
To appear in the Journal of Functional Programming 1

DrScheme:
A Programming Environment for Scheme∗

Robert Bruce Findler, John Clements†, Cormac Flanagan‡, Matthew Flatt§,
Shriram Krishnamurthi¶, Paul Steckler†, and Matthias Felleisen†

Department of Computer Science
Rice University

Houston, Texas 77005-1892, USA

Abstract

DrScheme is a programming environment for Scheme. It fully integrates a graphics-
enriched editor, a parser for multiple variants of Scheme, a functional read-eval-print loop,
and an algebraic printer. The environment is especially useful for students, because it has
a tower of syntactically restricted variants of Scheme that are designed to catch typical
student mistakes and explain them in terms the students understand. The environment
is also useful for professional programmers, due to its sophisticated programming tools,
such as the static debugger, and its advanced language features, such as units and mixins.

Beyond the ordinary programming environment tools, DrScheme provides an algebraic
stepper, a context-sensitive syntax checker, and a static debugger. The stepper reduces
Scheme programs to values, according to the reduction semantics of Scheme. It is useful
for explaining the semantics of linguistic facilities and for studying the behavior of small
programs. The syntax checker annotates programs with font and color changes based
on the syntactic structure of the program. On demand, it draws arrows that point from
bound to binding occurrences of identifiers. It also supports α-renaming. Finally, the static
debugger provides a type inference system that explains specific inferences in terms of a
value-flow graph, selectively overlaid on the program text.

Keywords. Programming Environments, Programming, Scheme, Pedagogy, Reduction
Semantics, Static Debugging.

1 Problems with Teaching Scheme

Over the past fifteen years, Scheme (Clinger & Rees, 1991) has become the most
popular functional programming language for introductory courses. Scheme’s suc-
cess is primarily due to Abelson and Sussman’s seminal book (Abelson et al., 1985)

∗ A preliminary version of this paper appeared at Programming Languages: Implementations,
Logics, and Programs in 1997.

† Computer Science, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115 USA
‡ Compaq System Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, USA
§ Dept. of Computer Science, 50 Central Campus Dr. Rm 3190, Salt Lake City, UT 84112, USA
¶ Computer Science Department, Brown University, Box 1910, Providence, RI 02912, USA



2 Findler, Clements, Flanagan, Flatt, Krishnamurthi, Steckler, and Felleisen

on their introductory course at MIT. Their course proved that introductory pro-
gramming courses can expose students to the interesting concepts of computer sci-
ence instead of just the syntactic conventions of currently fashionable programming
languages.

When Rice University implemented an MIT-style course, the instructors encoun-
tered four significant problems with Scheme and its implementations (Cadence Re-
search Systems, 1994; Hanson et al., 1993; Schemer’s Inc., 1991; Texas Instruments,
1988):

1. Simple notational mistakes produced inexplicable results or incomprehensible
error messages because the syntax of standard Scheme is extremely liberal.

2. The available implementations did not pinpoint the source location of run-
time errors.

3. The Lisp-style output syntax obscured the pedagogically important connec-
tion between program execution and algebraic expression evaluation.

4. The hidden imperative nature of Scheme’s read-eval-print loop introduced
subtle bugs that easily frustrate students.

In contrast to experienced Scheme programmers who have, often unconsciously,
developed work-arounds for these problems, students are confounded by the result-
ing effects. Consequently, some students dismiss the entire functional approach to
programming because they mistake these environmental problems for flaws of the
underlying methodology.

To address these problems we built DrScheme, a Scheme programming envi-
ronment initially targeted at students. The environment eliminates all problems
mentioned above by integrating program editing and evaluation in a semantically
consistent manner. DrScheme also contains three tools that facilitate the teaching
of functional programming and the development of Scheme programs in general.
The first is a symbolic stepper. It models the execution of Scheme programs as
algebraic reductions of programs to answers without needing to resort to the un-
derlying machine model. The second tool is a syntax checker. It annotates programs
with font and color changes based on the syntactic structure of the program. It also
permits students to explore the lexical structure of their programs in a graphical
manner and to α-rename identifiers. The third tool is a static debugger that infers
what set of values an expression may produce and how values flow from position to
position in the source text. It exposes potential safety violations and, upon demand,
explains its reasoning by drawing value flow graphs over the program text.

