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Abstract

A major cause of software unreliability is the misapplication of primitive operations,
such as taking the car of nil, dividing by zero, or using an invalid array index. These
errors are traditionally discovered by extensive testing and debugging, but this approach is
unsatisfactory because it is time-consuming and may not identify all potential errors. We
suggest to address this problem with sophisticated static debugging systems.

Recent advances in proof technology have brought such advanced static debugging sys-
tems within reach. Methods like control-flow analysis or set-based analysis establish in-
variants that can identify potentially faulty program operations. Past research, however,
only focused on the synthesis of the invariants and completely neglected their presentation
to the programmer. We believe that the programmer must be able to inspect the inferred
invariants and to browse their underlying proof. Then, if some set invariant contains sur-
prising elements, the programmer can determine whether the result is a weakness in the
proof system or whether it uncovers a flaw in the program.

This paper presents MrSpidey, a user-friendly, interactive static debugger that is com-
pletely integrated into DrScheme, our program development environment. MrSpidey ex-
poses those operations that may signal errors during an execution; it describes the sets of
values the program expressions may assume; and it also provides a graphical explanation of
how values flow through the program. Using MrSpidey, the programmer can easily identify
and eliminate the causes of potential run-time errors. Experimental results support our
belief that MrSpidey expedites the process of program debugging.
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1 Introduction

A reliable program does not mis-apply primitive operations. Addition always operates on
numbers, not strings. Concatenation works with strings, not numbers. To avoid the abuse
of program operations, most languages impose a restrictive type system, which forbids the
(syntactic) formation of certain faulty program phrases. However, type systems are too
coarse to solve the general problem, which includes array indexing outside of its proper
bounds, division by zero, dereferencing of null pointers, and jumping to non-function point-
ers. These problems are beyond the capabilities of standard type systems, and different
languages deal with such run-time errors in different ways.

Unsafe languages like C [18] ignore the problem and leave it to the programmer to in-
sert checks where appropriate. As a result C programs are notoriously prone to inexplicable
crashes [20]. In contrast, safe languages such as Lisp, Scheme, ML, and Java check primi-
tive program operations. The latter two use a mixture of compile-time type checking and
insertion of run-time checks. The first two give the programmer even more power and ex-
clusively rely on run-time checks.1 These checks guarantee that misapplications of program
operations immediately raise an error signal, instead of returning random bit-patterns. Al-
though this solution ensures that programs don’t return random results, it is unsatisfactory
because errors are not signaled until run-time. What is needed instead, is a static analysis
tool that assists the programmer in verifying the preconditions of primitive operations. This
kind of tool is a static debugger.

Recent advances in proof technology have brought static debugging within reach. Meth-
ods like abstract interpretation [5], control-flow analysis [21, 25, 15] or set-based analy-
sis [12, 11] establish invariants about the sets of values that variables and expressions may
assume. Thus, if an array index expression does not assume values outside of the appropri-
ate range, an array bound check is superfluous, and an indexing error will never be signaled
for this expression. Or, if the value set of a function variable contains only closures (of the
appropriate arity), the function application does not need to be checked, and will always
succeed.

Past research on static debuggers mainly focused on the synthesis of the invariants.
However, the presentation and, in particular, the explanation of these invariants were ne-
glected. We believe that synthesizing invariants is not enough. Instead, a programmer
must be able to inspect the invariants and browse their underlying proof. Then, if some
set invariant contains an unexpected element, the programmer can determine whether the
element results from a flaw in the program or the necessarily conservative nature of the
proof system.

We have developed a static debugger, called MrSpidey, for the Scheme dialect of Lisp.
This static debugger allows the programmer to browse program invariants and their deriva-
tions. Since MrSpidey is to be used as part of the typical program development cycle,
we have integrated it with DrScheme, our Scheme program development environment. On
demand, MrSpidey statically analyzes the program and uses the resulting invariants to iden-

1We ignore Common Lisp’s type annotations here.
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tify and highlight program operations that are not provably safe (according to MrSpidey’s
underlying proof system). Associated hyper-links provide access to additional information,
including:

• a value set invariant for each expression and variable, and

• a graphical explanation for each invariant.

The programmer can investigate each unsafe operation and determine whether (a) the
fault will really happen, or (b) the corresponding correctness proof is beyond MrSpidey’s
capabilities. MrSpidey’s graphical explanation facilities make it mostly straightforward to
distinguish these two situations.

A complete description of the underlying proof technology used in MrSpidey can be
found in related papers [6, 9]. In this paper, we report on our experience using MrSpidey.
Section 2 describes the user interface that presents the inferred invariants to the program-
mer, and section 3 describes our experience using MrSpidey on a variety of programs, in-
cluding both mature systems and a system under development. Section 4 describes related
work. Section 5 presents our conclusions and future research directions.

