
Detecting Race Conditions in Large Programs

Cormac Flanagan Stephen N. Freund
Compaq Systems Research Center

130 Lytton Ave.
Palo Alto, CA 94301

{cormac.flanagan, stephen.freund}@compaq.com

ABSTRACT
The race condition checker rccjava statically identifies po-
tential races in concurrent Java programs. This paper de-
scribes improvements to rccjava that enable it to be used
on large, realistic programs. These improvements include
not only extensions to the underlying analysis, but also an
annotation inference algorithm and a user interface to help
programmers understand warnings generated by the tool.
Experience with programs containing up to 500,000 lines of
code indicate that it is an effective tool for identifying races
in large-scale software systems.

1. INTRODUCTION
A race condition occurs when two threads manipulate a

shared data structure simultaneously, without synchroniza-
tion. Race conditions are common errors in multi-threaded
programs, and since they are timing-dependent, they are
notoriously hard to catch using testing.

In a previous paper [10], we described rccjava, a static
analysis tool that has successfully caught race conditions in
a variety of small to medium-sized Java programs. This pa-
per describes our work and experience in scaling rccjava

to significantly larger programs. In particular, we address
improvements to rccjava in the following three areas:

Annotation inference: rccjava is an annotation based
tool, relying on the programmer to supply annotations that
describe the locking discipline, such as which lock protects
a particular field. In practice, this limitation has restricted
the application of rccjava to small to medium-sized (about
20 KLOC) programs for which the task of writing anno-
tations is tolerable. To achieve practical analysis of large
programs, we developed an annotation inference system for
rccjava based on the Houdini framework [11].

Reducing spurious warnings: Since statically detecting
race conditions is undecidable in general, rccjava is incom-
plete by design and may produce false alarms for certain
programming idioms. To keep the number of false alarms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASTE’01, June 18-19, 2001, Snowbird, Utah, USA.
Copyright 2001 ACM 1-58113-413-4/01/0006 ...$5.00.

manageable when analyzing larger programs, we have ex-
tended rccjava to accurately reason about additional pro-
gramming idioms that often occurred in larger programs.

User interface: The task of processing and understanding
rccjava’s output is a labor-intensive process, particularly
for large programs with many potential race conditions. To
assist in this process, we have developed a simple but effec-
tive user interface that describes the potential races. It also
clusters race conditions together according to their probable
cause so that related race conditions can be dealt with as
a single unit. In addition, the user interface describes the
analysis performed by the annotation inference system in
such a way that the programmer can easily understand the
cause of warnings.

The combination of these improvements have allowed us
to successfully analyze programs containing up to half a mil-
lion lines of code.

The presentation of our results proceeds as follows. Sec-
tion 2 starts with a review of rccjava. Section 3 introduces
Houdini/rcc, our annotation inference system for rccjava,
and Section 4 describes extensions to the system necessary
for handling large programs. Section 5 describes the user
interface. Section 6 describes our experience using Houdi-

ni/rcc to catch race conditions in several large test pro-
grams. Section 7 describes related work, and we conclude
in Section 8.

2. THE RACE CONDITION CHECKER
This section reviews rccjava. As described in an earlier

paper [10], rccjava is an extension of Java’s type checker
that identifies race conditions in multi-threaded Java pro-
grams. It supports the lock-based synchronization disci-
pline [?], which is the dominant synchronization discipline
in Java programs.

The rccjava checker relies on some additional type anno-
tations providing information about the locking discipline,
such as which lock guards a particular field. It checks that
these annotations are respected by the program and are suf-
ficient to ensure the absence of race conditions.

To illustrate this technique, consider the simple bank ac-
count class shown in Figure 1. This class contains a small
number of rccjava type annotations. The annotation guarded by

lock on the field balance indicates that the lock lock must
be held whenever balance is accessed or assigned. Simi-
larly, the annotation requires lock on the method update

indicates that lock must also be held whenever update is
invoked.

class Account {

final Object lock = new Object();

/*# guarded_by lock */

int balance = 0;

/*# requires lock */

void update(int n) { balance = n; }

void deposit(int x) {

synchronized(lock) {

update(balance + x);

}

}

}

Figure 1: An annotated Account class.

