Status Report: Specifying JavaScript with ML

David Herman

Northeastern University
dherman@ccs.neu.edu

Abstract

The Ecma TC39-TG1 working group is using ML as the specifi-
cation language for the next generation of JavaScript, the popular
programming language for browser-based web applications. This
“definitional interpreter” serves many purposes: a high-level and
readable specification language, an executable and testable specifi-
cation, a reference implementation, and an aid in driving the design
process. We describe the design and specification of JavaScript and
our experience so far using Standard ML for this purpose.

Categories and Subject Descriptors D.2.1 [Software Engineer-
ing]: Requirements/Specifications—Languages; D.3.1 [Program-
ming Languages]: Formal Definitions and Theory—Semantics

General Terms Documentation, Languages, Standardization

Keywords JavaScript, Standard ML, definitional interpreters

1. Introduction

Thirty-five years ago, John Reynolds wrote of the importance of
using definitional interpreters as a tool for language specifica-
tion (Reynolds 1972). Despite the many developments in computer
science of mathematical frameworks for formal semantics, this “en-
gineer’s approach” to language design and specification still holds
relevance today.

In this paper we describe ongoing work in the Ecma TC39-
TG1 working group using Standard ML for the specification of
the next generation of the ECMAScript programming language,
better known as JavaScript (Ecma 1999). JavaScript is a popular
programming language for browser-based web applications, made
even more popular since the advent of “Ajax” (Garrett 2005), a style
of rich, interactive web applications for which JavaScript is the
key enabling technology. The fourth edition of the ECMAScript
standard represents a major advance in the history of JavaScript,
both in the scope of the language design and in the approach to
specification, and ML has played an important role in the process.

Our paper proceeds as follows. In Section 2, we describe the
essential pieces of the original JavaScript language. In Section 3,
we introduce some of the interesting new features of JavaScript
2.0. Section 4 describes the history of approaches to specifying
JavaScript, and Section 5 describes the rationale behind using Stan-
dard ML as a specification language by contrasting it with other
approaches. Section 6 describes some of the specific uses of Stan-
dard ML language features for modeling elements of the JavaScript

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ML’07, October 5, 2007, Freiburg, Germany.

Copyright © 2007 ACM 978-1-59593-676-9/07/0010. .. $5.00

Cormac Flanagan

University of California, Santa Cruz
cormac@soe.ucsc.edu

semantics. Section 7 discusses the future of JavaScript and possi-
bilities for further exploration of the language using the Standard
ML reference implementation as a tool.

2. JavaScript 1.x

The JavaScript programming language was invented by Brendan
Eich at Netscape and first appeared in 1996 in the Netscape Nav-
igator 2.0 web browser. Despite its name, the language has little
to do with the Java programming language beyond minor syntac-
tic similarities. JavaScript is a dynamically typed, prototype-based
object-oriented programming language with mostly lexical scope
and first-class function closures.

The language was first standardized at Ecma International in
1997 under the name ECMAScript. The third edition of the EC-
MAScript specification, published in 1999, is the current standard
and forms the basis of all major implementations of JavaScript, in-
cluding those of Mozilla Firefox, Microsoft Internet Explorer, the
Opera web browser, Apple Safari and WebKit, Rhino (now ship-
ping as an extension language with the Java standard library), and
the Adobe/Macromedia Flash scripting language ActionScript.

In the remainder of this section we give a brief introduction
to the JavaScript programming language. Examples shown at an
interactive shell are prefixed with a prompt (“> 7).

Objects

The primary datatype of JavaScript is the object, essentially an
associative array or table of properties with fast lookup and update:

> var o = { name: "Alice", age: 41 };
> ++o0.age
42

Functions

Functions are first-class values in JavaScript (and in fact are them-
selves objects with property tables). Function objects close over
their lexical environment.

Object methods are nothing more than properties whose values
happen to be functions. This results in a somewhat subtle interpre-
tation of references to this. The interpretation of a method call

expr . ident (val, . ..)

is to look up the function bound to expr.ident, and invoke it with
this bound to the result of the left-hand side expression ezpr.