Although DrScheme was first designed for beginning students, the environment
has grown past its original goals. It is now useful for the development of complex
Scheme applications, including DrScheme itself.

The second section of this paper discusses the pedagogy of Rice University’s
introductory course and motivates many of the fundamental design decisions of
DrScheme. The third section presents DrScheme and how it supports teaching func-
tional programming with Scheme. The fourth section briefly explains the additional
tools. The next three sections discuss related work, present our experiences, and
suggest possible adaptations of DrScheme for other functional languages.



DrScheme: A Programming Environment for Scheme 3

2 Rice University’s Introductory Computing Course

Rice University’s introductory course on computing focuses on levels of abstraction
and how the algebraic model and the physical model of computation give rise to
the field’s fundamental concerns. The course consists of three segments. The first
segment covers (mostly) functional program design and algebraic evaluation. The
second segment is dedicated to a study of the basic elements of machine organiza-
tion, machine language, and assembly language. The course ends with an overview
of the important questions of computer science and the key elements of a basic
computer science curriculum (Felleisen et al., 2001).

The introduction to functional program design uses a subset of Scheme. It empha-
sizes program design based on data analysis and computation as secondary school
algebra. The course starts out with the design of inductively defined sets of values.
Students learn to describe such data structures rigorously and to derive functions
from these descriptions. In particular, the course argues that a program consumes
and produces data, and that the design of programs must therefore be driven by
an analysis of these sets of data.

Students begin with a formal description of the data that a function processes:

A list of numbers is either:

1. empty (the empty list), or
2. (cons n lon) where n is a number and lon is a list of numbers.

and an English description of the function, say, Length. Then, they use a five step
recipe to derive Length, as follows:

1. Write the function header, including both a one-line description of the func-
tion and its type.

2. Develop examples that describe the function’s behavior.
3. Develop the function template, based on the data definition. If the data def-

inition has more than one alternative, add a cond-expression with one case
per alternative in the data definition. Add selector expressions to each cond-
clause, based on the input data in that clause. Add a recursive call for each
self-reference in the data definition.

4. Finish the program, starting with the base cases and using the examples.
5. Test the examples from step 2.

This is the final product:

;; Length : list of numbers → number
;; to compute the number of elements in the list
(define (Length a-list)

(cond
[(empty? a-list) 0]
[else (add1 (Length (rest a-list)))]))

;; Tests and Examples



4 Findler, Clements, Flanagan, Flatt, Krishnamurthi, Steckler, and Felleisen

(= (Length empty) 0)
(= (Length (cons 1 (cons 2 empty))) 2)

Steps one through three and five are derived mechanically from the data definition
and the problem specification. Step 4 is the creative part of the process.

Once the program is designed, students study how it works based on the familiar
laws of secondary school algebra. Not counting the primitive laws of arithmetic,
two laws suffice: (1) the law of function application and (2) the law of substitu-
tion of equals by (provably) equals. A good first example is an application of the
temperature conversion function:

(define (fahrenheit→celsius f )
(∗ 5/9 (− f 32)))

(fahrenheit→celsius (/ 410 10))
= (fahrenheit→celsius 41)
= (∗ 5/9 (− 41 32))
= 5

Students know this example from secondary school and can identify with it.
For examples that involve lists, students must be taught the basic laws of list-

processing primitives. That is, (cons v l) is a list value if v is a value and l is a list
value; (first (cons v l)) = v and (rest (cons v l)) = l , for every value v and list
value l . From there, it is easy to illustrate how Length works:

(Length (cons 8 (cons 33 empty)))
= (add1 (Length (rest (cons 8 (cons 33 empty)))))
= (add1 (Length (cons 33 empty)))
= (add1 (add1 (Length (rest (cons 33 empty)))))
= (add1 (add1 (Length empty)))
= (add1 (add1 0))
= 2

In short, algebraic calculations completely explain program execution. No references
to the underlying hardware or the runtime context of the code are needed.