Thus, using rccjava to check the code fragment:

Account a = new Account();

a.balance = 100;

a.update(100);

would yield warnings that lock is not held either on the
assignment to balance or on the invocation of update.

On the other hand, the following (correctly synchronized)
code is accepted by rccjava:

Account a = new Account();

synchronized(a.lock) {

a.balance = 100;

a.update(100);

}

In general, lock names may be any constant values, such as
this, any final variable, or any final field of a constant refer-
ence. To check that these annotations are respected by the
program, rccjava computes a conservative approximation
of the locks held at each program point and verifies that the
necessary locks are held on field accesses and method calls.

Multi-threaded programs often contain a significant amount
of data local to individual threads. For example, consider
a Web server that contains a number of worker threads to
handle http requests. Each of the worker threads may cre-
ate and use data structures that are not shared among the
other threads, and hence do not synchronization.

To handle this situation, rccjava allows a class to be an-
notated as thread local; such a class does not require locks
guarding its fields. All potentially shared fields (including
static fields and instance fields of objects that are not local
to a single thread) must be annotated with a guarding lock.

Although rccjava supports a number of additional fea-
tures, such as classes parameterized by locks, this paper fo-
cuses primarily on guarded by, requires, and thread local

annotations. For more details, we refer the interested reader
to an earlier paper [10].

3. ANNOTATION INFERENCE
The rccjava checker has proven capable of detecting race

conditions in a variety of programs. Unfortunately, before
using rccjava to detect these race conditions in a program,
it is necessary to first add appropriate rccjava type anno-

tations to that program. Our experience to date indicates
that a programmer can annotate an existing, unannotated
program at the rate of 1000 lines per hour. While this anno-
tation overhead is tolerable for small to medium-sized pro-
grams, it becomes quite costly for larger programs.

To make rccjava a more cost-effective tool for catching
race conditions in large programs, we have developed an an-
notation assistant that infers suitable rccjava annotations
for an unannotated program. This annotation assistant,
called Houdini/rcc, is based on the Houdini annotation in-
ference architecture [11]. Houdini/rcc infers annotations
using the following algorithm.

generate candidate annotation set;
repeat

invoke rccjava to refute annotations;
remove the refuted annotations

until quiescence

The simplicity of this algorithm is due to its reuse of rccjava
to reason about the correctness of particular annotations.

The first step in the algorithm is to generate a finite set
of candidates annotations. Each candidate annotation is a
conjectured property of the locking discipline used by the
program. For each class, the candidate annotation set in-
cludes an annotation thread local conjecturing that all
instances of that class are local to a particular thread.

In addition, Houdini/rcc conjectures that each non-final
field is guarded by a number of different candidate locks.
The candidate locks include this and any final field declared
in the same class or a superclass. Similarly, for each routine,
Houdini/rcc conjectures that each of these candidate locks
must be held on entry to that routine. Houdini/rcc does not
conjecture requires clauses for methods that are called by the
Java run-time systems without any locks being held: such
methods include main(), the entry point of the program,
and run(), the entry point of a particular thread.

Many candidate annotations will of course be incorrect.
To identify incorrect annotations, the Houdini algorithm in-
vokes rccjava on the annotated program. Like any invo-
cation of rccjava, this invocation produces warnings about
violations of the given annotations. Houdini/rcc interprets
such warnings as identifying incorrect annotation guesses in
the candidate set. In this sense, each invocation of rccjava
has the effect of refuting some number of candidate anno-
tations, and these annotations are then removed from the
program.

Since removing one annotation may cause other annota-
tions to become invalid, this check-and-refute cycle iterates
until a fixed point is reached. At that point, all incorrect
annotations have been removed from the program. The set
of remaining annotations is a correct subset of the candidate
set, and is in fact, the unique maximal such set [11].

We illustrate this annotation inference process for a small
example program that includes the Account class from Fig-
ure 1. This program, together with the candidate annota-
tions conjectured by Houdini/rcc, is shown in Figure 2. The
new class Add100 is a subclass of Thread. As such, invoking
the start method of an Add100 object causes the object’s run
method to be executed in the object’s thread. Therefore,
the Add100.main method spawns two new threads, both of
which will add 100 to the balance of an Account object.

