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ABSTRACT

A key challenge in dynamic information flow analysis is han-
dling implicit flows, where code conditional on a private
variable updates a public variable x. The naive approach
of upgrading x to private results in x being partially leaked,
where its value contains private data but its label might
remain public on an alternative execution (where the condi-
tional update was not performed). Prior work proposed the
no-sensitive-upgrade check, which handles implicit flows by
prohibiting partially leaked data, but attempts to update a
public variable from a private context causes execution to
get stuck.

To overcome this limitation, we develop a sound yet flex-
ible permissive-upgrade strategy. To prevent information
leaks, partially leaked data is permitted but carefully tracked
to ensure that it is never totally leaked. This permissive-
upgrade strategy is more flexible than the prior approaches
such as the no-sensitive-upgrade check.

Under the permissive-upgrade strategy, partially leaked
data must be marked as private before being used in a con-
ditional test, thereby ensuring that it is private for both the
current execution as well as alternate execution paths. This
paper also presents a dynamic analysis technique for infer-
ring these privatization operations and inserting them into
the program source code. The combination of these tech-
niques allows more programs to run to completion, while
still guaranteeing termination-insensitive non-interference in
a purely dynamic manner.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs
and Features; D.4.6 [Operating Systems]|: Security and
Protection—Information flow controls

General Terms

Languages, Security
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1. INTRODUCTION

JavaScript has become the dominant language for client-
side web development. Once relegated to form validation
and similar small tasks, JavaScript today has become a ma-
jor component of the Web 2.0 architecture; applications such
as Google Maps and Gmail rely on it heavily to give online
applications the interactive features previously limited to the
realm of desktop applications. Browser vendors have spent
a good deal of effort on their JavaScript implementations,
so that recent versions have become tremendously fast [17].

But as JavaScript’s role has grown, its security vulner-
abilities have become more significant. Most prominently,
cross-site scripting (XSS) has become one of the most perva-
sive computer security vulnerabilities. Mashups [26], where
code is combined from multiple sites, are particularly prob-
lematic, and yet they are very popular. In response, a wide
array of security mechanisms have been put in place. The
same origin policy [29] is one of the oldest, beginning with
early versions of Netscape. It prevents scripts from access-
ing documents from other domains, but it does very little to
control the interaction of scripts loaded in the same page. To
give developers greater freedom, Mozilla developed a system
for signed scripts [28] and Internet Explorer created Secu-
rity Zones [27]. Unfortunately, the permissions granted by
these two systems have little overlap, making developing se-
cure applications that function correctly across all browsers
extremely difficult. Other strategies have involved limiting
JavaScript to only a subset of language features; this is the
approach taken by Facebook with FBJS [15] and Google
with Caja [18]. This list covers only a portion of the total
security mechanisms focused on JavaScript and the browser.

The error-prone nature of software systems suggests that
critical security policies are best enforced by small trusted
modules, rather than being an emergent property of complex
and buggy application code. Just as memory-safe languages
provide a resilient defense against buffer-overrun vulnera-
bilities, violations of privacy or data integrity expectations
need a similar systemic solution. While these concerns apply
to a wide variety of programs, they are particularly relevant
in a browser setting where code fragments from multiple
untrusted or semi-trusted servers execute within the same
process.

Information flow analysis is a compelling option for solv-
ing these issues. It gives a stronger guarantee that confiden-
tiality and integrity are protected, while being arguably less



Figure 1: A JavaScript function with implicit flows

x = false” x = true’
Function £ (x) All strategies Naive No-Sensitive- Upgrade Permissive- Upgrade

y = true; y = true” y = true® y = true” y= true”

z = true; z = true® z = true® z = true® z = true®

if (x) branch not taken branch taken,pc = H branch taken,pc = H branch taken,pc = H
y = false; y remains true” y updated to false™ stuck y updated to false”

if (y) branch taken, pc = L branch not taken stuck, infer upgrade
z = false; z updated to false” z remains true”

return z; returns false® returns true”

Return Value: false” true”

restrictive than some measures currently being used. Much
prior work has focused on providing information flow secu-
rity guarantees via type-based static analyses [41, 21, 8, 42,
31]. In general, static analyses are often preferred for their
advantages in performance and because of their ability to
reason about all paths of execution. Unfortunately, type-
based static analyses are not applicable to browser-based
applications written in JavaScript, which is a dynamically
typed language. Therefore our work focuses on enforcing
information flow policies dynamically rather than statically.

Previous work has addressed some of the performance con-
cerns of dynamic analysis [4], but verifying information flow
properties via a purely dynamic analysis is rather tricky.
The central correctness property that we wish to enforce
is termination-insensitive non-interference, which says that
changing the private inputs to an application should not
influence any of the public outputs.! Verifying this prop-
erty dynamically requires simultaneously reasoning about
the current actual execution of the program, as well as pos-
sible alternate executions of the program on the same public
inputs but different private inputs.

Dynamic analysis can reason precisely about the actual
execution, but simultaneously reasoning about possible al-
ternate executions is rather difficult, particularly when the
alternate execution could execute different code and update
different memory locations than the actual execution. A
particular challenge is handling implicit flows, when code
whose execution is conditional on private information up-
dates a public variable.

The code fragment in Figure 1 captures the essence of
this difficulty in a simple example. This code defines a func-
tion f that takes a private boolean argument x, initializes
two public variables y and z to true, and then conditionally
updates both of these variables before returning z. Thus,
information flows from the private argument variable x into
y and then into z, and the challenge is to track this infor-
mation flow dynamically so that z is also labeled as private.
The security label H denotes private or high confidentiality
data, and conversely L denotes public or low confidentiality
data. Tracking the information flow due to a conditional
assignment that does not happen is particularly difficult, as
we discuss below.