2 Using MrSpidey

A useful static debugger must fit seamlessly into a programmer’s work pattern, and should
provide the programmer with useful information in a natural and easily accessible manner.
For these reasons, we integrated MrSpidey with DrScheme, Rice’s program development
environment for Scheme.

On demand, MrSpidey statically analyzes the current program and infers useful static
debugging information about that program. Specifically, MrSpidey identifies unsafe primi-
tive operations, derives an appropriate value set invariant for each program expression, and
provides a graphical explanation of each derived invariant.

MrSpidey presents this information to the programmer using program mark-ups. These
mark-ups are simple font and color changes that provide information about the analysis
results without disturbing the familiar lexical and syntactic structure of the program. Ad-
ditional information is available via a pop-up menu associated with each marked-up token.
The programmer can thus browse through the derived information, and can resume program
development based on an improved understanding of the program’s execution behavior.

2.1 Displaying Unsafe Operations

Unsafe program operations that may signal run-time errors are natural starting points in
the static debugging process. MrSpidey highlights these unsafe operations via font and
color changes. Any primitive operation that may be applied to inappropriate arguments is
highlighted in red (or underlined on monochrome screens). Conversely, primitive operations
that never raise errors are shown in green. Any function definition that may be applied to
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an incorrect number of arguments is highlighted by displaying the lambda keyword in red
(or underlined). Figure 1 contains examples of such unsafe operations.

MrSpidey also presents summary information describing each unsafe operation, together
with a hyper-link to that operation. The tab key moves the focus forward to the next unsafe
operation, and the shift-tab key moves the focus backward to the previous unsafe operation.
By using these facilities, the programmer can easily inspect the unsafe operations in a
program.

Figure 1: Identifying unsafe operations

MrSpidey also infers additional information for each expression in the analyzed program.
This information cannot be immediately displayed, since it would simply result in “infor-
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mation overload.” Instead, MrSpidey provides this information on a demand-driven basis
via a pop-up menu associated with each expression. The information available through the
menu is described in the following sections.

2.2 Presenting Value Set Information

MrSpidey infers an inferred value set invariant for each expression in the program. This
value set invariant is expressed using the following language of set-description expressions
(SDE ):

τ ∈ SDE ::= nil | num | sym (constants)
| (cons τ1 τ2) (pairs)
| (τ1 . . . τn -> τ) (functions)
| empty (empty set)
| (union τ1 . . . τn) (unions)
| (rec ([α1 τ1] . . . [αn τn]) τ) (recursive invariants)
| α (set description variables)

The expression (union τ1 . . . τn) denotes the union of the sets of values described by τ1

through τn. The recursive set-description expression (rec ([α1 τ1] . . . [αn τn]) τ) binds
the set-description variables α1, . . . , αn, and these bindings are visible within τ1, . . . , τn, τ .
The meaning of this recursive set-description expression is the set of values described by τ ,
where each αi is bound to τi.

On demand, MrSpidey computes a value set invariant for each program expression. and
displays that invariant in a box inserted to the right of the expression in the buffer. Figure 2
shows the inferred invariant for the variable definitions .

2.3 The Value Flow Browser

A programmer who encounters a value set invariant with bad values needs to understand
the derivation of that invariant. MrSpidey provides such an explanation in the form of
arrows overlaid on the program text. These arrows describe the data-flow paths of the
program. Because a large numbers of arrows would clutter the program text, these arrows
are presented in a demand-driven fashion.

The Ancestors option in the pop-up menu for an expression allows the programmer
to view all portions of the program’s data-flow that influence a particular invariant, thus
providing the programmer with a complete explanation of the derivation of that invariant.
For example, figure 3 shows the sources for the variable definitions .

Hyper-links associated with the head and tail of each arrow provide a fast means of
navigating through textually distinct but semantically related parts of the program, which
is especially useful on large programs. Clicking on the head of an arrow moves the focus to
the term at the tail of the arrow, and vice versa.

In some cases, the number of arrows presented by the ancestor facility is excessive.
Since the programmer is typically interested only in a particular class of values, MrSpidey
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Figure 2: The value set invariant of definitions

incorporates a filter facility that allows the programmer to restrict the displayed arrows to
those that affect the flow of certain kinds of values. This facility is extremely useful for
quickly understanding why a primitive operation may be applied to inappropriate argument
values.

By using an appropriate combination of the ancestor and filter facilities, the programmer
can quickly view the flow of a particular class of value through the program. For example,
figure 4 shows the derivation of the sym component in the value set invariant for definitions .