On the first iteration of the Houdini/rcc loop, the call to
rccjava refutes three annotations. The annotation thread local

on the class Add100 is refuted since each instance of this class

is also an instance of its superclass java.lang.Thread. Any
object of this class can be accessed by two threads: both it-
self and the parent thread that started it. The run method
of Add100 is called by the Java run-time system without any
locks being held, and hence rccjava also refutes the two
requires annotations on this method.

On the next iteration of the Houdini/rcc loop, rccjava
sees that the run method calls deposit without any locks
being held, and hence refutes the two requires annotations
on deposit. In addition, rccjava sees that the (now thread-
shared) class Add100 contains a reference to Account, and
rccjava refutes the annotation thread local on Account.

On the third iteration, rccjava refutes the annotation
requires this on update, and on the fourth and final it-
eration, rccjava refutes the annotation guarded by this

on the field balance. The remaining annotations are all
correct.

Once quiescence is reached, the rccjava checker is invoked
last time on the now-annotated program to determine the set
of warnings to be reported to the user. In the example, the
final run produces no warnings, indicating that the program
is indeed free of race conditions.

If, on the other hand, there were a race condition on a
particular field, Houdini/rcc would refute all of the conjec-
tured guarding locks. Thus, the final run of rccjava would
produce a warning is that there is no lock guarding that
field.

4. REDUCING FALSE ALARMS
While the basic Houdini/rcc algorithm can detect races

in unannotated programs, experience has shown that it pro-
duces many false alarms. This section describes four exten-
sions to rccjava and Houdini/rcc that help eliminate false
alarms. We refer to each extension by the flag which config-
ures Houdini/rcc to use that extension.

no override: As mentioned in our previous work, rccjava
produces a warning when a thread-local class overrides a
method from a thread-shared superclass [10]. This warn-
ing is generated because of the potential to cast an ob-
ject of the thread-local subclass to the superclass’s type,
allowing the object to be passed to multiple threads. These
threads may then simultaneously access unguarded data in
the thread-local portion of the object through the overrid-
den method. Our experience has shown that, while many
such overrides exist in large programs, they are typically
not sources of races. The no override option stops warn-
ings due to method overrides from being reported. Clearly,
this is an unsound extension, but it eliminates a significant
number of false alarms.

cons lock: A shared object is typically initialized in the
object’s constructor without acquiring any locks. This ini-
tialization pattern is sound provided that no references to
the object being initialized escape from the creating thread
until after the constructor exits. To allow such code to be
checked without producing warnings, the cons lock makes
Houdini/rcc assume the lock this is held inside construc-
tors. As in the previous case, this assumption eliminates
many false alarms and is not considered to be a significant
source of unsoundness.

read only: Constant fields can be read safely by multiple
threads without synchronization. Ideally, such fields would

/*# thread_local */

class Account {

final Object lock = new Object();

/*# guarded_by lock */

/*# guarded_by this */

int balance = 0;

/*# requires lock */

/*# requires this */

void update(int n) { balance = n; }

/*# requires lock */

/*# requires this */

void deposit(int x) {

synchronized(lock) {

update(balance + x);

}

}

}

/*# thread_local */

class Add100 extends java.lang.Thread {

final Account a;

Add100(Account a) { this.a = a; }

/*# requires this */

/*# requires a */

public void run() { a.deposit(100); }

static public void main(String st[]) {

Account a = new Account();

(new Add100(a)).start();

(new Add100(a)).start();

}

}

Figure 2: The Houdini/rcc candidate annotations for
Account. The shaded annotations are refuted by the
Houdini/rcc algorithm.

be declared as final, in which case rccjava would not warn
about unsynchronized accesses. However, our experiments
with Houdini/rcc indicated that a large number of shared
constant fields are not declared as final.

To avoid false alarms in these cases, we extended rccjava

to allow a field to be annotated with the annotation readonly

. This annotation behaves much like Java’s final annota-
tion; in particular, a readonly field does not require a
protecting lock. We modified Houdini/rcc to infer read-
only annotations for constant fields that were inadvertently
not declared final.

