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ABSTRACT
Software development and maintenance are costly endeav-
ors. The cost can be reduced if more software defects are
detected earlier in the development cycle. This paper in-
troduces the Extended Static Checker for Java (ESC/Java),
an experimental compile-time program checker that finds
common programming errors. The checker is powered by
verification-condition generation and automatic theorem-
proving techniques. It provides programmers with a sim-
ple annotation language with which programmer design de-
cisions can be expressed formally. ESC/Java examines the
annotated software and warns of inconsistencies between the
design decisions recorded in the annotations and the actual
code, and also warns of potential runtime errors in the code.
This paper gives an overview of the checker architecture and
annotation language and describes our experience applying
the checker to tens of thousands of lines of Java programs.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.4 [Software Engineering]: Program Verification

General Terms
Design, Documentation, Verification

Keywords
Compile-time program checking

1. INTRODUCTION
Over the last decade, our group at the Systems Research

Center has built and experimented with two realizations of
a new program checking technology that we call extended
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Figure 1: Static checkers plotted along the two di-
mensions coverage and effort (not to scale).

static checking (ESC): “static” because the checking is per-
formed without running the program, and “extended” be-
cause ESC catches more errors than are caught by conven-
tional static checkers such as type checkers. ESC uses an
automatic theorem-prover to reason about the semantics of
programs, which allows ESC to give static warnings about
many errors that are caught at runtime by modern program-
ming languages (null dereferences, array bounds errors, type
cast errors, etc.). It also warns about synchronization er-
rors in concurrent programs (race conditions, deadlocks).
Finally, ESC allows the programmer to record design de-
cisions in an annotation language, and issues warnings if
the program violates these design decisions. Our first ex-
tended static checker, ESC/Modula-3, has been described
elsewhere [8]. This paper provides an overview of our sec-
ond checker, ESC/Java. It is not our goal in this paper
to give a complete description of ESC/Java, but rather to
give an overview that includes citations to more complete
descriptions of particular aspects of the checker.

Static checking can improve software productivity because
the cost of correcting an error is reduced if it is detected
early. Figure 1 compares ESC with other static checkers on
two important dimensions: the degree of error coverage ob-
tained by running the tool and the cost of running the tool.
In the upper right corner is full functional program verifica-
tion, which theoretically catches all errors, but is extremely
expensive. In the lower left corner are static checking tech-
niques that are widely used, which require only modest ef-
fort, but catch only a limited class of errors: conventional
type checkers and type-checker-like tools such as lint [23].
These two corners of Figure 1 exercise a magnetic fascina-
tion on programming researchers, but we suggest that the



middle of the diagram is promising, and it is there that we
position ESC: we hope to produce a cost-effective tool by
catching more errors than a type system or lint-like tool at
a cost much less than full functional program verification.

The horizontal line in Figure 1 labeled the “decidability
ceiling” reflects the well-known fact that the static detec-
tion of many errors of engineering importance (including
array bounds errors, null dereferences, etc.) is undecidable.
Nevertheless, we aim to catch these errors, since in our en-
gineering experience, they are targets of choice after type
errors have been corrected, and the kinds of programs that
occur in undecidability proofs rarely occur in practice. To
be of value, all a checker needs to do is handle enough simple
cases and call attention to the remaining hard cases, which
can then be the focus of a manual code review.

A distinguishing feature of our work is that ESC/Modu-
la-3 and ESC/Java both perform modular checking: that is,
they operate on one piece of a program at a time—it is not
necessary to have the source of the whole program in order
to run the checker. In our case, a “piece” is a single routine
(method or constructor). Whether an automatic checker or
manual checking like code reviews is used, modular checking
is the only checking that scales. Consequently we consider
modular checking to be an essential requirement.

The cost of modular checking is that annotations are need-
ed to provide specifications of the routines that are called
by the routine being checked. We argue that, in the absence
of an automatic checker, manual checking depends on these
same annotations, typically in the form of English comments
(which, not being machine checkable, easily get out of synch
with the source code over the life of a program). Unlike
the complicated predicate logic specifications that seem to
be required for full functional verification, ESC annotations
are straightforward statements of programmer design deci-
sions. Indeed, we are excited about the prospect that the
use of ESC in the classroom may help in the notoriously
difficult job of teaching students to write good comments,
since ESC is a practical tool that gives error messages of the
form “missing comment” and “inaccurate comment”.

Two attributes of an ideal static checker are (1) if the
program has any errors then the checker will report some
error (called “soundness” by mathematical logicians); and
(2) every reported error is a genuine error rather than a
false alarm (called “completeness” by mathematical logi-
cians). In extended static checking, we do not take either
of these attributes to be a requirement. After all, the com-
peting technologies (manual code reviews and testing) are
neither sound nor complete. Certainly false alarms are un-
desirable, since winnowing through the warnings to find the
real errors is an added cost of running the tool, and cer-
tainly soundness is desirable, since every missed error is a
lost opportunity for the checker to be useful, but insisting
that the checker meet either ideal is mistaken on engineering
grounds: if the checker finds enough errors to repay the cost
of running it and studying its output, then the checker will
be cost-effective, and a success. To achieve a cost-effective
tool requires making good engineering trade-offs between a
variety of factors, including: missed errors (unsoundness),
spurious warnings (incompleteness), annotation overhead,
and performance.

The major novelty of ESC/Java compared to ESC/Mod-
ula-3 is that ESC/Java has a simpler annotation language.
An important innovation contributing to this simplicity is

1: class Bag {
2: int size ;
3: int[ ] elements ; // valid: elements[0..size-1]
4:
5: Bag(int[ ] input) {
6: size = input .length ;
7: elements = new int[size] ;
8: System.arraycopy(input , 0, elements, 0, size) ;
9: }

10:
11: int extractMin() {
12: int min = Integer .MAX VALUE ;
13: int minIndex = 0 ;
14: for (int i = 1 ; i <= size ; i++) {
15: if (elements[i ] < min) {
16: min = elements[i ] ;
17: minIndex = i ;
18: }
19: }
20: size−− ;
21: elements[minIndex ] = elements[size] ;
22: return min ;
23: }
24: }

Figure 2: Original version of Bag.java.

the object invariant, an annotation construct that will be
described later. The simpler annotation language, together
with the fact that ESC/Java targets a more popular pro-
gramming language, has allowed us to get more user experi-
ence with ESC/Java than we did with ESC/Modula-3. This
in turn has led us to engineer a number of improvements
in the usability of the checker, for example execution-trace
information in warning messages.

