (since reads and writes conflict). The rule
[INS WRITE] for a write operation wr(t, x, v) records that the last
write to x is by the current transaction n, and that all previous
accesses (reads or writes) to x happen before n.
For operations outside the dynamic scope of any atomic block

(and thus outside any existing transaction), the rule [INS OUTSIDE]
enters a new transaction, performs that operation, and then exits
that transaction. This rule is simple but inefficient; optimized vari-
ants are described in the following section.
We extend the relation φ ⇒a φ′ from operations to traces: the

relation φ0 ⇒α φn holds for a trace α = a1. · · · .an if there exist
intermediate analysis states φ1, . . . , φn−1 such that:

φ0 ⇒a1 φ1 ⇒a2 · · · ⇒an−1 φn−1 ⇒an φn

Correctness. The set Error denotes analysis states that contain a
non-trivial cycle in the happens-before relation:

Error
def
= {(C,L,U ,R,W,H) | H∗ contains a non-trivial cycle}

Our central correctness result is that the dynamic analysis is both
sound and complete: it identifies exactly the non-serializable traces.
That is, if φ0 ⇒α φ then

φ ∈ Error if and only if α is not serializable.

This result follows from the following inductive invariant describ-
ing how particular properties of the trace α are represented in
the analysis state φ. This correspondence relies on a mapping
f : α → Node from each operation a in α to a corresponding
node in the happens-before graph representing the transaction in
which a appears.

DEFINITION 1. Given φ = (C,L,U ,R,W,H), the invariant
Inv(α, φ, f) is the conjunction of the following conditions, for
all t ∈ Tid , x ∈ Var , m ∈ Lock , and a, b ∈ α:

1. If t is in a transaction at the end of α and a is the last operation
by t in α, then C(t) = f(a).

2. If t is not in a transaction at the end of α, then
• C(t) = ⊥.
• If the last operation by t in α is a, then L(t) = f(a);
if there is no such operation, then L(t) = ⊥.

3. If the last write to x in α is a, thenW(x) = f(a);
if there is no such write, thenW(x) = ⊥.

4. If the last read of x by t in α is a, thenR(x, t) = f(a);
if there is no such read, thenR(x, t) = ⊥.

5. If the last release of m in α is a, then U(m) = f(a);
if there is no such release, then U(m) = ⊥.

6. If f(a) = f(b) then a ∼α b.
7. If a <α b then (f(a), f(b)) ∈ H∗.
8. If (n1, n2) ∈ H then there exists a1, a2 ∈ α such that

f(a1) = n1, f(a2) = n2 and a1 <α a2.

THEOREM 1. Given φ0 ⇒α φ,

φ ∈ Error ⇔ α is not serializable

PROOF SKETCH: The invariant ∃f. Inv(α, φ, f) holds via a proof
by induction on the length of the trace α. Hence:

φ ∈ Error
⇔ H∗ contains a non-trivial cycle
⇔ <∼α contains a cycle with operations from different transactions
⇔ �α contains a cycle
⇔ α is not serializable

where the last step follows from a standard argument [4].

4. Extensions and Optimizations
The analysis presented so far is correct but requires substantial
improvement in order to scale to realistic programs.

4.1 Garbage Collection

A trace may include many millions of transactions, making stor-
age of the entire happens-before graph on transactions infeasible.
Hence, a key challenge is garbage collecting old, redundant nodes.
References to a particular node n can be stored in the vari-

ous components of the analysis state, with the result that an out-
going edge from n can be added at any time (for example, via
[INS ACQUIRE], etc). A careful reading of the instrumentation rules,
however, reveals that incoming edges to a node can be added only
by the thread executing that transaction. Thus, if a transaction n has
already finished (i.e., n �∈ Range(C)), additional incoming edges
will never be added to n. Hence, a finished node n with no incom-
ing edges (i.e., n �∈ Range(H)) will never occur on a cycle.
In this situation, we can safely garbage collect n and remove it

from the happens-before graph. There still may be references to n
from the analysis state components L, U ,W , and R, but these are
weak references and should be reset to ⊥ when n is collected. This
garbage collection process is formalized via the following rule,
which can be applied at any time during the analysis:

n �∈ Range(C) n �∈ Range(H)
L′ = L \ {n} U ′ = U \ {n}

R′ = R \ {n} W ′ = W \ {n} H′ = H \ {n}
(C,L,U ,R,W,H) ⇒gc (C,L′,U ′,R′,W ′,H′)

The rule uses the following notation to update maps and relations:

W \ {n} def
= λx. ifW(x) = n then ⊥ elseW(x)

H \ {n} def
= {(n1, n2) ∈ H | n1 �= n, n2 �= n}

In practice, we trigger garbage collection by including in each
node a count of the number of references to that node from within
H or C. We maintain the invariant that the happens-before graph is
acyclic, since any attempt to add a cycle-generating edge indicates
an error that is immediately reported. Thus, the absence of cycles
means that reference counting immediately collects all nodes as
soon as they become garbage.
The experimental results of Section 6 show that garbage collec-

tion is extremely effective; we typically have at most a few dozen
live nodes at any time, even for sizeable benchmarks.