As an added benefit, since readonly reference fields are
constant values, they can be included in the set of candidate
locks for a class, thus increasing the set of candidate anno-
tations conjectured by Houdini.
main lock: Since static fields are accessible by all threads,
rccjava requires that every static field is protected by a
lock. However, a number of the programs we examined ex-
hibited a common pattern whereby a static field would be

class BadAccount {

final Object lock = new Object();

int balance = 0;

void update(int n) { balance = n; }

void deposit(int x) {

update(balance + x);

}

}

class Add100 extends java.lang.Thread {

final BadAccount a;

Add100(BadAccount a) { this.a = a; }

public void run() { a.deposit(100); }

static public void main(String st[]) {

BadAccount a = new BadAccount();

(new Add100(a)).start();

(new Add100(a)).start();

}

}

Figure 3: A version of Account that contains a data
race on balance.

accessed exclusively by the main thread, without synchro-
nization. To accommodate this programming pattern, we
extended rccjava with the notion of a main lock, that is, a
lock that is implicitly held by the main thread.

To infer annotations regarding the main lock, we extended
Houdini/rcc so that it guesses the annotation requires

MainLock for each method and the annotation guarded by

MainLock for each field. The refutation loop of Houdi-

ni/rcc then determines which fields are accessed and which
methods are invoked only by the main thread. Thus, this
extension avoids producing false alarms on fields accessed
exclusively by the main thread.

5. USER INTERFACE
We now turn our attention to how a programmer can iden-

tify defects using the feedback from Houdini/rcc. The Hou-
dini/rcc interface, based on the interface of Houdini for
ESC/Java [12], generates the following output for an input
program:

• a collection of HTML pages containing the source code
view for each Java file analyzed. The source code view,
described below, contains information about both the
valid and invalid candidate annotations guessed by
Houdini/rcc.

• a root HTML page listing the warnings produced by
the final call to rccjava. Each warning message con-
tains a hyper-link to the source view of the code at the
location of the offending program line.

To illustrate the process of funding errors with this tool,
consider BadAccount, a broken version of the Account class
shown in Figure 3. Note that the synchronization code from

deposit is missing, meaning that there is a potential race
on field balance. Analyzing this program with Houdini/rcc

generates a warnings file containing the following warning:

BadAccount.java:7: field ’BadAccount.balance’

must be guarded in a thread shared class

Clicking on this warning would open up the source code
view for line 7 of the Account class (see Figure 4). The
source code view displays all of the candidate annotations
guessed by Houdini/rcc. A refuted annotation is grayed
out, whereas a valid annotation is darkened (in this case,
all annotations were refuted, but Figure 5, as described be-
low, contains several valid annotations). Houdini/rcc also
inserts the warning messages into in the source code view.

In a situation like this, a programmer who intended the
field balance to be guarded by the lock lock would want to
know why Houdini/rcc did not infer the annotation guarded by

lock for the field balance. Identifying the cause of most
rccjava warnings often boils down to being able to answer
such a question. To aid in this process, the Houdini/rcc

interface makes each refuted annotation a hyper-link to the
line of the program that refuted it. The figure shows that
the set of candidate annotations for the field balance does
in fact include a grayed-out annotation guarded by lock

. Clicking on this refuted annotation brings the user to an
access of field balance where, as far as rccjava could tell,
the lock lock is not held (line 10 of the program).

This may lead the user to understand whether the warn-
ing is caused by a real race condition in the program or is
just a spurious warning, or this may just be one of a number
of similar steps required to identify the source of the prob-
lem. For example, if the programmer had intended that the
lock lock be held on entry to update, the link from the re-
futed annotation requires lock could be followed to line
15, where the required synchronization statement is miss-
ing. Surprisingly, our experience indicates that presenting
the refuted annotations and the causes thereof is the most
important aspect of the user interface.

Running Houdini/rcc on the correct version of Account
produces no warnings and the source code view shown in
Figure 5. This time the expected annotations were inferred
and appear in bold.