2. AN EXAMPLE OF USING ESC/JAVA
Perhaps the simplest way to impart a feeling for what it’s

like to use ESC/Java is to present an example in some detail.
Figure 2 shows a small skeleton of a class of integer bags
(aka multisets). The class provides only two operations: a
bag may be constructed from an array of integers, and the
smallest element of a bag may be extracted.

To invoke our checker, the user invokes it just as she would
the Java compiler, but with “escjava” replacing the name
of the compiler on the command line: escjava Bag.java.
In response, over about the next ten seconds on a 200 MHz
Pentium Pro PC, ESC/Java produces 5 warnings:

Bag.java:6: Warning: Possible null dereference (Null)
size = input.length;

^
Bag.java:15: Warning: Possible null dereference (Null)

if (elements[i] < min) {
^

Bag.java:15: Warning: Array index possibly too large (...
if (elements[i] < min) {

^
Bag.java:21: Warning: Possible null dereference (Null)

elements[minIndex] = elements[size];
^

Bag.java:21: Warning: Possible negative array index (...
elements[minIndex] = elements[size];

^

The first of the warnings is a complaint that the Bag
constructor may dereference null (if it is called with a null
argument). There are two reasonable responses to this: ei-
ther bulletproof the constructor so it can be called with null



(producing an empty bag), or forbid calling the constructor
with null. For this example, we assume the user chooses the
second response. Traditionally, this would involve adding an
English comment “This constructor may not be called with
null” and hoping that programmers writing code that uses
Bag obey this requirement.

Instead, with ESC/Java the user inserts (after line 4) a
checker-readable comment (called an annotation) expressing
the same thing:

4a: //@ requires input != null

The @-sign at the start of this Java comment tells ESC/Java
that it is an ESC/Java annotation.

This annotation tells the checker that the constructor has
a precondition of input != null. When ESC/Java checks a
routine, it assumes that the routine’s preconditions hold on
entry; at a call site, ESC/Java issues a warning if it cannot
verify the preconditions of the called routine. For Bag users,
the annotation both provides documentation and lets them
use ESC/Java to check that they are using Bag correctly.

The second and fourth warnings complain (for different
execution paths) that method extractMin may dereference
null (if called when the field elements is null). These warn-
ings may seem spurious: the constructor sets elements to
a non-null value initially and extractMin does not assign to
elements. Note, however, that elements is not a private field
so that client code and (future) subclasses may modify it.

These warnings would be arguably spurious if elements
was declared private: no use of Bag could cause the warned
about errors. Unfortunately, detecting this requires exam-
ining all the other code of Bag to make sure that there is
no assignment of null to elements, which ESC/Java cannot
do because it checks methods in isolation. Although annoy-
ing in this case, in more realistic cases where determining
if any code assigns null to elements can be difficult for a
human reader, these warnings serve the useful purpose of
complaining about missing useful documentation.

To specify the design decision that elements is always non-
null, the user annotates the declaration of elements (line 3):

3′: /∗@non null∗/ int[ ] elements ; // . . .

ESC/Java generates a warning whenever it appears that
code may assign null to a field declared non-null; it also
checks that constructors initialize such fields to non-null val-
ues. Parameters may also be declared non-null; for example,
instead of adding line 4a, the user could have changed line
5:

5′: Bag(/∗@non null∗/ int[ ] input) {
Indeed, we recommend that users use non null where

possible, both because it is easier to type, and because, being
a specialized form, it is easier to verify and produce precise
warning messages for.

The remaining two warnings complain of possible sub-
script errors. The checker is worried that future code might
set size to a bad value. Here we need an object invariant :

2a: //@ invariant 0 <= size && size <= elements.length

An object invariant is a property that the programmer in-
tends to hold at every routine boundary for every initialized
instance of a class. The checker will now attempt to prove
that the size field is correct after a Bag is initially con-
structed and that calling the extractMin method preserves

its correctness. The checker will now also be able to use
the invariant to reason that subscript errors cannot occur
because the size field was incorrect on entry to extractMin.

Having made these changes, the user reruns the checker
to check for more possible errors. Surprise! The checker
again complains about possible subscript errors—the same
two warnings in fact (which in Figure 2 are lines 15 and 21).

Looking more closely at the warning for line 15, the user
recalls that Java arrays are indexed from 0, and changes:

14: for (int i = 1 ; i <= size ; i++) {
to:

14′: for (int i = 0 ; i < size ; i++) {
What about the warning that size may be negative at

line 21? We know that size is at least 0 when extractMin
is called. But what if extractMin is called when the bag is
empty? Then size will be −1 by that line because of the
decrement statement on the previous line. Oops! The user
inserts a guard for the assignment to fix things:

20a: if (size >= 0) {
21: elements[minIndex ] = elements[size] ;

21a: }
Running the checker yields a new warning, complaining

that extractMin fails to reestablish the object invariant:

Bag.java:26: Warning: Possible violation of object in-
variant

}
^

Associated declaration is "Bag.java", line 3, col 6:
//@ invariant 0 <= size && size <= elements.length

^
Possibly relevant items from the counterexample context:

brokenObj == this
(brokenObj* refers to the object for which the invariant
is broken.)

This warning has three parts. The first says that an invari-
ant may be broken at the end of method extractMin. The
second says which invariant is involved. The third says that
the object whose invariant may be broken is this rather than
some other bag. The programmer acted too hastily; the if
statement just inserted also needs to protect the decrement
of size:

19a: if (size > 0) {
20: size−− ;
21: elements[minIndex ] = elements[size] ;

21a: }
Now, rerunning the checker yields no warnings. This

means that the checker is unable to find more potential er-
rors, not necessarily that the program is bug free.

3. ARCHITECTURE
ESC/Java is the second extended static checker developed

at the Systems Research Center. Its architecture is similar to
that of the earlier checker [8], which targeted the Modula-3
language. Like that of traditional compilers, ESC/Java’s ar-
chitecture is best thought of as a pipeline of data processing
stages (see Figure 3). We describe each stage in turn.