> var o = { name: "Alice",
age: 42,
toString: function() {
return ("[employee "
+ this.name
+ n]u);
P}
> print(o.toString());
[employee Alice]



Because methods are unrestricted function values and may be
bound to ordinary lexical variables, there are no restrictions on the
appearance of this. Rather, in ordinary function calls, the binding
of this defaults to the single “global object,” an ambient object
whose properties include the top-level variable bindings.

> var name = "Nobody";
> var £ = o.toString;
> print(£(0));
[employee Nobody]

Prototypes

The object system of JavaScript is based on prototypes, inspired
by the Self programming language (Ungar and Smith 1987). At
runtime, every object has an implicit link to another object, its pro-
totype. Property lookup (for dereference, assignment, or method
call) recursively searches the “prototype chain,” providing a dy-
namic form of inheritance.

Programmers can explicitly construct the prototype relation-
ships of new objects by creating constructor functions. Any func-
tion in JavaScript can serve as a constructor. The runtime system
uses the prototype property of the function object to create the
internal prototype link of new objects. As a simple example, con-
sider a definition of an Employee constructor:

function Employee(name, age) {
this.name = name;
this.age = age;
}
Employee.prototype = {
toString: function() {
return ("[employee "
+ this.name

+ ||] ll);
};

Every instance of Employee inherits the properties of the proto-
type, namely the toString method:

> var a = new Employee("Alice", 42);
> var b = new Employee("Bob", 34);

> print(a.toString());

[employee Alice]

> print(b.toString());

[employee Bobl

Notice that this is bound to the newly created object in the body
of the constructor function when called with new.

3. JavaScript 2.0

The work in progress on ECMAScript Edition 4/JavaScript 2.0
represents a significant revision to the language (Horwat 2001).
The advent of Ajax (Garrett 2005) has increased the popular-
ity and prevalence of increasingly complex web applications. As
JavaScript applications have grown in maturity and sophistication,
so too must the language to keep up with the needs of its commu-
nity.

Class-based OOP

One of the most common idioms found in contemporary JavaScript
applications and frameworks is emulation of class-based object-
orientation through the prototype system. JavaScript 2.0 is there-
fore standardizing a system of classes and interfaces similar to Java
or Ct (Gosling et al. 2000; Ecma 2006).

Name management

The only reliable form of information hiding in JavaScript 1.x
is lexical scope. Because all object properties are accessed by
string names, it is not possible to prevent clients from guessing or
discovering object properties that are meant to be internal.

To provide some name control while retaining backwards-
compatibility, JavaScript 2.0 is generalizing property names from
simple strings to pairs of special namespace values and string
names. When the namespace is left unspecified, a default names-
pace is used to preserve backwards-compatible behavior. However,
programs can generate lexically scoped, hidden namespaces and
explicitly store private data in properties keyed by these names-
paces.

Gradual typing

With the desire to create sophisticated applications comes the need
to document and check program invariants as types. JavaScript
2.0 is introducing a static type system with both nominal types to
support the class-based portion of the language and structural types
such as function types, array types, and record-like “object types,”
to support functional and lightweight object-oriented programming
idioms.

Naturally, backwards-compatibility demands that dynamically-
typed programs continue to work unchanged. Some of the legacy
constructs of the language, such as the prototype system, are no-
toriously difficult to fit into a static typing discipline (Anderson
et al. 2005; Thiemann 2005). Furthermore, common idioms in web
applications involve dynamic constructs such as loading and eval-
uation. For all these reasons, JavaScript 2.0 needs to support flexi-
ble interoperation between static and dynamic typing. This style of
type system has become popularly known as gradual typing (Siek
and Taha 2006, 2007; Herman et al. 2007). As of July 2007, there
is still ongoing discussion regarding what notion of gradual typing
will be supported by JavaScript 2.0.

Control constructs

JavaScript 1.x already contains several non-local control con-
structs, including for, while, and do loops, the standard break
and continue loop control operators, simple untyped exceptions,
and return. JavaScript 2.0 is introducing several new control con-
structs that we model in Standard ML.

In JavaScript 2.0, function calls that are not within the scope of
an exception handler and that appear in tail position with respect to
the return operator are specified to be tail calls. There are several
subtleties involved in designing tail calls for JavaScript, including
function return-type checks in gradually-typed languages (Herman
et al. 2007).