As the course progresses, students learn to deal with more complex forms of data
definitions, non-structural recursion, and accumulator-style programs. At the same
time, the course gradually introduces new linguistic elements as needed. Specifically,
for the first three weeks, students work in a simple functional language that pro-
vides only function definitions, conditional expressions, data definitions, and basic
boolean, arithmetic, and list-processing primitives. Then the language is extended
with a facility for local definitions. The final extension covers variable assignment,
data mutation, and higher-order functions. With each extension of the language,
the course also introduces a set of appropriate design recipes and rewriting rules
that explain the new language features (Felleisen, 1988; Felleisen, 1991; Felleisen &
Hieb, 1992).

At the end of the segment on program design, students understand how to



DrScheme: A Programming Environment for Scheme 5

Figure 1. The DrScheme Window (Windows 95/98/NT/2000 version).

construct programs as (collections of) functions and as (object-oriented1) history-
sensitive procedures. They can evaluate programs by reducing them algebraically
to their values and effects, and understand how to use these evaluations to reason
about the correctness and complexity of their designs.

For more details on the course itself, see How to Design Programs (Felleisen et al.,
2001).

3 The Programming Environment

DrScheme runs under Microsoft Windows 95/98/NT/2000, MacOS, and the X
Window System. When DrScheme starts up, it presents the programmer with a
menubar2 and a window consisting of three pieces: the control panel, the defi-
nitions (upper) window, and the interactions (lower) window (see figure 1). The
control panel has buttons for important actions, e.g., Save and Execute. The defi-
nitions window is an editor that contains a sequence of definitions and expressions.
The interactions window, which provides the same editing commands as the defini-

1 Functional programming is a data-centric style of programming, just like object-oriented pro-
gramming. It only lacks dispatch and inheritance, but is the best starting point for teaching
object-oriented program design to novice programmers.

2 Under Windows and X, the menubar appears at the top of the window; under MacOS, the
menubar appears at the top of the screen.



6 Findler, Clements, Flanagan, Flatt, Krishnamurthi, Steckler, and Felleisen

tions window, implements a novel read-eval-print loop that supports an algebraic
printer and stateless program execution.

DrScheme’s menubar provides seven menus: File, Edit, Windows, Show, Scheme,
Language, and Help. The File and Edit menus contain the standard menu items. In
addition, the latter provides the Edit|Insert Image... menu item, which allows the
programmer to insert images into the program text. Images are treated as ordi-
nary values, like numbers or symbols. The Windows menu lists the open DrScheme
frames. The Show menu controls the visibility of the sub-windows in a frame. The
Scheme menu allows programmers to indent, comment, and uncomment regions of
text in the definitions window, and create launchers that enable them to run their
programs outside of the environment. The Language menu allows the student to
choose which sub-languages of Scheme the syntax checker and evaluator accept.
The Help menu provides access to Help Desk, DrScheme’s documentation center.

The control panel contains six3 buttons: Save, Analyze, Check Syntax, Step, Exe-

cute, and Break. The Save button saves the definitions from the definitions window
as a file. The Analyze button invokes the static debugger (described in section 4.3)
on the program in the definitions window. Clicking the Check Syntax button en-
sures that the definitions window contains a correctly formed program, and then
annotates the program based on its syntactic and lexicographical structure (de-
scribed in section 4.2). The Step button invokes the symbolic stepper (described in
section 4.1). The Execute button runs the program in the definitions window, in a
fresh environment. All allocated OS resources (including open files, open windows,
and running threads) from the last run of the program are reclaimed before the
program is run again. Finally, the Break button stops the current computation.

The definitions and interactions windows contain editors that are compatible
with typical editors on the various platforms. For example, the editor has many of
the Emacs (Stallman, 1987) key bindings. Additionally, the Windows and MacOS
versions have the standard key bindings for those platforms.

The remainder of this section motivates and describes the novel aspects of the
core programming environment. In particular, the first subsection describes how
DrScheme can gradually support larger and larger subsets of Scheme as program-
mers gain more experience with the language and the functional programming phi-
losophy. The second subsection describes how the definitions window and the inter-
actions window (read-eval-print loop) are coordinated. Finally, the third subsection
explains how DrScheme reports run-time errors via source locations in the presence
of macros. The remaining tools of DrScheme are described in section 4.