! As in other approaches, the termination channel may leak
one bit of data, or somewhat more in the presence of inter-
mediary outputs [1].

Naive. An intuitive (but ineffective) strategy for handling
the first conditional assignment to y is to upgrade the label
ony to H, since that assignment is conditional on the private
variable x. In the case where x is true” then y becomes
false®, and is appropriately labeled private; however, if x
is false” then y remains true’ and is still labeled public.
Thus, we say that the variable y is partially leaked, since y
now contains private information but y is labeled private on
only one of these two executions.

Continuing the example, we now perform a second con-
ditional assignment to z, which is initially true’. The re-
sult of these two conditionals is that z is labeled public,
but contains the value of the private input x. That is, if
x is true” then y becomes false® and z remains true®;
conversely, if x is false” then y remains true” and so z
becomes falsel. Thus, the naive approach to handling im-
plicit flows permits both partially leaked data (in y) and
totally leaked data (in z), and fails to provide termination-
insensitive non-interference.

No-Sensitive-Upgrade. The above intuitive approach of
simply upgrading the security label of the conditionally as-
signed variable is inadequate. A proposed solution uses
the no-sensitive-upgrade check [42, 4], whereby execution
will fail-stop or get stuck whenever data would be partially
leaked. Under this strategy, the assignment to the pub-
lic variable y from code conditional on a private variable x
would get stuck.

Although this strategy satisfies termination-insensitive non-
interference, it also rejects valid programs that have no in-
formation leak. To illustrate this limitation, consider the
following code snippet where the input x is private:

var y = false;
if (x) {y = true; }
return true;

Although no information leak occurs, this program gets stuck
under the no-sensitive-upgrade approach (and would also be
rejected by many static analyses).

Permissive-Upgrade. The goal of this paper is to al-
low more applications to run to completion than under the
no-sensitive-upgrade check, while still providing information
flow security guarantees.

Our proposed permissive-upgrade strategy tolerates and
carefully tracks partially leaked data, while still providing
termination-insensitive non-interference. The central idea



Figure 2: Implicit flow function with
privatization operation
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Permissive- Upgrade
Function f (x) x=false” x=true”
y = true; y = true” y = true”
z = true; z = true” z = true”
if (x) branch not taken branch taken, pc = H
y=false; y remains true’” y updated to false”
if (<H>y) branch taken, pc = H branch not taken
z=false; | z updated to false” z remains true®
return z; returns false’ returns true”
Return Value: false” true’

is to introduce an additional label P to identify and track
partially leaked data:

The security label P identifies partially leaked
data that contains private information but which
may be labeled as public in some alternative ex-
ecutions.

Thus, at the conditional assignment to y in Figure 1, if x
is false then y remains true’, as the assignment is not
performed. If x is true®, however, then y is updated to
false®, where the label P reflects that in other executions
y may remain labeled public.

Such partially leaked data must be handled quite deli-
cately. In particular, if y is ever used in a conditional branch,
as in the second conditional of Figure 1, then the permissive-
upgrade strategy still gets stuck in order to avoid converting
a partial information leak into a total information leak.

To avoid getting stuck in this situation, the conditional
test expression y can be labeled as private before the condi-
tional test, as shown in Figure 2. This privatization opera-
tion

(H)y
converts both public (L) and partially leaked (P) data to
private (H). Critically, converting partially leaked data to
private is sound since, as a consequence of the labeling oper-
ation, the resulting data is made private on all executions,
including alternative executions where y was originally la-
beled public. Thus, we can avoid stuck executions simply
by inserting privatization operations at all sensitive uses
of partially leaked data. Sensitive uses include conditional
branches, as described above, but also other operations such
as indirect jumps, virtual method calls, etc. Once all the
necessary privatization operations are in place, program ex-
ecution will never fail-stop (although it may diverge). Any
results returned will be labeled in a way that accounts for
any influence from private data, including via implicit flows.

Privatization Inference. Finding all of these sensitive
use points manually, however, can be an onerous task. This
overhead is problematic since convincing developers to adopt
different security tools is always something of a challenge.
Especially when extra work is required, resistance to adop-
tion can be fierce.

Fortunately, we can extend the permissive-upgrade se-
mantics to minimize the burden placed on developers. When-
ever a program would get stuck based on a sensitive use

of partially leaked data, the runtime engine can infer the
needed privatization operations. Over time, these privati-
zation operations will improve the precision of the analysis,
rejecting fewer program executions.

We present an extension of our permissive-upgrade eval-
uation semantics that also infers these privatization oper-
ations. In situations where our original semantics would
get stuck because of a sensitive use of partially leaked data,
the extended semantics automatically inserts the appropri-
ate privatization operation instead, and so continues execu-
tion. Thus, the conditional test “if (y)” is automatically
converted to “if ((H)y)”.

In practice, we envision that these techniques could be
applied as follows: A JavaScript web application is initially
released in an instrumented form that uses the extended se-
mantics to infer the needed privatization operations. This
semantics never gets stuck but does not (yet) provide infor-
mation flow guarantees. After a certain period of testing,
most privatization operations will be determined, and the
appropriately modified application could be re-released un-
der the permissive-upgrade semantics with strong information-
flow guarantees. Subsequently, some executions may still get
stuck, but these are likely to be few, and can immediately
be used to update the privatization operations for the appli-
cation, preventing subsequent executions from getting stuck
at the same sensitive operation. In this manner, the diffi-
culty of inferring the correct privatization operations can be
amortized over a large collection of users.