JavaScript 2.0 is introducing a form of coroutines called gener-
ators, based on a construct from Python (Schemenauer et al. 2001;
van Rossum and Eby 2005). A generator is a function that uses the
new yield keyword to suspend its current activation and return an
intermediate value to the calling context. Callers can resume the
suspending activation, passing in a value for the yield expression
to evaluate to. We discuss the specification of generators in Sec-
tion 6.

4. Evolution of ECMAScript specifications

Previous editions of the ECMAScript standard used a simple, im-
perative pseudocode as a meta-language for semantics specifica-
tion, such as the example shown in Figure 1. This meta-language
was never formally specified, but its semantics was perhaps sim-
ple enough to be inferred. Nevertheless, the low level of abstraction
and imperative nature of the language (including both mutation and
“g0 t0”) sometimes resulted in rather obfuscated pseudocode. Even



Grammar production:

Conditional Expression — Logical ORExpression 7 AssignmentEzpression : AssignmentExpression

Evaluation:

. Evaluate Logical OR Expression.

. Call GetValue(Result(1)).

. Call ToBoolean(Result(2)).

. If Result(3) is false, go to step 8.

. Evaluate the first AssignmentFExpression.
. Call GetValue(Result(5)).

. Return Result(6).

. Evaluate the second AssignmentEzpression.
. Call GetValue(Result(8)).

. Return Result(9).

—_
S O 00 9 N LKA WD~

fun evalCondExpr (regs:REGS)

(cond:EXPR)
(thn:EXPR)
(els:EXPR)
: VAL =
let
val v = evalExpr regs cond
val b = toBoolean v
in
if b
then evalExpr regs thn
else evalExpr regs els
end

Figure 1. Pseudocode from ECMAScript Edition 3 (left) compared with corresponding Standard ML code (right).

more problematic was the fact that the pseudocode was not exe-
cutable, which precluded testing. This resulted in quite a few bugs
in the standard (Horwat 2003a).

Due to the limitations of earlier, informal specification mech-
anisms, there was a clear desire on the part of the committee for
some sort of formal or executable specification, whereby the abil-
ity to execute this specification on a variety of JavaScript programs
would help detect errors early in the language design process, and
would provide additional confidence in the correctness, complete-
ness, and consistency of the final specification.

In the initial stages of development of ECMAScript Edition 4,
Waldemar Horwat addressed the lack of precision in previous stan-
dards by defining an Algol-like, typed metalanguage. Early propos-
als used this metalanguage to specify the language constructs, and
an implementation in Common Lisp served as an early reference
implementation (Horwat 2003b,c). Horwat attempted to provide a
denotational interpretation for the types and terms of the metalan-
guage, but this proved unwieldy.

Beginning in early 2006, we explored the use of term-rewriting
languages such as Stratego (Visser 2001) or PLT Redex (Matthews
etal. 2004) to develop an executable operational semantics. In order
to accomodate the non-trivial static semantics and syntactic sugar
in the language, we considered designing yet another intermediate
language that would be close in flavor to the pseudocode in pre-
vious specifications, while still being fully formalized. However,
this approach would essentially have required designing two lan-
guages concurrently (ECMAScript Edition 4 and its specification
language), introducing significant additional work and perhaps un-
necessary complexity.

Hence, in November 2006, we decided to use an existing pro-
gramming language as the specification language for Edition 4,
with ML being an obvious choice for the specification language.
There was some subsequent discussion of which dialect of ML to
use, with the committee initially leaning towards OCaml (in part
due to somewhat better tool support, error messages, etc), but even-
tually choosing SML (based in part on arguments that it is a more
mature language and is formally specified (LtU 2006)).

Over the next several months, much of the work of the commit-
tee became essentially a software engineering effort, based around
a version control system (Monotone 2007) and, later, a bug tracking
database (Trac 2007). This work largely has involved reifying the
current language design as code. There has been a fair amount of
discussion of various implementation details (for example, the ex-

act structure of abstract syntax tree), and a rather surprising amount
of iteration and refactoring. The reference implementation is now
over 20 KLOC of ML code, with the main phases being:

e parsing (7 KLOC),

e adefinition phase that includes name resolution and identifying
compile-time constants (3 KLOC),

e type checking (2 KLOC),
e and evaluation (5 KLOC).