4.2 Non-Transactional Operations

The rule [INS OUTSIDE] described above is inefficient, in that it
allocates nodes at an extremely fast rate (one node per non-
transactional heap access) and leads to long sequences of unary
transactions.
In many situations, this allocation is unnecessary. In particular,

for an operation rd(t, x, v) outside a transaction, the [INS OUTSIDE]
rule creates a new node n with predecessors L(t) and W(x).
Suppose, however, that L(t) and W(x) are already ⊥, perhaps
because they have already been collected. In this case, n would be



Figure 3: Optimized Rules for Non-Transactional Operations

[INS OUTSIDE ACQUIRE]
C(t) = ⊥

〈H′, n〉 = merge(H, {L(t),U(m)})
L′ = L[t := n]

(C,L,U ,R,W,H) ⇒acq(t,m) (C,L′,U ,R,W,H′)

[INS OUTSIDE RELEASE]
C(t) = ⊥

U ′ = U [m := L(t)]

(C,L,U ,R,W,H) ⇒rel(t,m) (C,L,U ′,R,W,H)

[INS OUTSIDE READ]
C(t) = ⊥

〈H′, n〉 = merge(H, {L(t),W(x)})
R′ = R[t := n] L′ = L[t := n]

(C,L,U ,R,W,H) ⇒rd(t,x,v) (C,L′,U ,R′,W,H′)

[INS OUTSIDE WRITE]
C(t) = ⊥

S = {R(x, t′) | t′ ∈ Tid} ∪ {W(x),L(t)}
〈H′, n〉 = merge(H, S)

W ′ = W[t := n] L′ = L[t := n]

(C,L,U ,R,W,H) ⇒wr(t,x,v) (C,L′,U ,R′,W,H′)

merge : ((Node × Node) × 2Node⊥) → ((Node × Node) × Node⊥)

merge(H, {n1, . . . , nk}) =

8<
:

〈H, ⊥〉 if ni = ⊥ ∀i ∈ 1..k
〈H, nj〉 if ∃j such that nj �= ⊥ and ∀i ∈ 1..k, ni = ⊥ or (ni, nj) ∈ H∗

〈H 
 {(ni, n) | i ∈ 1..k}, n〉 otherwise, where n is fresh

immediately collected once the operation finishes, and so we avoid
allocating it in the first place, via the rule:

C(t) = ⊥ L(t) = ⊥ W(x) = ⊥
R′ = R[(x, t) := ⊥]

(C,L,U ,R,W,H) ⇒rd(t,x,v) (C,L,U ,R′,W,H)

Alternatively, ifW(x) is ⊥ but L(t) is not, then L(t) is the unique
predecessor of n, and n will never have additional incoming edges.
Hence, the nodes L(t) and n can be merged without introducing
additional cycles in the happens-before graph, or in later versions
of that graph. This reasoning is summarized by the following rule:

C(t) = ⊥ L(t) �= ⊥ W(x) = ⊥
R′ = R[(x, t) := L(t)]

(C,L,U ,R,W,H) ⇒rd(t,x,v) (C,L,U ,R′,W,H)

Even if neither L(t) norW(x) are ⊥, we we can still re-use L(x)
if there is a happens-before path fromW(x) to L(x):

C(t) = ⊥ L(t) �= ⊥ W(x) �= ⊥
(L(t),W(x)) ∈ H∗ R′ = R[(x, t) := L(t)]

(C,L,U ,R,W,H) ⇒rd(t,x,v) (C,L,U ,R′,W,H)

To avoid a multitude of such rules, we introduce the auxil-
iary function merge to identify various situations where merging
can safely be performed: see Figure 3. This function takes as in-
put a happens-before relation and a collection of argument nodes
n1, . . . , nk, and it returns a (possibly extended) happens-before re-
lation, and a (possibly new) node that happens-after each of the
argument nodes. The figure also includes analysis rules that lever-
age merge to handle non-transactional operations efficiently along
the lines outlined above.