We hope that these inference techniques may help mi-
grate existing Javascript web applications into a more se-
cure world, where information flow policies are tracked and
enforced by the language runtime itself. This deployment
strategy requires information-flow support in the browser’s
JavaScript implementation, and we are exploring how to in-
corporate such extensions in the Firefox browser [14].

2. A CORE LANGUAGE FOR
INFORMATION FLOW

We formalize our permissive-upgrade strategy in terms
of A™° an imperative extension of the lambda calculus de-
scribed in Figure 3. The lambda calculus has a rich tradition
as a foundational test-bed for research in programming lan-
guages and type theory, and we believe that it is an equally
effective platform for investigating information flow security.

Terms include variables (z), constants (c), functions (A\z.e),
and function application (e; e2). Constants include integers
as well as primitive operations such as “+”. Since many of
the challenges in information flow analysis come from im-
perative updates, our language supports mutable reference
cells, including terms for allocating (ref e), dereferencing
('e), and updating (e1:=e2) a reference cell. Finally, there
is a term for labeling data as private ((H)e).

A" is much simpler than JavaScript, allowing us to rea-
son more easily about some of the challenges involved in
correctly handling implicit flows. Although exceptions add
important additional complexities to implicit flows [2, 24],
we leave them for future work.

Many additional constructs can be built from this core
language; the second part of Figure 3 sketches some stan-
dard encodings for booleans, conditionals, let-expressions,
and sequential composition.

As an illustrative example of A™°, Figure 4 translates the



Figure 3: The source language \™°
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Syntax:
e = Term
T variable
c constant
Ax.e abstraction
e1 e application
ref e reference allocation
le dereference
e:=e assignment
(H)e privatization operation
T,Y, % Variable
c Constant

Standard encodings:

true AT Ay
false def AT Y.y
if e; then ey else e3 = (ex (Ad.e2) (Md.e3)) (Ax.x)
if e; then es def if e; then es else 0
let © = e; in es def (Az.e2) e1
def

e1;e2 = letxz=eines, x ¢ FV(e2)

Figure 4: The implicit flow function f in A"
I 1

AX.
let y = ref true in
let z = ref true in

if x then

y := false;
if 'y then

z := false;
1z

implicit flow function f (x) shown in Figure 1 from JavaScript
into A™°. The translated function proceeds in an analogous
manner to the original function, except that JavaScript mu-
table variables are now represented as reference cells. The
A"™° version creates two public reference cells y and z and
conditionally updates both of them. It then returns the
value of the reference cell z via the dereference operation
'z,

3. THREE EVALUATION STRATEGIES

We next formalize the permissive-upgrade evaluation strat-
egy for the idealized language A™°. For completeness, we
also formalize the two other evaluation strategies (naive and
no-sensitive-upgrade) discussed in the introduction. Fig-
ure 5 presents the core semantics that is common to all
evaluation strategies.

The semantics includes both public (L) and private (H)
labels, as well as the partially leaked label (P), which is used

exclusively by the permissive-upgrade semantics. In a more
general setting with multiple principals, each security label
would have the type

Principal — {L,H, P} .

Our approach extends to this more general setting, but for
clarity of exposition we present our ideas in a simpler setting
with just a single principal and a three element label lattice.
Labels are ordered by

LCHCP

reflecting the constraints on how correspondingly labeled
data is used, noting that partially leaked data must be han-
dled in a more restrictive manner than private data. We
use LI to denote the corresponding join operation on labels.
Critically, because P is more restrictive than H, HUP = P.

In the evaluation semantics, each reference cell is allocated
at an address a. A store o maps addresses to values. A
raw value 7 is either a constant (c), an address (a), or a
closure (Az.e, ), which is a pair of a A-expression and a
substitution € that maps variables to values. A value v has
the form 7*, which combines both an information flow label
k € {L,H, P} and a raw value r. We use () to denote both
the empty store and the empty substitution.

Figure 5 defines the semantics of A™° via the big-step
evaluation relation:

!
0,0,elpc o', v

This relation evaluates an expression e in the context of a
store o, a substitution 6, and the current label pc of the
program counter, and returns the resulting value v and the
(possibly modified) store o’. The program counter label
pc € {L,H} reflects whether the execution of the current
code is conditional on private data.

The rules defining this evaluation relation are straightfor-
ward, with some notable subtleties on how labels are han-
dled. In particular, we adopt the invariant that the label
on the resulting value v is at least as secret as the program
counter (pc C label(v)). Thus, for example, the [consT] rule
evaluates a const ¢ to the labeled value ¢”“. The [Fun] rule
evaluates a function (Az.e) to a closure (Azx.e, 0)P° that cap-
tures the current substitution and that includes the program
counter label. The [var] rule for a variable reference = ex-
tracts the corresponding value 0(x) from the environment
and strengthens its label to be at least pc, using the follow-
ing overloading of the join operator:

(rl) Uk & 008

The [app] rule applies a closure to an argument; to avoid
information leaks, this rule gets stuck if the closure is par-
tially leaked. The [priM] rule applies function primitives.
The [rEF] and [DEREF] rules create and dereference a refer-
ence cell, respectively.

The [LaBeL] rule for (H)e explicitly tags the result of eval-
uating e as private, ignoring the original label k. This rule
can be used either to upgrade public data or downgrade par-
tially leaked data. Note that the latter case is safe, since the
data will be made private on the current execution as well
as any alternate execution.

From these rules, we can derive corresponding evaluation
rules for the encoded constructs, which are also shown in
Figure 5. Critically, the [THEN] and [ELsE] rules get stuck if
the conditional is partially leaked.