In addition, there is around 10KLOC of ES4 code that defines most
of the Javascript standard libraries. Writing this code in ES4 helps
reduce the complexity of the core semantics, with some cost in
performance.

A pre-release of this reference implementation is available at
http://www.ecmascript.org/download.php.

5. Language specification styles

In this section we briefly reflect on our experiences to date in using
ML to write a definitional interpreter for ECMAScript Edition 4,
and compare this approach with two commonly-used alternatives:

e informal prose, such as is used in the Java Language Specifica-
tion (Gosling et al. 2000);

e formal, mathematical specifications, such as that used to specify
Standard ML (Milner et al. 1997).

Thus, the choice of language specification styles can be succinctly
summarized as

Code vs. Prose vs. Math

5.1 Language specifications: Code vs. Prose

Our initial discussions before November 2006 almost exclusively
used prose, together with some JavaScript code fragments, both
in person, on whiteboards, and on a wiki (Ecma 2007). Many of
these discussions were at a fairly high level, and assumed a fairly
substantial amount of background knowledge regarding JavaScript
implementations. As might be expected, underlying assumptions
were often left implicit and occasionally mis-understood, and the
interactions between various features were not always explored in
complete detail.

This communication style worked well early in the design pro-
cess, as various design alternatives were being compared, and there



was little benefit to fully formalizing a design alternative that may
later be discarded.

Once we switched to a definitional interpreter, the interaction
style of the committee changed substantially, from monthly lé-day
discussion-oriented meetings to 3-day “hackathons,” interspersed
with technical discussions, as various corner cases in the language
design and implementation were discovered and resolved. The def-
initional interpreter worked well in forcing the committee to clarify
many unspoken assumptions, and provided a concrete artifact that
grounded many discussions that might otherwise have been overly
abstract. It also provided valuable implementation experience for
Edition 4.

The style of code is an important aspect of a definitional inter-
preter. Overall, there was fairly clear agreement on “clarity over
performance,” that is, the primary goal of the definitional inter-
preter is to be define the language specification, rather than describe
a realistic, efficient implementation of that language. We strive to
emphasize clarity, readability, and abstractness in our code, never
efficiency. Of course, this results in a slow implementation, but the
purpose of the reference implementation is specification rather than
usability.

Another important guideline we have followed is to keep the
core semantics as small as possible by modeling most of the stan-
dard library in JavaScript, minimizing the reliance on “magic”
hooks into the semantics. For example, the reference implementa-
tion does not implement regular expressions natively in ML, even
though most realistic implementations would do so to improve per-
formance.

As might be expected, writing a definitional interpreter for
a large and realistic language such as ECMAScript Edition 4
involved a substantial time investment, and required significant
communication and co-operation by committee members. This
time investment included both essential and accidental complex-
ity (Brooks 1986): the essential complexity being the actual cost
of specifying the language semantics in full detail; the acciden-
tal complexity included the learning curve with SML and its tool
suite, wrestling with unintuitive parts of the SML language, and
dealing with imprecise error messages (eg, “there is a type error
somewhere in these 200 lines of code”). We partially overcame the
latter problem by providing explicit types for all top-level func-
tions. Also, the SML module system provides limited support for
mutually-recursive modules, with the result that mutually-recursive
“conceptual” modules must be sometimes coalesced into a mono-
lithic SML module, with some loss in clarity.

Overall, despite the overheads and costs of the definitional in-
terpreter, our experience to date suggests that it works much bet-
ter in several regards (consistency, completeness, implementation
experience, early defect detection, etc) than an informal English
specification.

5.2 Language specifications: Code vs Math
The definitional interpreter has essentially two goals:
e to precisely define the language semantics, and

® to communicate this semantics to the intended audience (to
other committee members, to language implementors, and to
other language users).

Other language definition styles, such as operational or denota-
tional semantics, could also have satisfied the first goal but not the
second, in large part because mathematical semantics involves spe-
cialized notation that is unfamiliar to large parts of the target au-
dience. (Additional formal notations would be necessary to also
specify the type system of the language.)