4.3 Blame Assignment

When the analysis determines that a particular trace α is not seri-
alizable, it can produce a cycle of transactions whose combination
is not serializable. We now investigate how to assign blame to a
particular transaction in that cycle.
A transaction A is self-serializable in trace α if α has an equiv-

alent trace α′ in which A executes serially. (Other transactions in
α′ need not execute serially, and so the notions of self-serializable
transactions and serializable traces are distinct.) Once our algo-
rithm identifies a non-serializable trace α, we would like to assign
blame to a particular transaction within that trace that is not self-
serializable. For the cycle A � B′

� C′
� A described in the in-

troduction, we should assign blame to transactionA, since all other
transactions in the cycle are self-serializable.
To support blame assignment, we extend the happens-before

graph to identify the particular operations inducing each edge be-
tween transactions. Specifically, we store with each edge the times-
tamp of the operations at its head and tail. We assign blame using
these timestamps as follows. First, note that when an operation d
performed by thread t during some transaction D completes the
first cycle in the happens-before graph, the trace prior to d is seri-
alizable. Thus transactions other than D are still serializable, and
we can only potentially blame D. From the transactional happens-
before cycle, we know thatD�αE�αD, whereE is some transac-
tion of another thread. Hence, there exists some earlier operations
d′ ∈ D and e ∈ E such that d′ <∼α e <∼α d. The key ques-
tion is whether d′ <α e <α d; if so, then transaction D is not
self-serializable and should be blamed.
Let n be the node forD. For each nodem �= n on the happens-

before cycle, if the timestamp on the incoming edge to m is less
than or equal to the timestamp on the outgoing edge from m, then
the cycle is said to be increasing. In this situation, the happens-
before relation on transactions reflects the underlying happens-
before relation on operations, and so there do exist some earlier
operations d′ ∈ D and e ∈ E such that d′ <α e <α d. Hence the
transactionD, which contains both d′ and d, is not self-serializable.
Somewhat surprisingly, it is not always possible to blame a sin-

gle transaction, since all transactions in a non-serializable trace
may still be self-serializable. To illustrate this point, consider the
following two traces. The first trace executesD′ serially, but trans-
action E′ is also self-serializable (as illustrated by the second,
equivalent trace). Thus, both transactions are self-serializable, even
though together they constitute a non-serializable trace.

0: begin
1:  y = 0

2:  t = x
3: end

0: begin
1:  x = 0
2:  u = y
3: end

Thread 2Thread 1

0: begin
1:  y = 0
2:  t = x
3: end

0: begin
1:  x = 0

2:  u = y
3: end

Thread 2Thread 1

D'

D'

E'

E'

Despite this theoretical difficulty, in practice our algorithm is gen-
erally successful at assigning blame for each non-serializable trace
to a particular transaction that is not self-serializable.



Nested Atomic Blocks. We now extend our system to nested
atomic blocks. Only the outermost atomic block is considered to
start a new transaction; nested blocks execute within that transac-
tion but can still be refuted by our blame assignment algorithm.
To support nesting, we extend C(t) to denote a stack, where

the entries record both the identifying label and the timestamp of
the first operation in each atomic block in the dynamic scope. For
example, right before Thread 1 executes step 4 below, C(1) would
contain (p, 0).(q, 1).(r, 3):

0: begin
1: x = 2
2: end

0: beginp

1:  beginq
2:   t = x

3:   beginr
4:    x = t+1
5:   end
6:  end
7: end

Thread 2Thread 1
A

B

Once Thread 1 executes step 4, our algorithm detects an in-
creasing cycle from A and will refute any atomic block in A
that contains both the root and target operations (“2: t = x” and
“4: x = t+1”, respectively) of that cycle. Thus, the algorithm will
refute the atomic blocks p and q; the block labeled r is not refuted,
and is serializable (indeed, serial in this trace).