Front End. ESC/Java’s front end acts similarly to that
of a normal (Java) compiler, but parses and type checks
ESC/Java annotations as well as Java source code. The
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Figure 3: The basic steps in ESC/Java’s operation.

front end produces abstract syntax trees (ASTs) as well as a
type-specific background predicate for each class whose rou-
tines are to be checked. The type-specific background pred-
icate is a formula in first-order logic encoding information
about the types and fields that routines in that class use.
For example, the type-specific background predicate for a
final class T or any client of a final class T will include the
conjunct ( ∀S :: S <:T ⇒ S = T ).

Translator. The next stage translates each routine body
to be checked into a simple language based on Dijkstra’s
guarded commands (GCs) [10]. ESC/Java’s guarded com-
mand language includes commands of the form assert E ,
where E is a boolean expression. An execution of a guarded
command is said to “go wrong” if control reaches a subcom-
mand of the form assert E when E is false. Ideally the
body of a routine R should translate into a guarded com-
mand G such that (1) G has at least one potential execution
that starts in a state satisfying the background predicate of
R’s class and goes wrong, if and only if (2) there is at least
one way that R can be invoked from a state satisfying its
specified preconditions and then behave erroneously by, for
example, dereferencing null or terminating in a state that
violates its specified postconditions.

In practice, the translation is incomplete and unsound, so
neither the “if” nor the “only if” above always holds. We
mention a few sources of inaccuracy in translation here. For
a more extensive discussion of incompleteness and unsound-
ness in ESC/Java, see appendix C of the ESC/Java user’s
manual [33].

Modular checking. In accordance with the principle of
modular checking, when ESC/Java produces the guarded
command for a routine R, it translates each routine call
in R according to the specification, rather than the imple-
mentation, of the called routine. Consequently, the result-
ing (nondeterministic) guarded command G may be able
to go wrong in ways involving behaviors of called routines
that are permitted by their specification, but can never oc-
cur with the actual implementations. Of course, modular
checking has the advantage that if R is correct with respect
to the specifications of the routines it calls, it will continue
to behave correctly after the implementations are replaced
or overridden, so long as the new implementations continue
to meet the specifications.

Overflow. We do not model arithmetic overflow because
allowing the checker to consider cases such as adding positive

integers and getting a negative sum leads to many spurious
warnings.

Loops. A precise semantics for loops can be defined us-
ing weakest fixpoints of predicate transformers [10]; unfortu-
nately, fixpoints are not merely uncomputable but difficult
to compute in many practical cases. Therefore, ESC/Java
approximates the semantics of loops by unrolling them a
fixed number of times and replacing the remaining itera-
tions by code that terminates without ever producing an
error. This misses errors that occur only in or after later
iterations of a loop.

Command-line options let the user control the amount of
loop unrolling or substitute a sound alternative translation
for loops that relies on the user to supply explicit loop in-
variants. By default, we unroll loops one and a half times
(the half refers to an additional execution of the loop guard):
Using two unrollings on ESC/Java’s front end, Javafe (see
section 6.3), produced only one plausibly interesting new
warning but took 20% longer; five unrollings doubled the
time but produced no new non-spurious warnings. We have
found that even expert users have difficulty providing cor-
rect and sufficiently strong loop invariants.

VC Generator. The next stage generates verification
conditions (VCs) for each guarded command. A VC for a
guarded command G is a predicate in first-order logic that
holds for precisely those program states from which no exe-
cution of the command G can go wrong. The computation
of a VC is similar to the computation of a weakest precondi-
tion [10], but ESC/Java’s VC-generation includes optimiza-
tions [19] to avoid the exponential blow-up inherent in a
naive weakest-precondition computation.

ESC/Modula-3 also used guarded commands as an inter-
mediate stage rather than deriving VCs directly from ASTs.
ESC/Java goes a step further in factoring the software com-
plexity of VC generation by using a “sugared” form of the
GC language (not shown) as an intermediate stage between
ASTs and the basic GC language that is input to the VC
generator. The initial step of translating ASTs to sugared
GCs is bulky and tedious, incorporating many Java-specific
details, but need only be written once. The desugaring step
and the final VC-generation step are much simpler and easily
rewritten as we explore different soundness/incompleteness
tradeoffs and possible performance improvements. For fur-
ther discussion see [35].

Theorem Prover. For each routine R, the next stage
invokes our automatic theorem prover, Simplify [9], on the
conjecture

UBP ∧ BPT ⇒ VCR (1)

where VCR is the VC for R, BPT is the type-specific back-
ground predicate for the class T in which R is defined, and
UBP is the universal background predicate, which encodes
some general facts about the semantics of Java—for exam-
ple, that the subtype relation is reflexive, antisymmetric,
and transitive; and that all array types are subtypes of
java.lang.Object. Subject to the translation limitations
already discussed, the conjecture (1) will be valid iff the rou-
tine R has no errors. For a complete background predicate
for a simple object-oriented language, see [27].

Postprocessor. The final stage postprocesses the theo-
rem prover’s output, producing warnings when the prover is
unable to prove verification conditions. Simplify, originally



designed for use by ESC/Modula-3 and later evolved for use
by ESC/Java, has several properties that aid the postproces-
sor in constructing user-sensible warning messages, rather
than just marking a routine as possibly being erroneous.

Counterexample contexts and labels. When it fails to find
a proof for a conjecture, Simplify normally finds and reports
one or more counterexample contexts, each counterexample
context being a conjunction of conditions that (1) collec-
tively imply the negation of the conjecture and (2) have not
been shown by the prover to be mutually inconsistent. The
input to Simplify can include positive and negative labels on
some of its subformulas. A label has no effect on its subfor-
mula’s logical value, but each counterexample includes pos-
itive labels of true subformulas and negative labels of false
subformulas deemed heuristically relevant to that counterex-
ample.

By carrying information about source code locations through
the various stages of processing, ESC/Java is able to label
each runtime check with sufficient information to produce a
detailed warning including the type of error and its location.
For example, the postprocessor generates the first warning
in the example of Section 2 from the label in:

(LBLNEG |Null@0.6.16| (NEQ |input:0.5.12| null))

within the VC for the Bag constructor.
Unlike ESC/Modula-3, ESC/Java attaches labels not only

to pieces of the VC that correspond to error conditions, but
also to pieces of the VC that correspond to the execution
of particular fragments of the source code; by using these
labels, it can construct an execution trace indicating a pos-
sible dynamic path to the potential error [38].