3.1 Language Levels

Contrary to oft-stated claims, learning Scheme syntax poses problems for beginning
students who are used to conventional algebraic notation. Almost any program
with matching parentheses is syntactically valid and therefore has some meaning.

3 The standard distribution of DrScheme does not include the static debugger. We describe the
version where the static analysis package has been installed.



DrScheme: A Programming Environment for Scheme 7

For beginning programmers that meaning is often unintended, and as a result they
receive inexplicable results or incomprehensible error messages for their programs.

For example, the author of the program

(define (Length1 l)
(cond

[(empty? l) 0]
[else 1 + (Length1 (rest l))]))

has lapsed into algebraic syntax in the second clause of the cond-expression. Since
Scheme treats each clause in the cond expression as an implicit sequence, the value
of a cond-clause is the value of its last expression. Thus, Length1 always returns 0

as a result, puzzling any beginning programmer.
Similarly, the program

(define (Length2 l)
(cond

[empty? (l) 0]
[else (+ 1 (Length2 (rest l)))]))

is syntactically valid. Its author also used algebraic syntax, this time in the first
cond-clause. As a result, Length2 erroneously treats its argument, e.g., (cons 1 (cons
2 (cons 3 empty))), as a function and applies it to no arguments; the resulting error
message, e.g., “apply: (1 2 3) not a procedure”, is useless to beginners.

Even though these programs are flawed, the students that wrote them should re-
ceive encouragement since the flaws are merely syntactic. They clearly understand
the inductive structure of lists and its connection to the structure of recursive pro-
grams. Since Scheme’s normal response does not provide any insight into the actual
error, the students’ learning experience suffers. A good programming environment
should provide a correct and concise explanation of the students’ mistakes.

Students may also write programs that use keywords as identifiers. If the student
has not yet been taught those keywords, it is not the student’s fault for misusing
the keywords. A programming environment should limit the language to the pieces
relevant for each stage of a course rather than leaving the entire language available
to trap unwary students. For example, a student that has not yet been introduced
to sequencing might write:

(define (Length3 l start)
(cond
[(empty? l) start ]
[else (Length3 (rest l) (add1 begin))]))

This program is buggy; it has an unbound identifier begin. But a conventional
Scheme implementation generates a strange syntax error:

compile: illegal use of a syntactic form name in: begin

Students cannot possibly understand that they have uncovered a part of the pro-
gramming language that the course has not yet introduced.



8 Findler, Clements, Flanagan, Flatt, Krishnamurthi, Steckler, and Felleisen

Figure 2. DrScheme’s Language Configuration Dialog Box (X version).

Eager students also attempt to use features that they have not yet seen in class,
often incorrectly. For example, many students might try to use local definitions
before scope is described in class. Others try to return more than one value from
a function by juxtaposing several expressions behind lambda. Students with prior
experience in C or Pascal might solve a simple functional exercise with imperative
features. Again, a good pedagogic programming environment should protect the
student from using language features that are inconsistent with the pedagogic goals
of a particular phase of the course.

A natural solution for all of these problems is to stratify the programming lan-
guage into several levels. Each level should provide enough power to teach a new
set of constructs and programming paradigms, and it must not allow irrelevant lan-
guage features to interfere with the goals of a teaching unit. In short, a pedagogic
programming environment must be able to grow along with the students through
a course. DrScheme implements this stratification with four language levels (Flatt,
1997; Krishnamurthi et al., 1999b).

DrScheme’s current language is set via the Language|Configure Language... menu
item. Choosing Language|Configure Language... opens a window with a choice dialog
item that displays the current language level. The choice dialog item describes the
student’s language level. A language consists of several independent settings, which
are normally hidden from the student. Clicking the Show Details button enlarges
the dialog, bringing a panel with all of the language settings into view. Figure 2
shows the enlarged dialog.

Each language level consists of three parts: input syntax, safety properties, and
output syntax (described in section 3.3). The input syntax is specified through
the Case Sensitive check box and the language level itself. The four languages are:
Beginning Student, Intermediate Student, Advanced Student, and Full Scheme. Each



DrScheme: A Programming Environment for Scheme 9

Beginning has:
define, first-order procedures with at least one argument, cond, if, quote’d sym-
bols, define-struct, and various functional primitives. It is also case-sensitive.