Blame Assignment Details. To implement blame assignment, we
introduce the notion of a Step , which is a pair of a transaction node
and a timestamp. We extend the component U of the analysis state
so that U(m) is now a Step that records both the transaction and
the timestamp of the last release operation on m; the other state
components are extended in a similar fashion:

φ : (C,L,U ,R,W,H)
C : Tid → (Label × Step)∗

L : Tid → Step⊥
U : Lock → Step⊥
R : Var × Tid → Step⊥
W : Var → Step⊥
H ⊆ Step × Step

Step = Node × Nat
φ0 = (λt.ε, λt.⊥, λm.⊥, λx, t.⊥, λx.⊥, ∅)

The revised analysis is defined by the rules in Figure 4. The rule
[INS2 ENTER] for begin l(t) handles the case where a new transac-
tion is required because the stack C(t) is empty. It allocates a fresh
node n, creates a step that pairs n with the initial timestamp 0 of
the begin l (t) operation, and records that thread t is now executing
an atomic block labeled l, where s is the first step of that block.
We disallow multiple edges with different timestamps between

the same nodes in the happens-before graph, for space reasons.
That is, if ((n, i), (m, j)) and ((n, i′), (m, j′)) are both in H then
i = i′ and j = j′ . This invariant bounds the size ofH by |Node |2.
To preserve this invariant, rule [INS2 ENTER] uses the following
operation to extend the happens-before relation H with additional
edges G ⊆ (Step⊥ × Step⊥):

H 
 G = {((n, i), (m, j)) ∈ H | ¬∃i′, j′. ((n, i′), (m, j′)) ∈ G}
∪ {((n, i), (m, j)) ∈ G | n �= m}

If thread t is already inside a transaction when it executes
begin l (t), rule [INS2 RE-ENTER] extends the stack C(t) with an
additional entry for the new atomic block. These rules use the
notation L(t) + 1 to increment the timestamp within a step; if
L(t) = (n, k), then L(t) + 1 = (n, k + 1). The rule [INS2 EXIT]

exits an atomic block by popping the last entry of the stack and, as
in the other rules, incrementing the timestamp in L(t).
The four [INS2 OUTSIDE . . . ] rules are variants of the earlier

[INS OUTSIDE . . . ] rules that use the revised merge function shown
in Figure 4, which operates on steps. These rules mostly ignore
timestamps, since they operate on unary transactions that are by
definition serializable. In particular, the merge function ignores
timestamps when searching for a representative step sj that (non-
strictly) happens after steps s1, ..., sk.
The garbage collection rule [INS2 GC] picks a node n such that

no step in S = {n}×Nat occurs on any transaction stack or in the
range of the happens-before relationH; all references to steps in S
are then removed from the analysis store and replaced with⊥.

5. Velodrome Prototype
We have developed a prototype implementation, called Velodrome,
of our atomicity analysis. This tool takes as input a compiled Java
program and a specification of which methods in that program
should be atomic, and it reports an error whenever it observes a
non-serializable trace of an atomic method. For example, on the
Set example from the introduction, Velodrome reports the fol-
lowing error graph (generated with dot [16]) when two threads
concurrently add elements to the same set object:

Warning: Set.add is not atomic:

Thread 1: in #3.Set.add

 #2.Vector.contains

 #2.Vector.add

Thread 2: in #3.Set.add
 
 #2.Vector.add

acq(#2)

acq(#2)

In this error message, #3 denotes a particular Set object and #2 de-
notes the set’s underlying Vector. The boxes indicate the transac-
tions whose combination is not serializable. Each happens-before
edge is labeled with the operation that generated it, and the last
edge in a cycle is dashed. The outlined box indicates where Velo-
drome has placed blame. These graphs are extremely useful for
understanding error messages, and Velodrome records additional
diagnostic information to construct them.

Velodrome is a component of RoadRunner, a general framework
for implementing dynamic concurrent program analyses. Road-
Runner is written entirely in Java and can run on any standard
JVM. RoadRunner instruments class files at load time using the
BCEL Bytecode Engineering Library [3]. The instrumented code
generates an event stream, with one event for each lock acquire or
release, memory read or write, and atomic method entry or exit per-
formed by the target program. RoadRunner passes this event stream
to the analysis back-end.
Working exclusively at the bytecode level offers several advan-

tages. Specifically, the tool can check any Java program, regardless
of whether the full source code is available, and only needs to rea-
son about the relatively simple bytecode language. However, this
does make it difficult to support source-level annotations, which are
useful for specifying which methods should be atomic, specifying
library behaviors, and so on. We currently support such configura-
tion through command-line options.
Re-entrant (and hence redundant) lock acquires and releases are

filtered out by RoadRunner, and so do not complicate the back-
end analysis. RoadRunner is typically configured to also filter out
operations on thread-local data, which dramatically improves the
performance of the analyses, although this optimization is slightly
unsound [36]. One limitation of our current prototype is that it
performs the analysis only on objects and fields, and not on arrays.
Supporting arrays would be possible, but would add additional
complexity.