5.1 Clustering Warnings
During our experiments, we noticed several cases where

Houdini/rcc would incorrectly characterize a thread-local
class C as thread-shared, due to conservative approximations
introduced by the analysis. Unfortunately, in these cases,
Houdini/rcc subsequently characterizes as thread-shared all
classes reachable (transitively) from C and produces spuri-
ous warnings regarding race conditions on accesses to these
fields.

To reduce this problem, we extended the user interface
to group into a single cluster all of the warnings that were
caused, either directly or indirectly, by C being characterized
as thread-shared. The programmer can often deal with all
the warnings in a cluster as a single unit. For example, a
programmer who verifies that C is actually thread-local can
easily ignore the entire cluster of warnings.

6. EVALUATION
We have evaluated Houdini/rcc on a number of test pro-

grams ranging in size from several thousand lines to a half

Program LOC Warnings per KLOC
rccjava Basic Houdini/rcc +no override +cons lock +read only +main lock

Ambit 4,500 13.6 37.3 14.2 13.3 7.1 7.1
WebL 20,000 11.8 12.2 5.1 4.8 1.9 1.9

jbb2000 30,800 18.8 4.9 3.4 3.3 1.3 0.6
tlc 53,500 11.0 14.7 4.7 4.5 2.2 1.0

jigsaw 128,900 21.1 13.6 8.2 7.7 2.9 2.9
orange 28,000 17.7 33.3 14.0 13.6 6.0 3.6

red 445,000 16.6 9.0 5.2 4.8 2.2 2.2
Average 15.5 15.3 6.3 6.4 2.9 2.6

Table 1: Number of warnings produced by rccjava and various versions of Houdini/rcc.

Program LOC Annotations per KLOC Time Warnings Number Races
Candidate Valid (min) per KLOC Total Clusters (found/clusters examined)

Ambit 4,500 433 78 4 7.1 32 6 0/6
WebL 20,000 262 43 9 1.9 37 10 6/10

jbb2000 30,800 282 74 9 0.6 17 17 0/17
tlc 53,500 758 124 31 1.0 52 30 4/30

jigsaw 128,900 375 49 62 2.9 367 78 0/30
orange 28,000 863 135 74 3.6 100 84 1/84

red 445,000 358 64 286 2.2 957 340 5/70

Table 2: Statistics for Houdini/rcc with all modifications.

million lines of code. This section describes our experiences
with the following programs:

• Ambit: An interpreter for the Ambient calculus [6].

• WebL: An interpreter and run time for a scripting lan-
guage for web applications [15].

• jbb2000: A Java SPEC benchmark modeling a server
application [19].

• tlc: A multi-threaded model checker for the TLA spec-
ification language [26].

• jigsaw: A web server written in Java [25].

• orange and red: Internal Compaq systems.

Table 1 shows the results of running rccjava and vari-
ous versions of Houdini/rcc on these programs. The table
shows the size of each unannotated program and the num-
ber of warnings reported by running rccjava on it. The
column labeled Basic Houdini/rcc corresponds to running
Houdini/rcc in its original form from Section 3. The four
remaining columns show the number of warnings reported
by Houdini/rcc with the four extensions described in Sec-
tion 4. Note that the additions to Houdini/rcc are cumu-
lative across the columns so that the +cons lock column
reflects Basic Houdini/rcc run with both the no override

and cons lock extensions. All of the columns are normal-
ized to show the number of warnings reported per thousand
lines of code.

Excluding method override warnings reduced the num-
ber of warnings by roughly a factor of two across the test
programs. The read-only field inference also decreased the
number of warnings by another factor of two. Although
the other two extensions were not as consistent in their ef-
fectiveness, there were some programs in which they also
significantly reduced the number of warnings produced by
Houdini/rcc.

Table 2 shows more detailed statistics for running Hou-

dini/rcc with all of the described extensions. From this

table, it is clear that Houdini/rcc is able to successfully in-
fer a nontrivial number of annotations. In general, it guesses
roughly 350 candidate annotations per 1,000 lines of code,
with roughly 1/4 of these annotations being valid. Our sys-
tem ran in time proportional to the size of the program,
processing approximately 2,000 lines per minute on a 667
MHz Alpha workstation.