2.4 A Sample Debugging Session

Let us illustrate the usefulness of MrSpidey’s explanatory capabilities with our running
example. For the code in lisp4.ss, MrSpidey highlights the primitives map and car in

(map car definitions)
as unsafe (see Figure 3), indicating that these operations may signal run-time errors. In
order to understand the problem, a programmer will inspect the value set invariants for the
arguments to these primitives. In the case of map, an inspection of its second argument,
definitions , shows that this set includes symbols. Since map can process only lists, it would
have to signal an error if it were applied to symbols. By using the ancestor and filter
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Figure 3: Value source information

facilities, a programmer can quickly determine how the symbol ’loop flows through various
applications to the application of map: see figure 4.

In the case of car, a programmer must first understand that it receives its arguments
indirectly via map. This means that map may apply car to inappropriate values, say, the
empty list or symbols. And indeed, another look at the value set invariant of map’s second
argument shows that it may contain a list whose head is a symbol. If map traverses such a
list, it will pass the symbol to car, which will trigger an error message. A value flow analysis
similar to the one in the first case quickly points to the second call site of let-transformer
as the culprit.

Although statically debugging programs with specific test cases is a good start, a pro-
grammer should also formulate a general description of the possible inputs for a function.
In the case of let-transformer , the function is used by the MzScheme reader, which al-
ways applies the transformer to an S-expression and a list of S-expressions. A programmer
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Figure 4: Flow of sym

can express this fact with type: annotations as shown in figure 5. Using this annotation,
MrSpidey can then check how many primitives are unsafe for the most general case.

As it turns out, MrSpidey marks a number of these primitives as unsafe, including
map, car, and cadr inside of the let-expression. If MrSpidey had used the if-condition in
its analysis of the then-branch, it would not have highlighted map, car, and cadr. Since
the current theorem proofing engine cannot perform this kind of conditional reasoning in
an inexpensive manner, the programmer must formulate a stronger set invariant for the
potential inputs. Specifically, the programmer can formulate a set description for those
inputs of let-transformer that pass the if-test. MrSpidey will then analyze the then-branch
using the assumptions expressed in the conditional. As figure 6 shows, using this second
static debugging step proves that let-transformer is perfectly safe.

The example in this section is simple. Still, it does provide a good example of the
explanatory capabilities of MrSpidey. The following section describes our experience using
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Figure 5: Expressing invariants

MrSpidey on significantly larger programs.

3 Evaluation of MrSpidey

We evaluated the usefulness of MrSpidey as static debugging tool using a number of pro-
grams.

3.1 Verifying a Web Server

Rice’s web server software consists of a normal, fully-functional web server and a simple
backup server. The backup server consists of a 76 line Scheme program that accepts con-
nections to the web port, and returns a HTML page with the warning:
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Figure 6: Expressing stronger invariants

The Rice University computer science department’s Web server has
been disconnected temporarily.

We used MrSpidey to verify the backup server. MrSpidey detected a single, potentially
unsafe operation, where the analysis suggested that the end-of-file value could be returned by
read-line and then passed as an argument to the operation string-length. An inspection
of the program revealed that this behavior could never actually occur. After simplifying
two lines of code, MrSpidey was able to verify the safety of the string-length operation,
and produced the summary:

TOTAL CHECKS: 0 (of 56 possible checks is 0.0%)
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3.2 Verifying gunzip

DrScheme’s standard library contains Scheme code for inflating deflated (PKZIP’s method
8 compressed) data. The code consists of a single 800 line file inflate.ss, translated
directly from the gzip source distribution. MrSpidey initially reported that out of the 650
operations in the program, it was unable to verify the safety of 27 (or 5%) of them.

We used MrSpidey’s ancestor and filter facilities to identify why MrSpidey could not
prove the safety of these operations. In most cases, the cause was a code pattern that
was too complicated for MrSpidey to understand. Simplifying and cleaning up the code in
various places reduced the number of unsafe operations to 7.

All of the remaining unsafe operations are actual errors that resulted from failing to
detect and handle a truncated input file. Thus the original program would crash on a
truncated input file with a message such as:

> (gunzip "/tmp/t.gz")
char=?: expects type <character> as 1st arg;
given \#<eof> (type <eof>); other args: \#\Ø

By adding code to check of the end-of-file case, we finally reduced the unsafe operation
count to 0, and the resulting statically debugged program handles truncated input files
gracefully:

> (gunzip "/tmp/t.gz")
gunzip: Unexpected end of input file

3.3 Verifying an Extended Direct Semantics Interpreter

Extended direct semantics is a format for denotational language specifications that accom-
modates orthogonal extensions of a language without changing the denotations of existing
phrases [3]. The semantics of a language is specified in this format using a tower of inter-
preters. The tower starts with a basic interpreter, which can interpret only certain trivial
expressions. This basic interpreter is then composed with additional interpreters for the
various constructs in the language.