This limitation became quite clear in the committee’s discus-
sions of lightweight strategies for gradual typing. Our English dis-

cussions and descriptions always felt overly vague and imprecise.
One of the authors (Flanagan) developed several formal models
of the operational semantics and type systems for gradual typing,
but these were inaccessible to many committee members. More re-
cently, we developed a definitional interpreter for the gradually-
typed lambda calculus, which finally provided a concise and pre-
cise description that all committee members could understand and
discuss. That is, in this instance, code succeeded where prose and
math had both failed.

Many of the committee members found formal semantics daunt-
ing, especially working on an aggressive timeline. However, ev-
ery single member of the committee is an expert programmer. Ex-
pressing semantics in a programming language, albeit unfamiliar
to some, turned out to be far more accessible than many semantics
formalisms. This allowed more committee members to contribute
to the specification rather than leaving a small subset of the mem-
bers on the critical path. We expect this will have benefits for the
readability of the specification as well, since more people in the tar-
get audience are likely to be familiar with functional programming
than with formal semantics.

Definitional interpreters do work at a somewhat lower level
of abstraction than operational or denotational semantics, in part
because they deal with more low-level details. Nevertheless, we
believe that it has been significantly easier for the committee to
formalize the Edition 4 semantics as code than as mathematics,
because:

1. it requires much less specialized training;

2. it leverages prior experience on programming language imple-
mentation (as opposed to semantics);

3. SML provides various linguistic features (side effects, callcc,
etc) that have proven quite useful; and

4. as mentioned above, type systems and test suites are invaluable
in debugging the language semantics.

5.3 Language specifications: Code and Prose

The increased precision of code over prose can also be a draw-
back: because code operates at a lower level of abstraction than
semantics, it can result in overspecification. For example, libraries
often leave portions unspecified to allow for multiple implemen-
tation strategies; but an actual implementation does not have the
freedom to leave anything undefined. Often such implementation
decisions are observable to user programs. For instance, a library
function may document its result type as an abstract interface, but
reflection facilities would allow programs to observe the concrete
class used to implement that interface.

To avoid overspecification, the reference implementation does
not stand on its own as a complete specification, and parts of it will
not even be included in the normative standard. Rather, the doc-
ument will excerpt portions of the interpreter where appropriate,
surrounding code with prose where necessary. The reference im-
plementation will likely be provided as an informative appendix or
companion document.

6. Implementation overview

In this section we describe some of the techniques we use for
modeling JavaScript features in ML. Because of the feature set
of Standard ML, it is possible for us to model JavaScript in a
direct style, using the implicit control and store of ML to model
those of JavaScript. Of course, we could write the interpreter in
continuation-passing and store-passing style, using ML as little
more than an executable lambda calculus. This would bring the
model closer to a formal semantics. Indeed, in some cases the price
we pay for direct style is the need for somewhat less natural models



datatype VAL = Object of 0OBJ

| Null
| Undef
and OBJ =
Obj of { ident: O0BJ_IDENT,
tag: VAL_TAG,
props: PROP_BINDINGS,
proto: VAL ref,
magic: MAGIC option ref }
and VAL_TAG =

ObjectTag of FIELD_TYPE list
| ArrayTag of TYPE_EXPR list
| FunctionTag of FUNC_TYPE
| ClassTag of NAME

and MAGIC =
UInt of Word32.word
| Int of Int32.int
withtype OBJ_IDENT = int
and PROP = { ty: TYPE_EXPR,
attrs: ATTRS,
state: VAL }

and PROP_BINDINGS = (NAME * PROP) list ref

Figure 2. Definition of runtime values in ECMAScript Edition 4.

of individual features. But writing in direct style allows us to keep
these representations localized, resulting in a more modular and
comprehensible language definition.

6.1 Features of ML
Reference cells

The vast majority of the reference implementation is written in
a pure functional style. However, for specifying the imperative
elements of JavaScript, reference cells provide a natural model of
mutable variables and object properties.

Figure 2 shows most of the data definition for ECMAScript
Edition 4 values in Standard ML. There are two special sentinel
values in ECMAScript Edition 4, null and undefined; all other
values are of the Object variant of VAL. Every object has a unique
identity, a runtime type tag, a mutable table of properties, a link to a
prototype object, and an optional “magic” internal value. This latter
field is used to handle values of primitive types such as integers and
floating point numbers.