Multiple counterexample contexts. Although a given rou-
tine may be able to fail in multiple interesting ways, a dif-
ferent counterexample may be required to demonstrate how
each failure can occur. We have modified Simplify to gener-
ate multiple counterexample contexts for a given conjecture
when possible. This allows us to generate multiple warnings
per routine. Simplify keeps track of the labels reported with
counterexample contexts and uses this information to keep
from generating multiple counterexamples that would turn
into too-similar warning messages.

Time and counterexample limits. We limit the time Sim-
plify spends on each routine (5 minutes by default) as well as
the number of counterexample contexts Simplify may pro-
duce (10 by default). If either limit is exceeded, ESC/Java
issues a caution to the user indicating that the routine might
not have been fully checked. The counterexample limit safe-
guards against the possibility that ESC/Java might issue a
flood of apparently distinct warnings all arising from a single
underlying problem with the program.

Incompleteness. ESC/Java VCs are formulas in a theory
that includes first-order predicate calculus, which is only
semi-decidable: any procedure that proves all valid formu-
las loops forever on some invalid ones. By allowing Simplify
to sometimes report a “counterexample” that might, with
more effort, have been shown to be inconsistent, it is able
to produce more counterexamples within the time allotted.
Such spurious counterexamples lead to spurious warnings.
While Simplify is not guaranteed to be bug-free, it incor-
porates no intentional unsoundnesses, which would lead to
missed warnings.

4. ANNOTATION LANGUAGE
The largest difference between ESC/Java and ESC/Mod-

ula-3 lies in the annotation language. In this section, we
describe the main features of the ESC/Java annotation lan-
guage. The full annotation language is described in the
ESC/Java user’s manual [33].

4.1 General design considerations
An important design decision for the annotation language

has been to make it as Java-like as possible. This has two
major advantages: it makes ESC/Java easier to learn, en-
couraging first-time use; and it makes the annotations more
readable to non-ESC/Java users, increasing their value as
primary documentation.

To a first approximation, annotations appear like other
Java declarations, modifiers, or statements, but enclosed in
Java comments that begin with an @-sign. Expressions con-
tained in annotations are side-effect free Java expressions,
with a few additional keywords and functions.

Beyond the syntactic issues lie deeper design problems of
which annotations to include and what they should mean.
Ideally, the annotations capture significant programmer de-
sign decisions, and do so succinctly. Equally important, and
of more difficulty in the design of the annotation language,
is that users not be required to document properties that
are tedious to specify and don’t significantly enable the de-
tection of important software errors.

Our annotation language has also been shaped by a col-
laborative effort with Gary Leavens et al. to make the Java
Modeling Language (JML [25, 26]) and the ESC/Java anno-
tation language as similar as feasible. The goals of ESC/Java
and JML are different: JML is intended to allow full spec-
ification of programs, whereas ESC/Java is intended only
for light-weight specification. Therefore, some differences
in the two languages remain, both syntactic and semantic.
However, many programs annotated with ESC/Java anno-
tations are amenable to processing with tools targeting JML
and sometimes vice versa, and programmers who learn one
language should have little trouble picking up the other.

4.2 Data abstraction vs. object invariants
The specification language for ESC/Modula-3 included

general data abstraction [32]. “Abstract variables” could be
declared (including abstract object fields), which were un-
known to the compiler and used only for the purposes of the
specification language. The exact meaning of an abstract
variable is given by a “representation declaration”, which
specifies the value of the abstract variable as a function of
other variables (abstract or concrete) [22].

General data abstraction is very powerful. In ESC/Mod-
ula-3 verifications, we found that it was generally used in a
very stylized way that we call the state/validity paradigm.
In this paradigm, two abstract variables are declared as
“fields” of each object type: valid and state. The idea is
that x .valid means that the object x satisfies the internal
validity invariant of x ’s type, and x .state represents the ab-
stract state of the object x .

In a full functional correctness verification, there would
be many, many specifications to write about state, but in a
typical ESC/Modula-3 verification, very little is said about
it: it appears in the modifies list of those operations that
can change it, and the concrete variables that are part of



its representation are declared to so be (by means of an
abstraction dependency).

In contrast to state, ESC/Modula-3 checking depends heav-
ily on valid: almost all operations on an object x have x .valid
as a precondition; initialization operations on x have x .valid
as a postcondition; and any operations that destroy the va-
lidity of x (e.g., an operation to close file x ) have x .valid in
their modifies list, indicating that they are not guaranteed to
preserve validity. These uses of valid enforce a protocol on a
client using the type: the client must call a proper initializa-
tion operation before using the object, and may continue to
use the object up until the object’s validity is compromised.

The representation declaration for valid defines the mean-
ing of validity in concrete terms. This declaration is typi-
cally placed in the implementation where it is required. In
verifying the implementation of an operation on the type,
the precondition x .valid is translated into concrete terms
by the usual process of data abstraction, since the repre-
sentation is in scope. The occurrences of valid in client-
visible specifications enforce proper behavior on the part of
the client, even though the representation is invisible to the
client, because the representation matters only to the im-
plementation, not the client.

General data abstraction is sweetly reasonable, but it is
more complicated than we would like (by about a hun-
dred pages [32]). Mindful of the principle that perfection
is achieved not when there is nothing left to add but when
there is nothing left to remove, we decided to leave data
abstraction out of ESC/Java. In ESC/Modula-3, data ab-
straction was used almost exclusively in the state/validity
paradigm. ESC/Java object invariants provide much of the
checking that is provided by the abstract variable valid in
the valid/state paradigm. And the checking provided by the
abstract variable state did not find many real errors.

ESC/Java does support ghost fields (see section 4.5), which
are known only to the checker, not to the compiler. Ghost
fields can be used as a substitute for abstract fields, but
while abstract fields change automatically when their repre-
sentation changes, ghost fields must be updated by an ex-
plicit assignment: Consider the case of concrete c, abstract
a, and rep a ≡ c∗c. We could mimic this situation with
ghost field g and an explicit ghost assignment set g = c∗c
whenever c changes. Adding the object invariant g = c∗c
will provide protection against the error that the update to
g is inadvertently omitted. But this requires considerably
more annotation than the abstract variable approach.