Figure 4: Instrumentation Relation with Blame Assignment

[INS2 ENTER]
C(t) = ε s = (n, 0) where n is fresh
C′ = C[t := (l, s)] L′ = L[t := s]

H′ = H 
 {(L(t), s)}
(C,L,U ,R,W,H) ⇒beginl (t) (C′,L′,U ,R,W,H′)

[INS2 RE-ENTER]
C(t) = β �= ε s = L(t) + 1

C′ = C[t := β.(l, s)] L′ = L[t := s]
H′ = H
 {(L(t), s)}

(C,L,U ,R,W,H) ⇒beginl (t) (C′,L′,U ,R,W,H′)

[INS2 EXIT]
C(t) = β.(s′, l) s = L(t) + 1
C′ = C[t := β] L′ = L[t := s]

(C,L,U ,R,W,H) ⇒end(t) (C′,L′,U ,R,W,H)

[INS2 GC]
S = {n} × Nat ∀t. (C(t) �= ε ⇒ L(t) �∈ S)

H ∩ (Step × S) = ∅ H′ = H \ S
L′ = L \ S R′ = R \ S W ′ = W \ S U ′ = U \ S

(C,L,U ,R,W,H) ⇒gc (C,L′,U ′,R′,W ′,H′)

[INS2 INSIDE ACQUIRE]
C(t) �= ε s = L(t) + 1
L′ = L[t := s] H′ = H 
 {(U(m), s)}

(C,L,U ,R,W,H) ⇒acq(t,m) (C,L′,U ,R,W,H′)

[INS2 INSIDE RELEASE]
C(t) �= ε s = L(t) + 1
L′ = L[t := s] U ′ = U [m := s]

(C,L,U ,R,W,H) ⇒rel(t,m) (C,L′,U ′,R,W,H)

[INS2 INSIDE READ]
C(t) �= ε s = L(t) + 1

L′ = L[t := s] R′ = R[(x, t) := s]
H′ = H 
 {(W(x), s)}

(C,L,U ,R,W,H) ⇒rd(t,x,v) (C,L′,U ,R′,W,H′)

[INS2 INSIDE WRITE]
C(t) �= ε s = L(t) + 1
L′ = L[t := s] W ′ = W[x := s]

H′ = H 
 ({(R(x, t′), s) | t′ ∈ Tid} ∪ {(W(x), s)})
(C,L,U ,R,W,H) ⇒wr(t,x,v) (C,L′,U ,R,W ′,H′)

[INS2 OUTSIDE ACQUIRE]
C(t) = ε 〈H′, s〉 = merge(H, {L(t),U(m)})

L′ = L[t := s]

(C,L,U ,R,W,H) ⇒acq(t,m) (C,L′,U ,R,W,H′)

[INS2 OUTSIDE RELEASE]
C(t) = ε s = L(t) + 1
L′ = L[t := s] U ′ = U [m := s]

(C,L,U ,R,W,H) ⇒rel(t,m) (C,L′,U ′,R,W,H)

[INS2 OUTSIDE READ]
C(t) = ε

〈H′, s〉 = merge(H, {L(t),W(x)})
R′ = R[t := s] L′ = L[t := s]

(C,L,U ,R,W,H) ⇒rd(t,x,v) (C,L′,U ,R′,W,H′)

[INS2 OUTSIDE WRITE]
C(t) = ε

S = {R(x, t′) | t′ ∈ Tid} ∪ {W(x),L(t)}
〈H′, s〉 = merge(H, S)

W ′ = W[t := s] L′ = L[t := s]

(C,L,U ,R,W,H) ⇒wr(t,x,v) (C,L′,U ,R′,W,H′)

merge : ((Step × Step) × 2Step⊥) → ((Step × Step) × Step⊥)

merge(H, {s1, . . . , sk}) =

8><
>:

〈H, ⊥〉 if si = ⊥ ∀i ∈ 1..k
〈H, sj〉 if ∃j such that sj �= ⊥ and

∀i ∈ 1..k, si = ⊥ or si happens-before sj inH
〈H 
 {(si, s) | i ∈ 1..k}, s〉 otherwise, where s = (n, 0) and n is fresh

RoadRunner includes several race detection algorithms (includ-
ing Eraser [36] and a complete happens-before detector), which
can be run concurrently with Velodrome if race conditions are a
concern in the target program. As mentioned in the introduction,
Velodrome and the Atomizer can also be run concurrently.