Figure 5: Core semantics for A"/

Runtime Syntax:

a € Address
o € Store = Address —, Value
0 S Subst = Var —, Value
r € RawValue = clal| (Axe,0)
v S Value n= rk
k, 1, pc € Label BES L|H|P
Evaluation Rules:
[CONST] [FUN}
0,0,c {pc o, 0,0, (Az.e) pe o, (Az.e, 0)P°
[VAR] [LABEL]
0,0,e p o', r*
0,0,z |pe o, (6(x) U pe) 0,0, (H)e |y o, 71
(aPP]
0,0,e1 Upe 01, (Az.e,0")" [PRIM]
k#P 0,0,e1 Upe Ulack
01,0, e2 ‘U’pc 02, V2 01,0,62 l},,c ag,dl
02,0 [z :=va],e Yp o', v r = [c](d)
7,0, (e1 e2) Upe o', v 7,0, (e1 e2) Ype og, T
[REF]
0,0,ellpc o' v [DEREF]
a & dom(o") 0,0,elpc o', a”
0,0, (ref e) {pec 0'la :=v],a* a,0,'e Jpc o', (' (a) LK)
Derived Evaluation Rules:
[THEN] [ELSE]
0,0,e1 {pe 01, (true, 6’)’“ a,0,e1 Upe 01, (false, 0)F
k#P k#P
01,9,62 Uk O’l,'U 0'1,9,63 l}k O'/,v
0,0, (if e1 then es else e3) {pe o', v 0,0, (if e1 then es else e3) pc 0,0
[LET] [SEQ]
0,0,e1 {pc 01,01 0,0, e1 Ype 01,01
01,0z :=vi],e2 Ype 0’0 o1,0,e2 Ype o',

0,0, (let x = e1 in e2) {pec 0,0 0,0, (e1;e2) Upe o', v




Figure 6: A secure function
I 1

Function g(x) x=false’ x=true’
Both NSU | Perm. U.
let y = ref true in true” true” true”
if x then y:=false; true” stuck false”
y:=true; true” true”
y
Return Value: true” true”

Assignment statements are notably missing from Figure 5
since they introduce difficult problems with implicit flows.
Below, we formalize the three strategies for tracking implicit
flows as three different rules for evaluating assignment state-
ments.

We also illustrate these strategies on the example function
f (x) shown in Figure 4. In the situation where the argument
x is false® all three evaluation strategies return false®.
The following subsections describe how different strategies
handle the tricky case where x is true” and where £ must
update the public reference cell y.

3.1 The Naive Approach

The intuitive approach for assignment is to promote the
label on the reference cell to at least the label k on the
address a®. (Note that a global evaluation invariant ensures
that pe C k.)

070761 ‘ULDC Uhak
0—159362 U’PD 027U
0,0, (e1:=€2) Ipc 02[a := (VU K)],v

[ASSIGN-NAIVE]

For the function call f(true®), this strategy updates y to
false® but leaves z as true”. Thus, by comparing the
return value for the All strategies and Naive column of Fig-
ure 1, we see that the result of f£(x) is a publicly labeled
copy of its private argument, and so this naive approach
leaks information.

3.2 The No-Sensitive-Upgrade Approach

The no-sensitive-upgrade (NSU) approach avoids informa-
tion leaks by getting stuck if a public reference cell is up-
dated when the pc is private, or when the label on the target
address is private. (In an implementation such stuck states
might cause an exception to be thrown to the top level.)

The following rule requires that the label k on the target
address a” is at most the label on the reference cell contents.
This rule assumes all data is labeled public or private, but
never partially leaked.

ag, 07 €1 ‘U’PC g1, ak
017 07 €2 ‘UPC 027 v
k C label(o2(a))
0,0, (e1:=€2) Ypc o2[a := (VU K)],v

[ASSIGN-NSU]

For our example function, the call £ (truef) would get
stuck on the update to the public variable y within a private
branch of execution, as illustrated by the NSU column of
Figure 1, preventing the information leak.

Unfortunately, the NSU strategy may also get stuck on
code that does not leak information, as shown in Figure 6.
Although there is no information leak, evaluation of g(true’)
gets stuck when the private parameter x is partially leaked.
Thus, the NSU strategy satisfies termination-insensitive non-
interference, but is unnecessarily restrictive.

3.3 The Permissive-Upgrade Approach

The permissive-upgrade semantics introduces an additional
label (P) in order to tolerate and track partially leaked data.
This strategy allows us to defer the point of failure and re-
duce the number of false positives.

The rule [AssIGN-PERMISSIVE] below considers an assign-
ment to an address ¢ that currently holds a value labeled
[. The rule requires that the address is not partially leaked

(k # P).

[ASSIGN-PERMISSIVE]
0,0,e1 pc o1, a®
01,0,e2 {pc 02,0
I = label(o2(a))
k#P
m = lift(k,1)
0,0, (e1:=e2) {pc 02[a := (vUM)],v

The rule uses the following function lift(k, ) to infer the new
label m for the reference cell.

k l lift(k, 1)
L | any L
H| L P
H| H H
H| P P

We consider each possible combination of labels k£ and (:

e If the target address is public (k = L), then execution
is not in a private context (due to the evaluation in-
variant that pc C k). In this situation there are no
difficulties with implicit flows, so m = L.

e Conversely, if the target address or execution context
is private (k = H), then an attempt to update a public
reference cell (I = L) results in the new contents being
labeled as partially leaked (m = P).

e Updating a private cell from a private context is fine,
and results in a private cell.

e Finally, updating a partially leaked cell from a private
context leaves the cell as partially leaked.