Intermediate adds:
quote’d lists, quasiquote, unquote, higher-order functions with at least one
argument, and lexical scope: let, local, and letrec.

Advanced adds:
delay, force , set!, begin, when, unless, call/cc, higher-order functions (possi-
bly with zero arguments), various imperative primitives, and sharing in the repl

printer.

Full adds:
the full set of Scheme primitives (Clinger & Rees, 1991; Flatt, 1997), and improper
lists. Full is not case-sensitive, unmatched cond/case expressions result in (void),
and sharing is not shown in the repl printer. Full optionally adds a full-featured
GUI programming toolkit (Flatt & Findler, 1997).

Figure 3. Language Level Quick Reference.

language corresponds to a stage in Rice University’s introductory course. Figure 3
specifies the content for each of the language levels.

The safety properties check boxes allow the student to choose between confor-
mance with R5RS and more sensible error reporting. They can be specified with
two check boxes:

• Unmatched cond/case is an error

• Signal undefined variables when first referenced

If Unmatched cond/case is an error is on, DrScheme inserts an implicit else clause
in cond and case expressions that signals a run-time error. If it is off, the im-
plicit else clause returns a dummy value. The Signal undefined variables when first

referenced check box controls the implementation’s behavior when evaluating recur-
sive definitions. DrScheme evaluates recursive binding expressions by initializing all
identifiers being bound to a special tag value, and then evaluating each definition
and re-binding each identifier. If the checkbox is on, an error is signaled when a
variable still bound to one of the tag values is evaluated, and if off, errors are only
signaled if the special tag value flows into a primitive function.

Although the restrictions of the teaching languages are important for good feed-
back to students, it is also important to allow students access to modern features
of computers such as a GUI toolkit, TCP/IP network connections, and so on.
DrScheme permits this through the TeachPack mechanism. A TeachPack is a li-
brary that is implemented in the Full Scheme language and whose exports are made
available (as primitive operations) to students programming in the teaching levels.
Using TeachPacks, students can plug in the core functionality of a web-server or
a graphical game into an instructor-provided infrastructure. This lets the students
play the game with all of the fancy graphics or interact with the web-server in their



10 Findler, Clements, Flanagan, Flatt, Krishnamurthi, Steckler, and Felleisen

own browser without having to waste time learning libraries that will probably be
out of date by the time they graduate.

Although Eli Barzilay, Max Halipern, and Christian Quennec have customized
DrScheme’s language levels for their courses, this is a complex task and is not
yet well-supported in DrScheme. Since the task of designing a set of appropriate
language levels is inherently difficult, we probably cannot provide a simple mecha-
nism to adapt the pre-defined language levels to a particular course. We do plan,
however, to support new language levels in a black-box manner and with good
documentation in the next version of DrScheme.

3.2 Interactive Evaluation

Many functional language implementations support the interactive evaluation of
expressions via a read-eval-print loop (repl). Abstractly, a repl allows students
to define new functions and to evaluate expressions in the context of a program’s
definitions. A typical repl implements those operations by prompting the students
to input program fragments. The implementation evaluates the fragments, and
prints their results.

Interactivity is primarily used for program exploration, e.g. the process of evalu-
ating stand-alone expressions in the context of a program to determine its behavior.
It is critical for novice programmers because it eliminates the need to learn special-
ized input-output libraries. Also, frequent program exploration during development
saves large amounts of conventional debugging time. Programmers use interactive
environments to test small components of their programs and determine where their
programs go wrong.

While interactive repls are superior to batch execution for program development,
they can introduce subtle and confusing bugs into programs. Since they allow ad-
hoc program construction, repls cause problems for the beginning student and
experienced programmer alike. For example, a student who practices accumulator-
style transformations may try to transform the program

(define (Length l)
(length-helper l 0))

(define (length-helper l n)
(cond
[(empty? l) n]
[else (length-helper (rest l) (add1 n))]))

into a version that uses local definitions:

(define (Length l)
(local [(define (helper l n)

(cond
[(empty? l) n]
[else (length-helper (rest l) (add1 n))]))]

(helper l 0)))

Unfortunately, the student has forgotten to change one occurrence of length-helper
to helper . Instead of flagging an error when this program is run, the traditional



DrScheme: A Programming Environment for Scheme 11

Scheme repl calls the old version of length-helper when Length is applied to a non-
empty list. The new program has a bug, but the confusing repl semantics hides
the bug.