Analysis Store. Efficiently implementing the analysis of Figure 4
requires a number of careful data representation choices, particu-
larly for handling weak references to nodes that are internally col-
lected and recycled by our analysis. Each step is represented as a
64-bit integer whose top 16 bits identify a particular Node object,
and whose lower 48 bits represent a timestamp within that Node.
When a Node n is collected, we also record the last timestamp k
used for that Node. If a step (n, k′) is later dereferenced, we check
whether k′ ≤ k; if so, then that step is interpreted as being⊥, since
the conceptual node it pointed to has been collected, even though
the corresponding Node object has been recycled to represent a new
conceptual node.

For each node, we maintain a set of ancestors of that node.
This ancestor set allows us to immediately detect when a cycle is
about to be added to the graph, which yields several benefits: (1)
It supports more precise error messages, which could include, for
example, the stack trace of the current thread. (2) It enables us to
avoid adding that edge and thus maintain an acyclic graph, which
facilitates reference-counting garbage collection. (3) It supports an
efficient implementation of themerge function of Figure 4.

Adversarial Scheduling. As mentioned in the introduction, our
system can guide the scheduler to generate traces likely to exhibit
atomicity violations. In particular, we can configure Velodrome
to concurrently perform the Atomizer analysis and temporarily
suspend any thread that is about to perform an operation leading to
a potential atomicity violation. This delay, which we currently set to
100 milliseconds, increases the probability that other threads will
perform conflicting operations and yield a non-serializable trace
that is then caught by Velodrome. We are exploring a number of
other scheduling policies, such as pausing writes but not reads,



Base Instrumented Time Velodrome Transactions
Program Size Time (slowdown) Without Merge With Merge

(lines) (sec.) Empty Eraser Atomizer Velodrome Allocated Max. Alive Allocated Max. Alive
elevator 520 5.64 1.1 1.1 1.1 1.1 174,000 20 170,000 13
hedc 6,400 0.21 6.2 6.0 5.9 6.3 79 37 58 4
tsp 700 0.46 30.9 50.9 60.2 71.7 >1,000,000 8 12,000 1
sor 690 0.34 2.3 2.3 2.4 2.9 2,000 2 2 2
jbb 36,000 9.84 2.9 3.2 3.4 3.1 21,000 9 14,000 13
mtrt 11,000 0.85 9.3 14.3 22.4 18.3 645,000 5 645,000 5
moldyn 1,400 0.77 3.8 4.0 4.1 4.5 5 4 5 4
montecarlo 3,600 1.70 1.6 1.7 1.7 1.7 410,000 4 300,000 4
raytracer 18,000 2.00 4.5 6.7 9.4 9.2 128 8 23 8
colt 29,000 16.40 1.2 1.2 1.2 1.2 113 11 58 19
philo 84 2.71 1.0 1.0 1.2 1.2 34 5 34 5
raja 10,000 0.55 4.3 4.4 4.5 4.5 60 1 60 1
multiset 300 0.10 4.0 4.4 4.7 10.0 218,000 8 8 8
webl 22,300 0.52 8.6 8.9 9.3 21.0 470,000 4 395,000 4
jigsaw 91,100 8.2 1.1 1.1 1.1 1.1 123,000 99 36,600 17

Table 1: Benchmark sizes and running times, analysis slowdowns, and happens-before graph statistics.

allowing some threads to never pause, and so on. Similar techniques
have proven quite effective in other contexts [20].

6. Evaluation
Benchmarks This section summarizes our experience applying
Velodrome to several benchmark programs: elevator, a discrete
event simulator for elevators [41]; hedc, a tool to access astro-
physics data from Web sources [41]; tsp, a Traveling Salesman
Problem solver [41]; sor, a scientific computing program [41];
mtrt, a multithreaded ray-tracing program from the SPEC JVM98
benchmark suite [39]; specJBB, the SPEC JBB2000 business ob-
ject simulator [39]; moldyn, montecarlo, and raytracer from
the Java Grande benchmark suite [24]; the colt scientific com-
puting library [5]; the raja ray tracer [15]; and multiset, a ba-
sic multiset implementation, philo, a dining philosophers simu-
lation [7]; webl, a scripting language interpreter for processing
web pages, configured to execute a simple web crawler [25]; and
jigsaw, an open source web server [45] configured to serve a fixed
number of pages to a crawler.
We performed all experiments on an Apple Mac Pro with a

quad-core 3GHz Pentium Xeon processor and 2GB of memory,
using OS X 10.4 and Sun’s Java HotSpot Client VM, version 1.5.0.
All classes loaded by the benchmark programs were instrumented,
except those from the standard Java libraries.
Table 1 presents the size and uninstrumented running time of