For the function call £ (true® ) from Figure 1, the permissive-
upgrade strategy handles the first conditional assignment by
marking y as partially leaked, but gets stuck on the second
conditional test, to avoid information leaks.

We can remedy this situation by introducing the label
(H):

if ((H)!ly) then z := false;

This privatization operation ensures the test expression is
private on both executions, rather than partially leaked on



one execution and public on the other. The modified func-
tion f now runs to completion on all boolean inputs. Sec-
tion 5 discusses how to infer these privatization operations
automatically.

Figure 6 demonstrates that, under the permissive-upgrade
strategy, the function g runs to completion on all boolean
inputs (unlike under NSU). More generally, the following
theorem shows that any execution that does not get stuck
under NSU evaluation (denoted {;;) will also not get stuck
under permissive-upgrade evaluation (denoted ;). Thus,
the permissive-upgrade strategy is strictly superior to NSU.
For the proof of this theorem, we refer the interested reader
to a related technical report [5].

THEOREM 1. Suppose o, 0, and pc do mot contain the
partially leaked label P and o,0,¢e | o',v. Then 0,0, € {pe
o',v, and o' and v do not contain P.

Partially leaked data must be handled carefully, since on
an alternative execution this data might be labeled as pub-
lic. In particular, function calls, conditionals, and assign-
ments are considered sensitive operations; these operations
get stuck (via the antecedent k # P) if applied to partially
leaked data (as otherwise our information flow analysis could
not track how alternative executions may propagate par-
tially leaked information). These stuck sensitive operations
are critical for avoiding information leaks, and they distin-
guish the permissive-upgrade approach from the unsound
naive approach.

To motivate why assignment statements are sensitive op-
erations, consider the function h(x) shown in Figure 7. This
function allocates two reference cells y and z, initializes w as
a pointer to y, and then, depending on the private argu-
ment x, conditionally updates w to point to z. At this stage,
w is partially leaked, since whether it points to y or z de-
pends on the input argument x. Updating the reference cell
pointed to by w would result in totally leaked data, and must
be precluded by the evaluation getting stuck at the indirect
assignment

('w) := false

as shown in the third column of Figure 7.

The right hand side of Figure 7 illustrates how privatiza-
tion operations overcome this limitation. The new function
h_priv is identical to h, except that it makes the target
address private before the assignment, as in:

((H)!w) := false

which allows this function to complete without information
leaks. In particular, the revised assignment now updates y
to falsef, and so the return value is marked as partially
leaked.

4. TERMINATION-INSENSITIVE
NON-INTERFERENCE

We now verify that the permissive-upgrade strategy guar-
antees termination-insensitive non-interference.

Traditional non-interference arguments are based on an
equivalence relation between labeled values that considers
privately labeled values to be equivalent, even if the under-
lying raw values differ. The introduction of partially leaked
data complicates this equivalence relation, since true’ and

false® are equivalent, as are false? and false”, since in
each case the label P correctly identifies private data that
is partially leaked. However, true” and false’ are not
equivalent, and so our desired “equivalence” relation does
not satisfy transitivity.

Instead, we call this relation compatibility (~). Intuitively,
two stores are compatible if they differ only on private data,
and executions that start with compatible stores should yield
compatible results. In more detail, we define the compatibil-
ity relation (~) on labels, values, substitutions, and stores
as follows.

e Two labels are compatible if both are private or one is
partially leaked:

def

ki ~ky = (ki,ke) e {(H H),(P,—),(—,P)}

Label compatibility is neither reflexive (as L «¢ L) nor
transitive (as L ~ P ~ L but L ¢ L).

e Two values are compatible if either their labels are
compatible or the labels are identical and the raw val-
ues are compatible.

k1 ko def
Tyt~ Ty =

ki~ko V (ki =k A r1~T2)

e Two raw values are compatible if they are identical or
they are both closures with identical code and com-
patible substitutions:

rT1L ~T2 d:ef

=12 V (7"1 = (Ax.e,@l) ANre = ()\1’.6,92) NG ~ 92)

e Two substitutions are compatible (written 01 ~ 63) if
they have the same domain and compatible values:
0 ~0,

dom(61) = dom(02) AVz € dom(61). (61(z) ~ O2(z))

e Two stores o1 and o2 are compatible (written o1 ~ 02)
if they are compatible at all common addresses:
o1~y Y Vae(dom(or)Ndom(a2)). o1(a) ~ oa(a)

We also introduce an evolution (or can evolve to) relation

(~) that constrains how evaluation with a private program

counter can update the store. This relation composes in a
transitive manner with compatibility: see Lemma 6 below.

e Label k1 can evolve to ks if both labels are private or
ko is partially leaked:

def
k1~ ko =

ki=ko=H V ko=P
o A value ' can evolve to rk? if either the two values
are equal or k1 can evolve to ka:

k1 ko def k1 ko

T~ Ty = r'=7y> V ki~ ke

e A store o1 can evolve to o2 if every value in o1 can
evolve to the corresponding value in os:

def
o1~ 02 =

dom(o1) C dom(o2) A Ya€ dom(o1). o1(a) ~ o2(a)



Figure 7: An example of a function with a sensitive assignment

Permissive Upgrade Permissive Upgrade

Function h(x) x = false” x = true” Function h_priv(x) x=false” x=true’
let y = ref true in y = truel y = truel let y = ref true in y= truel y= truel
let z = ref true in z = true® z = true” let z = ref true in z = true” z = true®
let w = ref y in w:yL w:yL let w = ref y in w:yL w:yL
if (%) branch not taken pc=H if (%) branch not taken pc=H

then w := z; w remains y* w updated to z” then w := z; w remains y* w updated to z*

(lw) := false; y = false” stuck <H>(lw) := false; y = false” z = false”
ly returns false®” ly returns false” returns true”
Return Value: false” Return Value: false” true’

The evolution relation captures how evaluation with a pri- LEMMA 6 (EvOLUTION PRESERVES COMPATIBILITY OF STORES).

vate program counter can update the store.
LEMMA 1 (EVALUATION PRESERVES EVOLUTION).
If0,0,ely o' v then o ~ o'.