Similar but even more confusing bugs occur when programmers use higher-order
functions. Consider the program:

(define (make-adder n)
(lambda (m)

(∗ m n)))

(define add11 (make-adder 11))

The programmer quickly discovers the bug by experimenting with add11 , replaces
the primitive ∗ with +, and reevaluates the definition of make-adder . Unfortunately,
the repl no longer reflects the program, because add11 still refers to the old value of
make-adder and therefore still exhibits the buggy behavior, confusing the student.
The problem is exacerbated when higher-order functions are combined with state,
which is essential for explaining object-oriented ideas.

Experienced functional programmers have learned to avoid this problem by using
their repl in a fashion that mimics batch behavior for definitions and interactive
behavior for expressions. They exit the repl, restart the evaluator, and re-load
a program file after each change. This action clears the state of the repl, which
eliminates bugs introduced by ghosts of old programs. Unfortunately, manually
restarting the environment is both time-consuming and error-prone.

DrScheme provides and enforces this batch-oriented style of interactive program
evaluation in a natural way. When the programmer is ready to test a program,
a click on the Execute button submits the program to the interactions window.
When the programmer clicks on Execute, the repl is set to its initial state and the
text from the definitions window is evaluated in the fresh environment. Thus, the
repl namespace exactly reflects the program in the definitions window. Next, the
programmer evaluates test expressions in the repl. After discovering an error, the
programmer edits the definitions and clicks the Execute button. If the programmer
forgets to execute the program and tries to evaluate an expression in the repl,
DrScheme informs the programmer that the text of the program is no longer con-
sistent with the state of the repl. In short, after every change to the program, the
programmer starts the program afresh, which eliminates the problems caused by
traditional repls. For large programs, restarting the entire program to test a single
change can be time consuming. Although restarting the repl in this manner can
be time-consuming for large programs, the first author still uses this style repl to
develop DrScheme itself, albeit with selected, unchanged libraries pre-compiled to
an intermediate byte-code representation.

3.3 Output Syntax

As discussed in section 2, Rice University’s introductory course emphasizes the
connection between program execution and algebraic expression evaluation. Stu-



12 Findler, Clements, Flanagan, Flatt, Krishnamurthi, Steckler, and Felleisen

dents learn that program evaluation consists of a sequence of reduction steps that
transform an expression to a value in a context of definitions.

Unfortunately, traditional Scheme implementations do not reinforce that connec-
tion; they typically use one syntax for values as input and a different syntax for
values as output (Wadler, 1987). For example the expression:

(map add1 (cons 2 (cons 3 (cons 4 empty))))

prints as

(3 4 5)

which causes students to confuse the syntax for application with the syntax for
lists.

DrScheme uses an output syntax for values called constructor syntax that matches
their input syntax. Constructor syntax treats the primitives cons, list , vector , box ,
etc., as constructors. In other words, the type of value is clear from its printed
representation.

In the the above example, DrScheme prints the value of:

(map add1 (cons 2 (cons 3 (cons 4 empty))))

as either

(cons 3 (cons 4 (cons 5 empty)))

or, if the student has turned on a concise printing mode (introduced automatically
in the second language level)

(list 3 4 5)

Thus, DrScheme’s repl produces the same syntax for the values that Scheme’s
reduction semantics produces. This also reinforces the data driven design method-
ology in section 2.