In most examples, the clustering algorithm was success-
ful at grouping related warnings. A representative situa-
tion of this appears in jigsaw. In that program, there is a
DebugThread class which gathers and prints statistics about
the program as it runs. This class accesses fields of a num-
ber of different objects both directly and through multiple
levels of accessor methods without acquiring the necessary
locks for those fields. The clustering algorithm identified
the DebugThread as the common source of 92 such potential
races. All of these races were deemed benign because the
debugging code was intentionally designed to read the data
in this way.

The last column in Table 2 reflects how many non-benign
races we identified while studying the warnings reported by
Houdini/rcc. Since we have not examined every warning
or cluster for the larger example, this column shows both
the number of real races found and the number of warning
clusters examined. For example, six races were found in
WebL while examining all 10 clusters.

7. RELATED WORK
A number of tools have been developed for race detection.

Warlock [20] is a static race detection system for ANSI C
programs. It is similar to rccjava in that it requires an-
notations, but it does not infer them. The extended static
checker for Java (ESC/Java) is a tool for static detection
of software defects [16]. It supports multi-threaded pro-
gramming via annotations similar to the guarded by and
requires annotations, but it may still permit race con-
ditions on unguarded fields, since it does not verify that
unguarded fields only occur in thread-local classes. Other
static and dynamic approaches for race detection are dis-
cussed in an earlier paper [9].

Figure 4: Screen shot showing the Houdini/rcc user
interface for the broken BadAccount class. The over-
layed arrows indicate where two of the hyper-links
are pointing.

The Houdini/rcc algorithm can be viewed as an abstract
interpretation [8], where the abstract state space is the power
set lattice over the candidate annotations and rccjava is
used to compute the abstract transition relation. Houdi-

ni/rcc may also be seen as a variant of predicate abstrac-
tion [13] in which each candidate annotation corresponds to
a predicate. The Houdini algorithm finds the largest con-
junction of these predicates that holds in all reachable states.

The requires annotations used by rccjava are similar
to effects [14, 17, 18], in that the locks held on entry to a
method constrain the effects that it may produce. Thus, the
analysis performed by Houdini/rcc includes a basic form of
effect reconstruction [22, 23, 2, 21], and the Houdini/rcc

interface provides an explanation of why certain effects were
inferred.
Houdini/rcc infers thread-local annotations for classes

whose instances are never shared between threads. Other
work on this escape analysis problem [7, 4, 5, 24, 1] has pri-
marily focused on optimizing synchronization operations. A
novelty of our work is that the Houdini/rcc interface pro-
vides an explanation of the reasoning performed by the anal-
ysis.

8. CONCLUSIONS AND FUTUREWORK
The techniques described in this paper are intended to

make rccjava a practical tool for catching race conditions
in large, realistic programs. These techniques have focused
on reducing the annotation burden of running the checker by
automatically inferring annotations, reducing the number of
spurious warnings produced by the system, and reducing the
effort required to understand the remaining warnings.

Figure 5: Screen shot showing the Houdini/rcc user
interface for the Account class.

We believe that these improvements are sufficient to make
rccjava a cost-effective tool in a development setting. We
are currently working with the developers of some of the
programs we tested in an attempt to validate this hypothe-
sis.

9. REFERENCES
[1] J. Aldrich, C. Chambers, E. G. Sirer, and S. Eggers.

Static analyses for eliminating unnecessary
synchronization from Java programs. In Proceedings of
the Sixth International Static Analysis Symposium,
September 1999.

[2] T. Amtoft, F. Nielson, and H. R. Nielson. Type and
behaviour reconstruction for higher-order concurrent
programs. Journal of Functional Programming,
7(3):321–347, 1997.

[3] A. D. Birrell. An introduction to programming with
threads. Research Report 35, Digital Equipment
Corporation Systems Research Center, 1989.

[4] B. Blanchet. Escape analysis for object-oriented
languages. Application to Java. In Proceedings of
ACM Conference on Object Oriented Languages and
Systems, November 1999.