The practical manifestation of these remarks is that the
abstract variable state/validity paradigm has an advantage
over object invariants in its ability to accurately specify
methods that destroy validity. Close methods are a source of
false alarms in ESC/Java, and while they could in principle
be avoided soundly by introducing a ghost field valid and
updating it in close and init methods, it is more common
simply to suppress these warnings, which provides no check-
ing against the error that the invalid object is later passed
to a method that requires validity.

In spite of the remarks in the previous paragraphs, our
judgment in retrospect is that the decision to remove ab-
stract variables and introduce object invariants and ghost
variables was on the whole a successful step towards the
goal of producing a cost-effective engineering tool.

4.3 Routine specifications
Routine specifications can contain any or all of the fol-

lowing parts: requires P , modifies M , ensures Q , and
exsures (T x) R, where the precondition P , normal post-
condition Q , and exceptional postcondition R for exception
type T are boolean specification expressions, and the mod-
ifies list M is a list of lvalues (like o.f ). In Q , the keyword
\result refers to the value returned, if any. In R, the vari-
able x refers to the exception thrown. In both Q and R,
an expression of the form \old(E ) refers to the value of the
expression E in the pre-state.

The modifies list specifies which fields the routine may
modify. Implicit in this list is that every routine is allowed
to modify the fields of any objects allocated since the start
of the routine invocation. At a call site, ESC/Java assumes
that only those variables indicated by the modifies list are
changed by the call. However, ESC/Java does not check that
an implementation obeys its modifies list. This unsoundness
is motivated as follows: writing down all the variables that
a routine may modify is impossible, since many of these
variables may be out of scope and some of them may even
reside in subclasses yet to be written.

This fundamental and underappreciated problem can be
solved with data abstraction [32] as we did in ESC/Mod-
ula-3. One of the costs of omitting data abstraction in
ESC/Java is that we are unable, in general, to check modi-
fies lists. There are a variety of approaches that a checking
tool can take with respect to modifies lists: ESC/Modula-3
took a theoretically sound approach at the cost of complex-
ity in the annotation language. ESC/Java takes the other
extreme: modifies lists are assumed to be given correctly
by the programmer—the tool uses but does not check them.
Recent work suggests that theoretically sound solutions may
still be feasible in a practical checker, by imposing some re-
strictions on the programming model [39, 34].

Overriding methods inherit specifications from the meth-
ods they override. Users may also strengthen the postcondi-
tions of overrides (using also ensures and also exsures),
which is sound. Strengthening the precondition or extend-
ing the modifies list would not be sound [28]. Nevertheless,
because ESC/Java does not provide any data abstraction, it
seemed more prudent to allow the unsound also modifies
than not: this lets users express design decisions about what
variables a method override may modify, even though the
corresponding checking would not be sound. We were much
less compelled to add also requires, because we deemed its
use a probable programmer error (some programmers design
their programs as if it would be sound to strengthen pre-
conditions in subclasses). However, again due to the lack
of abstraction features, we do allow also requires in one
special case, as described in the user’s manual [33].

In addition to single-inheritance subclassing, Java features
multiple inheritance from interfaces. A sound way to com-
bine multiple inherited specifications for a method is to take
their mathematical join in the lattice of conjunctive predi-
cate transformers [47, 31], as is done in JML [25]. However,
this approach leads to problems like how to explain pre- and
postcondition violations in warning messages. ESC/Java
uses the simpler, but unsound, approach of taking the union
of all specification parts inherited from overridden methods.



4.4 Object invariants
Designing a good, mechanically-checkable object invariant

system is a complicated task. For space reasons, we discuss
only briefly some of the more important issues involved.

Operation boundaries. Conceptually, the object in-
variants for an object o may be broken only during an “op-
eration” on o. The question arises of what to consider an
operation. The simplest approach, which we have largely
adopted, is to consider each routine by itself to be a separate
operation. In particular, we do not consider the subroutines
called by a routine to be part of the same operation; this
means that the routine must restore any invariants it has
broken before it may call any subroutines.

One exception is that users may mark methods with the
modifier helper; such methods are considered part of the
operation of the routine calling them. This is achieved by
inlining calls to helpers, which goes beyond modular check-
ing. This annotation is useful in some cases, but is expensive
if used excessively.

Invariant enforcement. In practice, enforcing invari-
ants on all operation boundaries is too strict: a method
could not call even so harmless a function as square root
while an invariant is broken. Although the called code will
expect all invariants to hold, it is usually safe to allow sub-
routine calls so long as the code being called cannot even
indirectly reach the object(s) whose invariants are broken.
Because this property is not locally checkable without an un-
wieldy amount of annotation, ESC/Java checks invariants at
call sites only for arguments and static fields. This heuristic
disallows calls likely to be an error (e.g., passing an invalid
object as an argument) and allows the calls like square root
that are almost always okay.

Invariant placement. Because the entire program may
not be available, it is not possible to get the effect of check-
ing all invariants without adopting restrictions about where
invariants are declared [32, 36]. Roughly, an invariant men-
tioning a field f must be visible whenever f is. This usually
means that the invariant must be declared in the class that
declares f . We have some understanding of the restrictions
needed, but ESC/Java does not enforce them.

Constructors. We do not require this to satisfy its in-
variants in the case where a constructor terminates excep-
tionally; this is unsound in the rare case where a copy of
this survives the constructor termination.

4.5 Ghost fields
ESC/Java’s lack of data abstraction simplifies the anno-

tation language and checker, but reduces the expressiveness
of the annotation language. Nevertheless, it is sometimes
useful to describe the behavior of a class in terms of some
additional state that the Java program leaves implicit. For
this purpose, ESC/Java provides ghost fields, which are like
ordinary fields in Java, except that the compiler does not
see them.

Ghost fields can also be used to specify behavior depen-
dent on the abstract state of an object, for which abstract
variables would be less suitable. For example, the usage pro-
tocol for the hasMoreElements and getNextElement meth-
ods of the Enumeration class can be expressed in terms of
a boolean ghost field denoting the condition that more ele-
ments are available.