Exceptions

JavaScript includes a number of non-local jumps that can be mod-
eled as ML exceptions, from JavaScript exceptions to loop breaks
and function return. Modeling tail calls is somewhat more subtle,
since installing an exception handler at the entry of every procedure
activation precludes using a simple tail call to an ML function. In-
stead, we model a tail call as a modified trampoline (Ganz et al.
1999): the function performing a tail call raises an exception of
type

exception TailCallException of (unit -> VALUE)

with a thunk to invoke the tail function. The semantics of non-
tail function calls includes wrapping the call in a handler that

catches instances of TailCallException and invokes the asso-
ciated thunk.

First-Class Continuations

The one non-standard feature of SML that we are considering ex-
ploiting is callcc. Because the semantics of generators (see Sec-
tion 3) involves suspending and reifying a delimited portion of
the current continuation, some amount of reification of control is
necessary. To convert the entire interpreter to continuation-passing
style just to support this one, largely orthogonal language feature
would be unfortunate. Instead, we could use a non-native encoding
of the delimited continuation operators shift and reset imple-
mented with native callcc (Herman 2007). While non-standard,
the semantics of continuations are well understood and widely im-
plemented.

6.2 Engineering the reference implementation

The current pre-release of the reference implementation is built
with Standard ML of New Jersey (Appel and MacQueen 1991).
We are currently working on ports to MLton (Weeks 2006) and
SML.NET (Benton et al. 2004). Porting to multiple implementa-
tions of SML has helped us to discover non-standard features we
used unwittingly, improving portability and forcing us to code to
the standard language. We also hope to reap the benefits each im-
plementation has to offer, specifically performance from MLton
and interoperability from SML.NET.

The reference implementation is already delivering on its
promise to help with testing. The first and probably most impor-
tant tests we have performed are regression tests: both Mozilla
and Adobe have contributed sizeable test suites from their own
implementations of ECMAScript. The current build passes more
than 93% of the Mozilla regression tests. The failing test cases are
caused both by out-of-date tests (written for previous versions of
the language), or tests that use features that the reference imple-
mentation does not yet implement correctly.

7. What’s next

Since SML is a formally-specified language (Milner et al. 1997),
we argue that the definitional interpreter provides a fully-formal
semantics, if sometimes overspecified. We hope this definitional
interpreter will provide a foundation for further research. In par-
ticular, it enables us to concisely formalize type soundness for
JavaScript:

if a JavaScript program passes the type checker;
then certain run-time errors do not occur.

Given the size of the definitional interpreter (upwards of 20
KLOC), unsurprisingly type soundness remains unproven. How-
ever, various forms of model checking could be applied to discover
counter-examples to type soundness (Darga and Boyapati 2006),
or to provide additional confidence in the implementation. Eventu-
ally, we hope interactive (but highly automated) theorem provers
could be used to formally verify type soundness for our language
specification.

Acknowledgements: We would like to thank Lars Hansen, Bren-
dan Eich, and the anonymous reviewers for valuable feedback on
this paper. This work was partially supported by a Sloan Fellow-
ship.

References

Christopher Anderson, Paola Giannini, and Sophia Drossopoulou.
Towards type inference for javascript. In 19th European Confer-
ence on Object-Oriented Programming (ECOOP 2005), pages
428-453, 2005.



Andrew W. Appel and David B. MacQueen. Standard ML of new
jersey. In J. Maluszynski and M. Wirsing, editors, Proceedings
of theThirdInternational Symposium on Programming Language
Implementation and Logic Programming, pages 1-13. Springer
Verlag, 1991.

Nick Benton, Andrew Kennedy, and Claudio V. Russo. Adventures
in interoperability: the sml.net experience. In PPDP ’04: Pro-
ceedings of the 6th ACM SIGPLAN international conference on
Principles and practice of declarative programming, pages 215—
226, New York, NY, USA, 2004. ACM Press. ISBN 1-58113-
819-9.

Frederick P. Brooks, Jr. No silver bullet: essence and accidents
of software engineering. In Information Processing 86, pages
1069-1076, 1986. International Federation of Information Pro-
cessing (IFIP) Congress ’86.