ProoF. The proof proceeds by induction on the deriva-
tion of 0,0,e | ¢’,v and by case analysis on the final rule
in the derivation.

e [consT], [FUN], [VAR]: ¢’ = 0.
e [APP|, [PRIM], [LABEL], [DEREF|: By induction.
e [REF]: 0 and o’ agree on their common domain.

® [ASSIGN-PERMISSIVE|: In this case, e = (e1:=e2) and we
have:
0',9,61 llH O’l,CLH
0'1,0,62 UH g2,v
I = label(o2(a))
m = lift(H,1)
o' = oaa:= (vUm)]

By induction, ¢ ~ o1 ~ o02. By Lemma 2 below,
I ~» m. Hence o2(a) ~ (vUm) and so o2 ~» o’.

O

In order to prove Lemma 1, we note some important prop-
erties of the ~» relation. The evolution relation is transitive,
and it is reflexive for both values and stores.

LEMMA 2. Vm. m ~ lift(H, m).
LEMMA 3. ~ s transitive.
LEMMA 4. ~ on values and stores is reflexive.

The evolution relation on values interacts in a “transitive”
manner with the compatibility relation.

LEMMA 5. If v ~ vz ~» vs then v1 ~ v3.

If two stores are compatible (o1 ~ o2), then evolution of
one store (02 ~ 03) results in a new store that is compatible
to the original stores (o1 ~ o3), with the caveat that any
newly allocated address must not be in the original stores.

If 01 ~ 02 ~ o3 and (dom(c1) \ dom(o2)) N dom(o3) = 0
then o1 ~ o03.

PRrROOF. Let D = dom(o1) N dom(oz). Then D C
dom(o2). This means that Ya € D. o;(a) ~ o2(a) and
oz2(a) ~ os(a). Therefore, by Lemma 5:

Va € D. g4(a) ~ os(a)

Hence by the definition of the evolution relation, o1 ~ o3.

O

Next, we first observe certain properties of labels. First, if
two labels k1 and ko are compatible, then joining any label
to k1 will still maintain the compatibility relation.

LEMMA 7. [f k1 ~ ko then (k‘l L l1) ~ ko.

Also, if two labels are compatible and are part of different
values, those values will also be compatible.

LEMMA 8. If k1 ~ ko then (v1 L kl) ~ (v2 LJ kz).

In a secure context (H as the first argument to the lift func-
tion), all labels are compatible.

LEMMA 9. lLift(H, 1) ~ lift(H,l2).

Finally, we prove our central result: if an expression e is
executed twice from compatible stores and compatible sub-
stitutions, then both executions will yield compatible result-
ing stores and values. That is, private inputs never leak into
public outputs.

THEOREM 2
Suppose pc € {L,H} and o1 ~ 02 and 61 ~ 02 and 0;,0;, e | pe
o, v; fori € 1,2. Then oy ~ o5 and v1 ~ va.

ProOOF. The proof is by induction on the derivation
01,01,e {pe 01,01 and case analysis on the last rule used
in that derivation.

e [consT]: Then e = c and o] = 01 ~ 02 = o5 and
V1 = v = cP°.

e [var]: Then e = z and 0] = 01 ~ 02 = 04 and vy =
(61(2) U pe) ~ (62(z) U pe) = v,

(TERMINATION-INSENSITIVE NON-INTERFERENCE).



e [FUN]: Then e = Az.e’ and o] = 01 ~ 02 = o5 and
v1 = (Az.€’,01)" ~ (A\x.€/,02)"° = va.

e [LaBEL]: Then e = (H)e'. From the antecedent of this
rule, we have that for ¢ € 1,2:

! ok
O'i79i,e ‘UPC Uizriz

By induction, o] ~ o5. Also, regardless of the raw
values 71 and 7o, v ~ ri by the definition of the
compatibility relation.

e [app]: In this case, ¢ = (eq €), and from the an-
tecedents of this rule, we have that for i € 1,2:

" Nk
Oi70i7ea ‘U’PC 0i (Axe’byez) ‘
ki # P

7 77

o', 0i,ep Ype 07, v;
"meopra. o o ) o
a; 767,[‘7j — Ui]7e’b “Ukz 04, U;

By induction:

1 1"

g; ~ O3
0_/1// ~ o_é//
/\k I\k
(Az.e1,01)" ~ (Ax.eq,05)?
vy ~ v

— If k1 and k2 are both H then vy ~ v2, since they
both have label at least H. By Lemma 1, o}’ ~
o;. Without loss of generality, we assume that
the two executions allocate reference cells from
disjoint parts of the address space,? i.e.:

(dom(o}) \ dom(o?")) N dom(oh_;) =0

Under this assumption, by Lemma 6 o’ ~ 5.
Applying Lemma 6 again gives o} ~ d5.