We used MrSpidey to investigate an interpreter expressed in this style. In addition to
the basic interpreter, this program contains interpreters for arithmetic operations (integer
constants, add1 and sub1), call-by-value functions (variables, functions and applications),
control operations (catch and throw), and assignments (ref, deref and setref).

We ported the program to DrScheme’s module system [10]. During this porting process,
we inadvertently introduced an error, where one of the module was linked with an incorrect
number of imports. When this program was analyzed, MrSpidey produced the warning:

Warning: Unit takes 47 imports, given 26 in file "program.ss" line 2
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together with a hyper-link to the relevant module.
After this bug was fixed, MrSpidey was successfully able to verify the safety of the

entire program. Part of the reason that MrSpidey is so successful on this program is that
the program had already been carefully written so that Soft Scheme [27] could verify its
safety, and thus the style of the program was already well-suited for automatic analysis
techniques.

3.4 Statically Debugging HHL

We also used MrSpidey to statically debug a program under development. This program,
called HHL, is a hardware verifier using heterogeneous logic. It consists of 3312 lines of
Scheme code distributed over 12 files, and interfaces to the Omega calculator [22].

We used MrSpidey to analyze the entire program, and then concentrated on statically
debugging one file, prover.ss, containing 500 lines of code. MrSpidey initially reported
that out of 466 operations in the file, it was unable to verify the safety of 17 (or 4%) of
them. Nine of these unsafe operations were caused by bugs in the program.

• Two unsafe string-append operations were caused by a variable being erroneously
initialized with void, instead of with a string.

• An arity check was caused be a two-argument function being applied to a single
argument.

• An unsafe car operation was applied to the result value of read, which is not neces-
sarily a pair.

• Three other unsafe string operations were applied to the result of read-line, which
can return the end-of-file value in addition to strings.

• On two occasions, the primitive andmap was applied to a single argument.

The remaining eight unsafe operations appear to be caused by limitations in MrSpidey’s
underlying analysis.

4 Related Work

A number of interactive analysis tools and static debugging systems have been developed
for other programming languages. Some address different concerns; none provide an expla-
nation of the derived invariants.

Syntox [2] is a static debugger for a subset of Pascal. Like MrSpidey, it associates run-
time invariants, i.e., numeric ranges, with statements in the program. Because Syntox does
not provide an explanation of these invariants, it is difficult for a programmer to decide
whether an unexpected invariant is caused by a weakness in the proof system or a flaw in
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the program. In addition, the existing system processes only a first-order language, though
Bourdoncle explains how to extend the analysis [2, Section 5].

Several environments [17, 4, 14, 26, 24] have been built for parallel programming lan-
guages to expose dependencies, thus allowing the programmer to tune programs to minimize
these dependencies. In particular, MrSpidey has many similarities to the ParaScope [17, 4]
and D editors [14]. Both MrSpidey and the editors provide information at varying levels
of granularity; both retain source correlation through transformations; and both depict
dependencies graphically. However, unlike MrSpidey, the editors process a language with
extremely simple control- and data-flow facilities, and therefore do not need to provide a
supporting explanation for the derived dependencies.

5 Summary and Future Work

MrSpidey is an interactive static debugging tool that supports the production of reliable
software. It identifies the program operations that may signal errors during an execution
and describes the sets of erroneous argument values that may cause those errors. Unlike
previous systems, it also provides an explanation of how those erroneous values flow through
the program. Its graphical user interface presents this information to the programmer in
a natural and intuitive manner. Experimental results support our belief that these this
information facilitates static program debugging.

MrSpidey also functions as an interactive optimization tool. Using MrSpidey, the pro-
grammer can tune a program so that its value set invariants accurately characterize its
execution behavior, thus enabling numerous program optimizations that depend on these
invariants, including variant check elimination [8, 16, 27, 1, 13], synchronization optimiza-
tion [7], partial evaluation [19], closure analysis [23], dead-code elimination and constant-
folding. To investigate this potential, we implemented variant check elimination as part of
MrSpidey. Preliminary results indicate that the resulting tool expedites the production of
efficient programs. We intend to investigate this area in more depth.

We adapted set-based analysis for use as the underlying proof technology used in Mr-
Spidey. Set-based analysis can be extended to produce accurate information on numeric
ranges [11]. This information is useful for eliminating array bounds checks and for array
data dependence analysis. Other program analyses that produce information similar to set-
based analysis but which provide alternative cost/accuracy tradeoffs could also be adapted
for use in MrSpidey [15, 16, 13, 1].

Availability DrScheme, including MrSpidey, is available at http://www.cs.rice.edu/CS/
PLT/packages.
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