[5] J. Bogda and U. Hölzle. Removing unnecessary
synchronization in Java. In Proceedings of ACM
Conference on Object Oriented Languages and
Systems, November 1999.

[6] L. Cardelli. Mobile ambient synchronization. Technical
Report 1997-013, Digital Systems Research Center,
Palo Alto, CA, July 1997.

[7] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and
S. Midkiff. Escape analysis for Java. In Proceedings of
ACM Conference on Object Oriented Languages and
Systems, November 1999.

[8] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In
Conference Record of the Fourth Annual ACM
Symposium on Principles of Programming Languages,
pages 238–252, Jan. 1977.

[9] C. Flanagan and M. Abadi. Types for safe locking. In
Proceedings of European Symposium on Programming,
March 1999.

[10] C. Flanagan and S. N. Freund. Type-based Race
Detection for Java. In Proceedings of the Symposium
on the Programming Language Design and
Implementation, 2000.

[11] C. Flanagan, R. Joshi, and K. R. M. Leino.
Annotation inference for modular checkers.
Information Processing Letters, 2001. To appear.

[12] C. Flanagan and K. R. M. Leino. Houdini, an
Annotation Assistant for ESC/Java. In Formal
Methods Europe ’01, 2001.

[13] S. Graf and H. Saidi. Construction of abstract state
graphs with PVS. In O. Grumberg, editor, CAV 97:
Computer Aided Verification, Lecture Notes in
Computer Science 1254, pages 72–83. Springer-Verlag,
1997.

[14] P. Jouvelot and D. Gifford. Algebraic reconstruction
of types and effects. In Proceedings of the 18th
Symposium on Principles of Programming Languages,
pages 303–310, 1991.

[15] T. Kistler and J. Marais. WebL – a programming
language for the web. Computer Networks and ISDN
Systems, 30:259–270, April 1998.

[16] K. R. M. Leino, J. B. Saxe, and R. Stata. Checking
Java programs via guarded commands. Technical
Report 1999-002, Compaq Systems Research Center,
Palo Alto, CA, May 1999. Also appeared in Formal
Techniques for Java Programs, workshop proceedings.
Bart Jacobs, Gary T. Leavens, Peter Muller, and
Arnd Poetzsch-Heffter, editors. Technical Report 251,
Fernuniversitat Hagen, 1999.

[17] J. M. Lucassen and D. K. Gifford. Polymorphic effect
systems. In Proceedings of the ACM Conference on
Lisp and Functional Programming, pages 47–57, 1988.

[18] F. Nielson. Annotated type and effect systems. ACM
Computing Surveys, 28(2):344–345, 1996. Invited
position statement for the Symposium on Models of
Programming Languages and Computation.

[19] Standard Performance Evaluation Corporation. SPEC
JBB2000. available from
http://www.spec.org/osg/jbb2000/, June 2000.

[20] N. Sterling. Warlock: A static data race analysis tool.
In USENIX Winter Technical Conference, pages
97–106, 1993.

[21] J.-P. Talpin and P. Jouvelot. Polymorphic type, region
and effect inference. Journal of Functional
Programming, 2(3):245–271, 1992.

[22] M. Tofte and J.-P. Talpin. Implementation of the
typed call-by-value lambda-calculus using a stack of
regions. In Proceedings of the 21st Symposium on
Principles of Programming Languages, pages 188–201,
1994.

[23] M. Tofte and J.-P. Talpin. Region-based memory
management. Information and Computation,

132(2):109–176, 1997.

[24] J. Whaley and M. Rinard. Compositional pointer and
escape analysis for Java programs. In Proceedings of
ACM Conference on Object Oriented Languages and
Systems, November 1999.

[25] World Wide Web Consortium. Jigsaw. available from
http://www.w3c.org, January 2001.

[26] Y. Yu, P. Manolios, and L. Lamport. Model Checking
TLA+ Specifications. In L. Pierre and T. Kropf,
editors, Correct Hardware Design and Verification
Methods (CHARME ’99), number 1703 in Lecture
Notes In Computer Science, pages 54–66.
Springer-Verlag, September 1999.