— Otherwise 07 ~ 65 and e; = ez and k1 = ko.
By induction, of ~ o5 and v{ ~ v4, and hence
vy~ vh.
e [priM]: In this case, ¢ = (eq €p), and from the an-

tecedents of this rule, we have that for ¢ € 1,2:

1o ki
Uiaaiaea Upc a; 7Ci1

" gl
a; 70i7 €aq ‘U’PC 0i7di1

i = [ei] (di)

By induction:

" 1" ! !
g1 ~ 02 g1 ~ O3
k1 ko l1 lo
Cim ™~ Gy dyt ~ dj

— If either k1 ~ ko or I; ~ l2, then by Lemma 7
ki1 U1l ~ ko Ula. Therefore, r]fl'Jll ~ T;ﬂzulz.

— Otherwise, 11 = 12, since ¢1 = c2 and di = da.
Also, ki Uly = kaUla. Therefore, ritHh ~ phatiz

e [REF]: In this case, e = ref ¢’. Without loss of gen-
erality, we assume that both evaluations allocate at
the same address a ¢ dom(o1) U dom(o2), and so
a’® = v1 = wv2. From the antecedents of this rule,
we have that for 7 € 1,2:

/ "o
0—1767378 ‘U’PC 04 ,U;
R/ S
o; = 07 [a := vj]

By induction, o ~ ¢4 and v] ~ v5, and so o} ~ o5.

2We refer the interested reader to [6] for an alternative proof
argument that does use of this assumption, but which in-
volves a more complicated compatibility relation on stores.

e [DEREF]: In this case, e = !¢/, and from the antecedents
of this rule, we have that for ¢ € 1,2:

/ 1k
0'7;,97,’,6 ‘U’PC Uivail
’
Vi = O’i(ai) [y

i . k k
By induction, o] ~ o5 and aj' ~ a52.

k k
— Suppose a;' = ay>. Then a1 = a2 and k1 = k2
and o1 (a1) ~ o5(az), and so v1 ~ va.

k1 ko . k1 ko
— Suppose a;' # ay®>. Then since ay’ ~ a®> we

must have that k1 ~ ko2 and hence v; ~ v from
Lemma 8.

e [AssIGN-PERMISSIVE] In this case, e = (eq:=¢5), and from
the antecedents of this rule, we have that for i € 1, 2:
Ti, oia €a llpc 0-1(,7 afi
J"i’? 0i7 €y ‘U’I’C U'Z”v Vi
ki # P
m; = lift(k;, label (o} (a:)))

o) = O',EN[GM; = v; Lmy]

By induction:

1 1 " 111
g1 ~ 02 gp ~ 02
k k

a;t ~ ay? V1 o~ Vg

— If kv ~ ko then k1 = k2 = H. By Lemma 9,
mi ~ mg. By Lemma 8, (vi Umy) ~ (v2 Uma).
Hence o} ~ ob.

— Otherwise k1 = ko = L. Then m1 = mo = L and
hence o} ~ ob.

O

5. PRIVATIZATION INFERENCE

The permissive-upgrade semantics guarantees termination-
insensitive non-interference while getting stuck on fewer pro-
grams than the NSU semantics, and it will not get stuck if
the program includes privatization operations on sensitive
uses of partially leaked data.

We now extend our semantics to infer these privatiza-
tion operations. We begin by adding a position marker
p € Position on each sensitive operation (applications and
assignments) where partially leaked data is not permitted.
’JI

e m= ... | (e1e2)? | (e1:=e2)?

Rather than explicitly insert privatization operations at par-
ticular positions in the source code, we instead extend the
store o to now also record the positions where these opera-
tions have been conceptually inserted.

We replace the original [apPP] evaluation rule with three
variants, and similarly for [AssiGN-PERMISSIVE], as shown in
Figure 8. The [app-NOorMAL] rule applies if a privatization
operation has not been inserted (p € o) and is not needed
(k # P). [app-urcrADE| handles situations where the priva-
tization operation has been inserted (p € o) by ignoring the
label k& on the closure and behaving as if the closure were
labeled private instead. [App-INFER] handles situations where
a privatization operation is required (k = P) but has not yet
been inserted (p & o); it adds this position tag to the store
(conceptually inserting the required privatization operation)
and then reevaluates the application.



Figure 8: Privatization inference

I
Evaluation Rules:
[APP-NORMAL)|
pgo
0,0, e1 Upe 01, (Az.e,0)"
k# P
01,0, e2 {pc 02,02
02,0 [z :=va],e Yy o' v

0,0, (e1 e2)” Ype o',

[APP-UPGRADE]
peo
0,0,e1 pe 01, (Ax.€, 9/)k
01,0, e2 pe 02,02
02,0 [x :=vo],e b o’ v
0,0, (e1 e2)? pe o' v

[APP-INFER]
pgo
0,0, e1 Upe 01, Az, 0)"
k=P

(e U{p}),0, (e1 e2)? Yy 0’0
7,0, (e1 e2)? pe 0’0

[ASSIGN-NORMAL)]

péo
079,61 l}pc al,ak
k#P
0’1,0,62 llpc g2,v
1 = lift(k, label(o2(a)))
0,0, (e1:=e2)? Jpc o2[a := (vUI)],v

[ASSIGN-UPGRADE]

peo
0,0,e1 dpe o1,a”
0’1,0,62 llpc g2,v
I = lift(H, label(o2(a)))
0,0, (e1:=€2)? Jpec o2[a := (vUI)],v

[ASSIGN-INFER]

péo
0,0,e1 Upe Ul,ak
k=P
(0 U{p}),0, (e1:=e2)” Upc o',v
0,0, (e1:=e2)” Upe 0’0

Our revised semantics still guarantees non-interference,
but only if the evaluation did not infer additional privatiza-
tion operations. This observation leads to some interesting
design decisions. If output of the final result is allowed even
when there was an inferred label, then non-interference is
not guaranteed, but the information leak is detected. If out-
put is forbidden in this case, then the behavior is identical
to the permissive-upgrade semantics.