A common use of ghost fields in ESC/Java is to make up
for the absence of generic types (parametric polymorphism)

in Java. For example, a class Vector can introduce a ghost
field elementType:

//@ ghost public \TYPE elementType

The special type \TYPE in ESC/Java denotes the type of
Java types. Using ghost field elementType, the methods of
class Vector can be specified. For example, the methods
for adding and retrieving an element from a vector can be
specified as follows:

//@ requires \typeof(obj ) <: elementType
public void addElement(Object obj ) ;

//@ ensures \typeof(\result) <: elementType
public Object elementAt(int index ) ;

A client of Vector would set the elementType ghost field
using ESC/Java’s set annotation before using a vector. For
example,

Vector v = new Vector() ;
//@ set v .elementType = \type(String) ;

creates a vector v intended to hold strings.

4.6 Escape hatches
We have designed ESC/Java’s annotation language and

checking so that common programmer design decisions can
easily be expressed. However, situations arise where con-
vincing the checker about the correctness of the design re-
quires more powerful annotation features and checking than
are provided. For these situations, one needs escape hatches
to get around the strictness of the static checking system.

ESC/Java’s nowarn annotation suppresses selected warn-
ings about the source line where it appears. ESC/Java’s
-nowarn command-line switch turns off selected warnings for
the entire program, allowing users to customize the degree
of checking. One use of this is to turn off all warnings except
those for violations of pre-conditions, post-conditions, and
object invariants in order to check if a program is consistent
with a user-specified protocol; see [29] for an example. A
more precise escape hatch is the statement annotation

//@ assume P

which causes ESC/Java to blindly assume that condition
P holds at this program point without checking it. Uses of
assume and nowarn make good focused targets for manual
code reviews.

Sometimes simple properties of a routine (e.g., not deref-
erencing null) depend on more complex properties of the rou-
tines it calls. In such cases, judicious use of escape hatches
can save users from specification creep that otherwise tends
inexorably toward the upper right corner of Figure 1.

5. PERFORMANCE
ESC/Java checks each routine by invoking the automatic

theorem prover Simplify. Since theorem proving is often
expensive, and undecidable in the worst case, a potential
problem with ESC/Java is that it could be too slow for in-
teractive use.

We therefore put considerable effort (some of which was
spent already in the ESC/Modula-3 project) into improv-
ing the performance of the theorem prover, into encoding
background predicates in a form that plays to the strengths



Routine # of Percentage checked within time limit
size routines 0.1s 1s 10s 1min 5mins

0–10 1720 27 90 100 100 100
10–20 525 1 74 99 100 100
20–50 162 0 33 94 99 100
50–100 35 0 0 74 94 100
100–200 17 0 0 53 82 94
200–500 5 0 0 0 80 100
500–1000 1 0 0 0 0 100

total 2331 20 80 98 > 99 > 99

Figure 4: Percentage of routines of various sizes in
the Java front end benchmark that can be checked
within a given per-routine time limit.

of the theorem prover, and into generating VCs in a form
that is more amenable to efficient proving. The combined
result of these various optimizations is that the performance
of ESC/Java is sufficient for the majority of cases.

We have applied ESC/Java to a variety of programs, and
we report on the performance of ESC/Java on the largest
of these programs, Javafe, ESC/Java’s Java front end. This
program contain 41 thousand lines of code (KLOC) and 2331
routines. Figure 4 illustrates the performance of ESC/Java
on this program using a 667 MHz Alpha processor. The
routines in Javafe are categorized according to their size (in
lines of code). For each category, the figure shows the num-
ber of routines in that category, together with the percent-
age of those routines that can be checked within a particular
per-routine time limit. The results show that most of the
routines are fairly small (under 50 lines), and that ESC/Java
can check the great majority of these routines in less than
10 seconds. Thus, the performance of ESC/Java is satis-
factory, except for a small number of particularly complex
routines. There is only one routine (of the 2331 routines in
this program) that ESC/Java is unable to verify within the
default five-minute time limit.

6. EXPERIENCE
This section describes some of our experience applying

ESC/Java to a variety of programs. These programs in-
clude the Java front end Javafe, portions of the web crawler
Mercator [21], and an assortment of smaller programs.

6.1 Annotation overhead
ESC/Java is an annotation-based checker, which relies on

the programmer to provide annotations giving lightweight
specifications for each routine. Thus, one of the costs of us-
ing ESC/Java is the overhead of writing the necessary anno-
tations. In most cases, these annotations are straightforward
and they document basic design decisions, for example, that
a method argument should never be null, or that an integer
variable should be a valid index to a particular array.

Our experience in annotating Javafe and Mercator indi-
cates that roughly 40–100 annotations are required per thou-
sand lines of code. Figure 5 illustrates the number and kinds
of annotations required for these programs.

For both of these programs, the annotations were inserted
after the program was written using an iterative process:
The program was first annotated based on an inspection of
the program code and a rough understanding of its behavior;

Annotation type Annotations per KLOC
Javafe Mercator

non null 8 6
invariant 14 10
requires 28 16
ensures 26 2
modifies 4 0
assume 1 11
nowarn 6 0
other 4 1
total 94 48

Figure 5: Number and kinds of annotations required
in the benchmarks.

this initial set of annotations was subsequently refined based
on feedback produced by ESC/Java when checking the an-
notated program. Typically, we found that a programmer
could annotate 300 to 600 lines of code per hour of an ex-
isting, unannotated program. This overhead is expensive
for larger programs and is an obstacle to using ESC/Java
to catch defects in large, unannotated programs. While it
is possible to use ESC/Java only on selected modules, it is
still necessary to annotate all the routines called in other
modules. We are investigating annotation inference tech-
niques [17, 16] that help reduce the annotation burden on
legacy code.

Instead of writing annotations after the program has been
developed, a better strategy for using ESC/Java is to write
appropriate annotations and run the checker as early as pos-
sible in the development cycle, perhaps after writing each
method or class. Used in this manner, ESC/Java has the
potential to catch errors much earlier than testing, which
can only catch errors after the entire program or an appro-
priate test harness has been written. Since catching errors
earlier makes them cheaper to fix, we suggest that using
ESC/Java in this manner may reduce software development
costs in addition to increasing program reliability.