Paul T. Darga and Chandrasekhar Boyapati. Efficient software
model checking of data structure properties. In OOPSLA '06:
Proceedings of the 21st annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and applica-
tions, pages 363-382, New York, NY, USA, 2006. ACM Press.
ISBN 1-59593-348-4.

Ecma 2007. ECMAScript Edition 4 specification wiki, 2007. URL
http://wiki.ecmascript.org.

Ecma 2006. C* Language Specification. Ecma International, 4th
edition, 2006. ECMA-334.

Ecma 1999. ECMAScript Language Specification. Ecma Interna-
tional, 3rd edition, 1999. ECMA-262.

Steven E. Ganz, Daniel P. Friedman, and Mitchell Wand. Tram-
polined style. In International Conference on Functional Pro-
gramming, pages 18-27, 1999.

Jesse J. Garrett. Ajax: A new approach to web applications, 2005.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The
Java Language Specification, Second Edition. Addison-Wesley,
Boston, Mass., 2000. ISBN 0-201-31008-2.

David Herman. Functional Pearl: The Great Escape. In Interna-
tional Conference on Functional Programming (ICFP), October
2007. To appear.

David Herman, Aaron Tomb, and Cormac Flanagan. Space-
efficient gradual typing. In Trends in Functional Programming,
April 2007.

Waldemar Horwat. ECMAScript edition 3 errata, June
2003a. URL http://www.mozilla.org/js/language/
E262-3-errata.html.

Waldemar Horwat.  JavaScript 2.0: Evolving a language for
evolving systems. URL http://www.mozilla.org/js/
language/evolvingJS.pdf. Lightweight Languages Work-
shop (LL1), 2001.

Waldemar Horwat. ECMAScript 4 Netscape proposal, June 2003b.
URL http://www.mozilla.org/js/language/old-es4.

Waldemar Horwat. JavaScript 2.0 experimental semantics,
2003c. URL http://lxr.mozilla.org/mozilla/source/
js2/semantics/.

LtU 2006. Specifying ECMAScript via ML, November 2006. URL
http://lambda-the-ultimate.org/node/1784.

Jacob Matthews, Robert Bruce Findler, Matthew Flatt, and
Matthias Felleisen. A visual environment for developing
context-sensitive term rewriting systems. In International Con-
ference on Rewriting Techniques and Applications (RTA2004),

2004.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.
The Definition of Standard ML - Revised. The MIT Press, May
1997. ISBN 0262631814.

Monotone 2007. Monotone: Distributed version control, 2007.
URL http://monotone.ca/.

John C. Reynolds. Definitional interpreters for higher-order pro-
gramming languages. In Proceedings of the ACM Annual Con-
ference, pages 717-740, New York, NY, August 1972. ACM
Press.

Neil Schemenauer, Tim Peters, and Magnus Lie Hetland. Simple
generators, May 2001. URL http://www.python.org/dev/
peps/pep-0255/. PEP-255.

Jeremy G. Siek and Walid Taha. Gradual typing for functional

languages. In Scheme and Functional Programming Workshop,
September 2006.

Jeremy G. Siek and Walid Taha. Gradual typing for objects. In
ECOOP, Berlin, Germany, July 2007.

Peter Thiemann. Towards a type system for analyzing javascript
programs. In European Symposium On Programming, pages
408-422, 2005.

Trac 2007. The Trac Project, 2007.
edgewall.org/.

URL http://trac.

David Ungar and Randall B. Smith. Self: The power of simplicity.
In Norman Meyrowitz, editor, Proceedings of the Conference on
Object-Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA), pages 227-242, New York, NY, 1987. ACM
Press.

Guido van Rossum and Phillip J. Eby. Coroutines via enhanced
generators, May 2005. URL http://www.python.org/dev/
peps/pep-0342/.

Eelco Visser. Stratego: A language for program transformation
based on rewriting strategies. System description of Stratego
0.5. In A. Middeldorp, editor, Rewriting Techniques and Ap-
plications (RTA’01), volume 2051 of Lecture Notes in Computer
Science, pages 357-361. Springer-Verlag, May 2001.

Stephen Weeks. Whole-program compilation in MLton. In ML
’06: Proceedings of the 2006 workshop on ML, pages 1-1, New
York, NY, USA, 2006. ACM Press. ISBN 1-59593-483-9.