THEOREM 3 (NON—IN'I‘ERI“F,RENCE OF PRIVATIZATION INFERENCE).
Suppose pc # P and o1 ~ o2 and 01 ~ 02 and 0;,0;,¢e {pc
oi,v; and P; = (oj\o;)NPosition fori € 1,2. If P, = P, =)
then o} ~ b and vi ~ va.

We next show that adding some labels A to a program
only influences the labels in the program’s result, but not
the raw values. To formalize this property, we introduce a
raw equivalence order (=) that identifies values, substitu-
tions, and stores that differ only in their labels, not in their
underlying raw values. Moreover, raw equivalent stores are
allowed to differ in the position tags that they include, i.e.,
o~ (ocUA).

THEOREM 4
Suppose pc # P and A C Position and 0,0,e |, 01,v1 and
(cUA),0,e Upec 02,v2. Then o1 = o2 and v1 ~ v

We prove this theorem via the following lemma, which
strengthens the inductive hypothesis.

LEMMA 10. Suppose pc # P and o1 = o2 and 01 = 62
and 0;,0;,e pe, 0f,v; for i € 1,2. Then o7 = ob and
V1 R V2.

(NON—INTERFERENCE OF PRIVATIZATION OPERATIONS).

Proofs for Theorem 3 and Lemma 10 are available in a
related technical report [5].

Whenever a program occurs that surrenders a bit of in-
formation, the missing privatization operation can be deter-
mined. These inferred operations might lead to label creep,
especially if a function is used both with public data and
private data. Addressing this issue remains future work.

6. RELATED WORK

Denning’s papers [12, 13] are largely the beginning of in-
formation flow analysis for a high-level language. Her work
advocates a static certification approach; since then, static
approaches have dominated because of their generally su-
perior performance and the perceived advantages in han-
dling implicit flows. Volpano et al. [41] and Heintze and
Riecke [21] are two of the most well known type-based ap-
proaches, though their target languages are relatively mini-
mal. Pottier and Simonet [31] introduce a more complex sys-
tem for Core ML. Chaudhuri et al. [8] create a type system
for handling explicit flows in Windows Vista. Sabelfeld and
Myers [35] give an excellent overview of different language-
based information flow analyses.

Recently, there has been more appreciation of the comple-
mentary benefits that each approach offers. Many strategies
rely primarily on static techniques and insert dynamic run-
time checks only in ambiguous cases [7, 39]. This approach
reduces false positives with a minimum impact on perfor-
mance. Myers [30] introduced JFlow, a variant of Java using
this hybrid strategy, which was the basis for Jif [23]. Chugh
et al. [11] propose a mostly static approach for analyzing



JavaScript with “holes” for dynamically generated code.

Generally, dynamic analysis is more often applied to client-
side scripting, particularly for JavaScript, where dynamic
typing makes type-based approaches difficult. Vogt et al. [40]
reverse the standard hybrid approach, relying primarily on
dynamic checks but falling back to runtime certification for
implicit flows. Chudnov and Naumann [10] inline a hybrid
information flow monitor, again with a focus on JavaScript.

Several papers address challenges that are of particular
interest to JavaScript. Russo et al. study information flow
analysis in the DOM [34] and timeout mechanisms [32].
Askarov and Sabelfeld [3] cover declassification and analysis
of dynamic code evaluation. Magazinius et al. [26] study
safe declassification in JavaScript mashups.

In his dissertation, Zdancewic [42] first proposed rules for
dynamic analysis to effectively handle implicit flows. Our
own work later dubbed the key assignment rule the no-
sensitive-upgrade check and addressed performance concerns
for dynamic analysis with a sparse-labeling approach [4]. Le
Guernic et al. [19] use dynamic automaton-based monitor-
ing. Sabelfeld and Russo [36] formally prove that both static
and dynamic approaches make the same security guarantees.
Shroff et al. [38] dynamically track dependencies to guaran-
tee noninterference. Shinnar et al. [37] provide a dynamic
analysis that follows a lazy policy enforcement, similar in
spirit to our permissive-upgrades. This same paper also dis-
cusses the interplay between different dimensions of infor-
mation, focusing primarily on integrity and confidentiality.

Flow-sensitive information flow analyses attempt to re-
duce false-positives. Hunt and Sands [22] use a flow-sensitive
type-system while Hammer and Snelting [20] use program
dependency graphs. Russo and Sabelfeld discuss the limits
of flow-sensitivity for purely dynamic languages [33].

Several papers highlight important areas for concern for
any production-worthy information flow analysis. Both
Chong and Myers [9] and Fournet and Rezk [16] focus on
downgrading confidential information. Askarov et al. [1]
demonstrate that Denning-style analysis may leak more than
one bit in the presence of intermediary output channels, but
that any attack will be limited to a brute-force approach.
Askarov and Sabelfeld [2] and King et al. [24] discuss excep-
tion handling challenges. Livshits et al. [25] design a sys-
tem for inferring information flow policies to handle explicit
flows.

7. CONCLUSION

We present a permissive-upgrade semantics that tracks in-
formation flow in a more flexible manner than prior dynamic
approaches, using a new label (P) to permit partially leaked
data without loss of soundness. Using this strategy, we in-
troduce a degree of flow-sensitivity into dynamic informa-
tion flow analysis. To avoid stuck executions, privatization
operations are required on sensitive uses of partially leaked
data, and we show how these labels can be inferred dynami-
cally. We hope these techniques will help enforce important
information-flow policies in dynamically typed web applica-
tions. We are exploring how to incorporate these and other
ideas into the Firefox web browser [14].
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