The following subsections illustrate ESC/Java’s ability to
find software defects that have proven difficult to catch using
testing.

6.2 Mercator
The authors of the web crawler Mercator, Allan Heydon

and Marc Najork, used ESC/Java to check portions of Mer-
cator. Since Heydon and Najork were not involved with
the ESC/Java project, their experience may be typical of
average ESC/Java users.

Heydon and Najork annotated and checked 4 packages
from Mercator containing 7 KLOC in roughly 6 hours. To-
ward the end, ESC/Java caught a previously-undetected
bug in a hash table implementation. This hash table is im-
plemented as an array indexed by hash code with each entry
in this array pointing to a secondary array of values with
that hash code. It is possible for an entry in the main array
to be null. However, the checkpointing code, which writes
the hash table to disk, failed to check for a null pointer in
the main array.

This defect did not show up during testing since the hash
table is checkpointed only after it is heavily loaded, and thus
all entries in the main array are likely to be non-null. This
defect may also be missed during a code review, especially if



the design decision that entries in the main array may be null
is not documented. Because ESC/Java requires explicating
design decisions such as these, it can detect defects where
these decisions are not respected.

6.3 Javafe
One of us (Lillibridge) spent about 3 weeks annotating

ESC/Java’s front end, which at that time measured about
30,000 lines. This process found about half a dozen previ-
ously undetected errors. Lillibridge assessed these errors as
not having been worth 3 weeks to discover, but the benefit of
the annotations had just started. Since that time, we have
run ESC/Java on Javafe before checking in any changes, re-
vealing an additional half dozen errors, each of which was
detected shortly after it was introduced. Next, we’ll describe
one particularly interesting experience.

One of us (Leino) performed a major piece of surgery on
the complicated class in Javafe that correlates source code
locations with positions in an input stream. After finishing
the edits, Leino ran the compiler, launched ESC/Java on
the Javafe sources, and logged off for the day. The next
morning, the Javafe regression suite had passed, but running
ESC/Java with the new front end on even simple programs
caused it to crash.

After spending 2+ hours pinpointing the error, Leino won-
dered why ESC/Java had not detected it. He had forgotten
to check ESC/Java’s output before starting to debug. In-
deed, ESC/Java had found the error—a failure to establish
a precondition that a stream be “marked”—and ESC/Java’s
output also revealed the same error at a different call site.

In this case, ESC/Java’s output could have saved 2+
hours in tracking down the problem. The entire run of
ESC/Java on Javafe had taken 73 minutes, but would have
used less than 3 minutes had it been applied only to the file
containing the errors. Correcting the errors was also tricky,
and Leino was able to insert annotations and run ESC/Java
to check his understanding of the various state changes in
the program.

We draw two conclusions from our experience with Javafe.
First, keeping machine-checkable design decisions in a pro-

gram provides a payoff during code maintenance, which is
valuable because the cost of maintenance can easily outweigh
the cost of the initial code development.

Second, several of the errors that ESC/Java detected in
Javafe were violations of design decisions that are not easily
extracted from the code. These include protocol designs like
“call this routine only on streams that have been marked”.
ESC/Java provides a flexible and powerful framework for
checking such protocol errors. In fact, some may consider
using ESC/Java in a mode where it checks only for viola-
tions of user-supplied annotations, not for crashes that the
language will catch at runtime [29].

6.4 Other user experience
ESC/Java is available for download at research.compaq.

com/SRC/esc. In the last year, we have received more than
100 emails from users, and the stream of questions seems to
increase rather than subside. We have heard some success
stories where ESC/Java has found errors in code, several
times surprising the authors of the code.

Some other users, pulled by the magnetic fascination in
the upper right corner of Figure 1, have attempted to use
ESC/Java to perform full functional correctness verification.

In a way we are flattered, but we are not surprised that most
of them have run into difficulties caused by incompletenesses
in Simplify, which was engineered to be automatic rather
than complete. We believe that learning when to give up
and put in an assume annotation will lead to more cost-
effective use of ESC.

7. RELATEDWORK
The closest work related to ESC/Java is our previous work

on extended static checking, ESC/Modula-3 [8]. Whereas
the research on ESC/Modula-3 can be summarized as an-
swering (affirmatively) the question, “can an extended static
checker find bugs and be made automatic?”, ESC/Java has
focused on the questions “how simple can the annotation
language be?” and “is the checker cost-effective?”. Besides
targeting a different and more popular language, ESC/Java
incorporates many innovations over ESC/Modula-3, includ-
ing: greater similarity between source and annotation lan-
guages, use of object invariants instead of data abstraction,
execution traces [38], multiple warnings per method, time-
outs, generation of suggestions for how to respond to warn-
ings (not described in this paper), different treatments of
loops, a multi-stage translation to guarded commands [35], a
different VC generation from guarded commands [19], differ-
ently chosen engineering trade-offs, a comprehensive user’s
manual [33], a variety of new annotations including helper,
and a variety of internal improvements. Overall, we believe
we have produced a tool that is simpler to use, at the price
of missing more errors than ESC/Modula-3 did. For a per-
spective on the building of ESC/Modula-3 and ESC/Java,
see [30].

A goal that is several decades old is providing in a pro-
gramming language features to write down more informa-
tion than is strictly needed for compilation. The earliest
serious attempt we know of is Euclid [24], which included
constructs to express, for example, pre- and postconditions
of procedures. The motivation was to enable programs to
be verified, but the formal language semantics did not reach
machine-checkable maturity. Instead, pre- and postcondi-
tions, and other assertions, were checked at runtime. A
newer and more widely used language in this spirit is the
object-oriented language Eiffel [37], whose pre- and post-
conditions and object invariants are also checked at runtime.
A language in progress is Vault [7], whose promising ideas
include using type-like features to take a next step in pre-
venting certain kinds of resource-management programming
errors.

Another research area related to extended static check-
ing is refinement types. A refinement type is essentially a
restricted form of object invariant. Refinement types have
been investigated mostly for functional programming lan-
guages (e.g., Xi and Pfenning [50]), but some work has been
done recently for imperative languages [49].