each program, as well as the slowdown of each program when in-
strumented and analyzed by four back-end analyses: Empty (which
does no work and simply measures the instrumentation overhead),
Eraser [36], Atomizer [11], and Velodrome (using the optimized
semantics of Figure 4).
To make the performance experiments realistic, we used Velo-

drome to identify non-atomic methods and configured the Atomizer
and Velodrome to only check the remaining methods for atomicity.
This configuration mimics using these tools in contexts where most
or all methods satisfy their atomicity specification. This configura-
tion actually increases the overhead for Velodrome when compared
to checking allmethods for atomicity, because program traces con-
tain many small transactions rather than a few monolithic ones.
Overall, the performance of Velodrome is quite promising, and

mostly competitive with the less precise Eraser and Atomizer al-
gorithms. (It should be noted that elevator, hedc, philo, webl,
and jigsaw are not compute-bound, but the remaining benchmarks
are and experienced an average slowdown of 9.3 for Eraser, 10.4
for Atomizer, and 12.7 for Velodrome.) We believe the substantial

slowdown for tsp is due to the instrumented code preventing the
virtual machine’s adaptive compiler from performing certain opti-
mizations.
The last four columns of Table 1 highlight the impact of node

merging and garbage collection from Section 4. The columns la-
beled “Allocated” and “Max. Alive” under the heading “Without
Merge” show the total number of graph nodes allocated and the
maximum number that are active at any time during execution
when using the naı̈ve [INS OUTSIDE] rule. The columns under “With
Merge” show the same measurements for the final, optimized se-
mantics of Figure 4. Two important observations are worth noting:
(1) Garbage collection is essential and extremely effective, reduc-
ing the number of live nodes by up to four orders of magnitude. (2)
Merging reduces the number of node allocations by up to several
orders of magnitude and has a dramatic impact on running times.
Table 2 presents the number of methods for which Atomizer

generated warnings, under the assumption that all methods are
atomic. For these measurements, we counted the number of distinct
warnings over a series of five runs. We classified each Atomizer
warning either as actually corresponding to a non-atomic method
(that is, a method that is not serializable in some trace) or as a false
alarm. The non-atomic methods include several errors reported in
earlier work [11, 32], as well as methods that were not intended to
be atomic (such as Thread run() methods and similar routines).
The false alarms were due to imprecision in the Atomizer’s under-
lying race condition and reduction analyses and its inability to rea-
son about non-lock-based synchronization. That table also shows
the number of non-atomic methods found by Velodrome during the
five runs, as well as how many non-atomic methods reported by
the Atomizer were missed by Velodrome. For both tools, the large
majority of errors were reported on the first of the five runs.
Overall, these results indicate that Velodrome is quite effec-

tive at identifying non-atomic methods. As expected, Velodrome’s
completeness (and hence lack of generalization) did occasionally
cause it to require more runs to find some errors, and it did miss
a small number of non-atomic methods in some programs because
the execution of these methods happened to be serializable in the
observed traces. In jigsaw, 6 of the missed warnings were due
to a single non-atomic method that Velodrome mischaracterized.
On most benchmarks, however, Velodrome did identify most or all
non-atomic methods identified by the Atomizer.
Moreover, Velodrome did not report any of the large number of

false alarms generated by the Atomizer. In particular, it avoided re-
porting many spurious warnings on jbb and mtrt caused by impre-
cise race analysis, fork-join synchronization, and other idioms



Warnings
Atomizer Velodrome

Program Non- False Non- False
Serial Alarms Serial Alarms Missed

elevator 5 1 5 0 0
hedc 6 2 6 0 0
tsp 8 0 8 0 0
sor 3 0 3 0 0
jbb 5 42 5 0 0
mtrt 2 27 2 0 0
moldyn 4 0 4 0 0
montecarlo 6 0 6 0 0
raytracer 2 3 1 0 1
colt 27 2 20 0 7
philo 2 0 2 0 0
raja 0 0 0 0 0
multiset 5 0 5 0 0
webl 24 2 22 0 2
jigsaw 55 5 44 0 11
Total 154 84 133 0 21

Table 2: Warnings produced by the Atomizer and Velodrome,
under the assumption that all methods should be atomic.