There are other compile-time techniques for finding er-
rors in programs. Unlike the ESC approach which uses
programmer-supplied annotations for documenting design
decisions, most other techniques have gone in the direc-
tion of completely eliminating annotation overhead, often
to the extent that annotations cannot be supplied. Another
difference between ESC and these other techniques is that
the others do not build in modular checking from the start;
rather, they are typically applied to the entire program. We
mention three such techniques:



Symbolic execution is the underlying technique of the suc-
cessful bug-finding tool PREfix for C and C++ programs [3].
For each procedure, PREfix synthesizes a set of execution
paths, called a model. Models are used to reason about calls,
which makes the process somewhat modular, except that fix-
points of models are approximated iteratively for recursive
and mutually recursive calls.

PREfix gets by with an ad hoc constraint solver, rather
than a theorem prover and an underlying logic. There is
no annotation language, but due to a scheme for associat-
ing a weight with each warning (and surely also due to the
large number of possible errors in C and C++), users can
sort warnings by weight, thereby easily ignoring less relevant
warnings.

Abstract interpretation [6] is a more established technique;
it uses heuristics to iteratively build up an abstract model
of a program. The absence of errors in the abstract program
implies the absence of errors in the given program. Abstract
interpretation has been applied successfully in many appli-
cations, including space-rocket controllers [44].

Symbolic model checking [2] is a technique whose success
in finding hardware design errors has rubbed off on the soft-
ware checking community. A popular idea is to use predi-
cate abstraction [20] to reason about a given (infinite-state)
program as a finite-state system that is model checked. An
intriguing system based on this idea, including an automatic
engine for incrementally inferring the predicates used in the
abstraction, is SLAM [1]. Other tools that verify properties
of software systems using finite-state models are Bandera [5]
and Java PathFinder 2 [46].

In addition to these three techniques, there are other tools
that have been useful in program development. For exam-
ple, the LCLint tool [15] has become a part of the environ-
ment for building Linux. Some tools have focused on check-
ing for particular kinds of errors, like concurrency errors:
Warlock [43] to mention one, but see our ESC/Modula-3 re-
port [8] which reports on our experience with extended static
checking for finding concurrency errors and mentions several
other pieces of related work in this field. Recent work by En-
gler et al. shows that a surprisingly effective technique for
finding errors is a heuristic scan for irregularities in program
source code [12].

Going beyond the bug-finding tools are tools geared to-
ward the full verification of programs. While most such
systems have remained in academic labs where they have
been applied to small textbook programs or the verification
of specific algorithms, some systems have been applied to
actual safety-critical programs. A successful example is the
B system [48], which was used to construct a part of the
Metro subway system in Paris. Another example of a full-
verification tool is Perfect Developer for the object-oriented
language Escher [14]. Both the B and Escher systems re-
strict the programming language to various extents and re-
quire some manual guidance of their underlying theorem
provers.

A “big brother” of the ESC/Java annotation language, the
Java Modeling Language (JML) [25] allows for fuller spec-
ifications of Java programs. As mentioned in Section 4.1,
through a collaboration with the designers of JML, we have
tried to smooth out any gratuitous differences between the
two specification languages, more or less making ESC/Java a
subset of JML. The LOOP tool [45] translates JML-annotated
Java into verification conditions that can be used as input

to the theorem prover PVS [41]. The relation between JML,
LOOP, and ESC/Java is described in some more detail in a
short paper [26]. The similarities of the tools was an asset
in specifying and checking the JavaCard interface [42] and
an electronic purse application [4]. The similarities have
also allowed JML and ESC/Java to be used in concert in
teaching a software engineering course at Kansas State Uni-
versity [11].

Finally, we mention some intriguing work built on top
of ESC/Java. Michael Ernst et al. have investigated the
dynamic inference of likely program invariants [13]. Re-
cently, this inference has been used to produce ESC/Java
annotations [40]. Another annotation inference system for
ESC/Java is Houdini [17, 16], which uses ESC/Java as a
subroutine in inferring annotations.

8. CONCLUSIONS
Over the past two years, ESC/Java has been used to

check a variety of programs, including moderately large sys-
tems such as Javafe and Mercator. The experience of both
ESC/Java developers and other users supports the thesis
that ESC/Java can detect real and significant software de-
fects. In addition, the performance of ESC/Java is sufficient
for interactive use on all but the most complex of methods.

ESC/Java’s design incorporates a trade-off between sound-
ness and usefulness, and in some cases sacrifices soundness to
reduce the annotation cost or to improve performance. Ex-
amples of unsound features include loop unrolling and the
partial enforcement of object invariants. By and large, our
experience supports this limited introduction of unsound-
ness as a technique that clearly reduces the cost of using
the checker, and we believe the number of bugs missed due
to these features is small. Our ongoing research continues
to tackle some of the more significant sources of unsound-
ness, including loops (by loop invariant inference [18]) and
modifies lists [34].

ESC/Java’s annotation language is Java-like and uses ob-
ject invariants (as opposed to ESC/Modula-3’s use of data
abstraction). Both of these design decisions helped keep the
annotation language intuitive. Object invariants are some-
what less expressive than data abstraction, but this limita-
tion did not appear to cause problems in practice.

Despite ESC/Java’s success at finding real errors, feed-
back from our users suggests that the tool has not reached
the desired level of cost effectiveness. In particular, users
complain about an annotation burden that is perceived to be
heavy, and about excessive warnings about non-bugs, par-
ticularly on unannotated or partially-annotated programs.
However, these users retroactively annotated and checked
existing programs, rather than using ESC/Java to support
development throughout a project’s life-cycle.

At this point, it is uncertain if, over the lifetime of a soft-
ware project, ESC/Java is a cost-effective tool for use by
mainstream programmers. Certainly, our experience over
the past two years in using ESC/Java to support develop-
ment of Javafe has been encouraging, and it is possible that
ESC/Java would be useful to highly-disciplined program-
ming teams.

We are hopeful that additional research on reducing spuri-
ous warnings and lowering the perceived annotation burden
(for example, by annotation inference, both statically as in
Houdini [17] and dynamically as in Daikon [13]) may yield
an extended static checking tool that could add significant



value to the process of engineering software. In the mean-
time, we believe ESC/Java is suitable for use in a classroom
setting as a resource for reinforcing lessons on modularity,
good design, and verification.
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