not understood by the Atomizer. The mtrt code also makes heavy
use of the standard Java libraries, which are not instrumented. As
such, Atomizer cannot reason about synchronization performed in-
side those libraries and generates many warnings as a result. Velo-
drome does not suffer from this limitation: if Velodrome observes
a subsequence α′ of the actual program trace α, then if α′ is not
serializable it follows that α is also not serializable. Thus, uninstru-
mented libraries do not cause Velodrome to report false alarms.
Interestingly, the number of warnings produced was fairly uni-

form when these experiments were repeated using only a single
core, despite Velodrome being more sensitive to scheduling than
other tools. This may not always be the case but additional experi-
mentation on large programs is needed to fully quantify the impact
of the number of cores on Velodrome’s analysis. Also, Velodrome’s
blame assignment algorithm is quite effective, and assigned blame
to a specific method for over 80% of the warnings.
In summary, Velodrome dramatically reduces the false alarm

rate in comparison to the Atomizer. Roughly half of the Atomizer
warnings are false alarms, but Velodrome produces none, while still
detecting almost all (85%) of the non-atomic methods.
Using the Atomizer to adjust the scheduler, as described in the

previous section, improved Velodrome’s ability to find defects dur-
ing several small experiments. Velodrome found the second non-
serial method in raytracer, as well as one additional non-serial
method in colt and several more in jigsaw. To further study
this technique, we injected atomicity defects into two programs,
elevator and colt, by systematically removing each synchro-
nized statement that induced contention between threads one at a
time and then running our analysis on each corrupted program.
Without scheduler adjustments, a single run by Velodrome found
the inserted defect approximately 30% of the time. With scheduler
adjustments, the success rate increased to approximately 70%.

7. Related Work
A variety of tools have been developed to check for atomicity
violations, both statically and dynamically. The Atomizer [11] uses
Lipton’s theory of reduction [27] to check whether steps of each
transaction conform to a pattern guaranteed to be serializable.
Wang and Stoller developed an alternative block-based ap-

proach to verifying atomicity. This approach is more precise than
reduction-based approaches, but it is significantly slower for some

programs. A detailed experimental comparison of the two ap-
proaches is presented in [44]. Wang and Stoller also developed
more precise commit-node algorithms [43]. These algorithms fo-
cus on both conflict-atomicity (referred to simply as atomicity in
this paper) and view-atomicity. By design, these algorithms detect
serializability violations that do not occur on the current interleav-
ing but which could occur on other interleavings. Of course, those
other interleavings may not be feasible under the program’s seman-
tics, so these algorithms may yield false alarms.
In other work, Xu, Bodik, and Hill [46] developed a precise

dynamic analysis for enforcing Strict 2-Phase Locking [9], a suffi-
cient but not necessary condition for ensuring serializability. Hence
violations, while possibly worthy of investigation, do not necessar-
ily imply that the observed trace is not serializable. An alternative
approach for verifying atomicity using model-checking has been
explored by Hatcliff et al. [19]. Their results suggest that checking
atomicity with model-checking is feasible for unit-testing, where
the reachable state space is relatively small.
Other work explores static analyses, including approaches to

statically compute and look for cycles in the happens-before graph
[10]. Type systems [14, 2, 12, 35, 13, 42] have also been inves-
tigated. Compared to dynamic techniques, static systems provide
stronger soundness guarantees and detect errors earlier in the devel-
opment cycle, but many of them require more effort from the pro-
grammer or are limited in precision and scalability. To date, none
can yet handle all synchronization disciplines precisely.
Hoare [22] and Lomet [29] first proposed the use of atomic

blocks for synchronization, and the Argus [28] and Avalon [8]
projects developed language support for implementing atomic ob-
jects. More recent studies have focused on lightweight transac-
tions [38, 18, 23] and automatic generation of synchronization code
from high-level specifications [6, 31, 40, 21]. Much of this work is
orthogonal to ours, and while these approaches offer a promising
alternative concurrency control, we believe that a combination of
the two approaches will be the most effective programming model
for the foreseeable future.

8. Conclusions
Programmer support for building reliable multithreaded programs
will only continue to grow in importance. Despite the successes of
previous race condition and atomicity checkers, the need to iden-
tify false alarms places a large burden on the programmer. We have
presented a sound and complete atomicity checker that finds al-
most all of the atomicity violations found by less precise tools,
and which guarantees each warning represents a real violation of
conflict-serializability. Our tool occasionally misses a warning that
would be produced by other tools because it does not generalize the
observed trace to reason about behavior under different schedules.
To close this coverage gap, we are exploring ways to guide execu-
tion toward traces most likely to contain real atomicity errors.
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