The standard Scheme printer is useful, however, for programs that manipulate
program text. Often, it is convenient to create and manipulate lists of lists and
symbols, especially when they represent programs. Scheme supports this with the
quote and quasiquote operators. For example, the list containing the three ele-
ments: a symbol ’lambda, a list of symbols representing parameters, and an expres-
sion (again represented as a list of lists and symbols), can be written ’(lambda (x y

z) (+ x y)). When writing programs that treat quoted s-expressions in this way, the
output of the original Scheme matches the programmer’s mental model of the data.
Accordingly, DrScheme provides a quasiquote (Pitman, 1980) printer that uses the
same structure, but matches Scheme’s quasiquote input syntax, thus preserving the
algebraic model of evaluation.

3.4 Error Reporting

A programming environment must provide good run-time error reporting; it is
crucial to a student’s learning experience. The programming environment must



DrScheme: A Programming Environment for Scheme 13

Figure 4. DrScheme, with a Run-time Error Highlighted (MacOS version).

catch errors as soon as they occur and provide meaningful explanations for them.
The explanations must include the run-time values that caused the errors as well
as the source location of the misapplied primitives.

Traditional Scheme programming environments fail in this regard for two reasons.
First, with the exception of EdScheme (Schemer’s Inc., 1991), Scheme compilers
and interpreters only implement a simplistic read-eval-print loop. If this repl is an
command shell that is not coupled to the rest of the programming environment, it
is impossible to relate errors to source locations in general. The historical solution
is to execute the repl in an Emacs buffer. This solution, however, does not truly
integrate the repl and its editing environment, so the full graphical capabilities of
modern displays remain unexploited.

Second, Scheme’s macro facility (Kohlbecker et al., 1986; Kohlbecker, 1986)
tremendously complicates the mapping from a run-time error to its source location.
Since Scheme’s macro language allows arbitrary transformations of program text
during compilation, preserving the original source locations for pieces of program
text is difficult. For example, Scheme’s let∗ macro expands to a sequence of nested
let expressions, and those let expressions then expand into lambda expressions.
Other macros duplicate or delete portions of source text.

Since DrScheme integrates the editor and the Scheme implementation, it can sup-
port a much tighter interaction than standard Scheme implementations. The un-
derlying Scheme implementation is safe and completely integrated into the editing
environment. Furthermore, the front-end of the Scheme implementation maintains a
correlation between the original program text and its macro-expanded version (Kr-
ishnamurthi et al., 1999a; Krishnamurthi et al., 1999b). This correlation allows
DrScheme to report the source location of run-time errors.

Consider the example in figure 4. The student has written an erroneous version



14 Findler, Clements, Flanagan, Flatt, Krishnamurthi, Steckler, and Felleisen

of Length. When it is applied to (cons 1 (cons 2 (cons 3 empty)))), Length traverses
the list and is eventually applied to empty . The function then returns empty , which
flows into the primitive +, generating a run-time error. At this point, DrScheme
catches the run-time error and highlights the source location of the misapplied
primitive. With almost no effort, any beginning student can now find and fix the
bug.

4 DrScheme Tools

Thus far we have seen how DrScheme stratifies Scheme into pedagogically use-
ful pieces, improves the read-eval-print loop, and provides better error reporting.
This section focuses on the additional program understanding tools that DrScheme
provides.

4.1 Supporting Reduction Semantics: The Stepper

DrScheme includes a stepper that enables students to reduce a program to a value
in a series of reduction steps analogous to the calculations in secondary school
algebra. At each step of the evaluation, this tool highlights the reducible expression
and shows its replacement.

Figure 5 shows the basic layout of the stepper window. The window is separated
by divider lines into four panes. The topmost pane shows the evaluated definitions.
In general, this pane contains all values and definitions that have been reduced to a
canonical form. The second and third panes show the current reduction step. In this
case, the expression (+ 4 5) is reduced to 9. The reducible expression is highlighted
in green, while the result of the reduction is highlighted in purple. The final pane,
below the other panes, is used for top-level forms that have not yet been evaluated.

Figure 6 also illustrates the reduction of a procedure call, using the Length func-
tion defined earlier. In this step, the call to Length is replaced by the body of the
procedure. Every occurrence of Length’s parameter, l , is replaced by the argument,
(cons ’banana empty). Again, this mirrors the standard evaluation rules taught for
functions.

Using the stepper, students see that a computation in the beginner level consists
of a series of local transformations; nothing outside the colored boxes is changed.
The stepping model is familiar, as it mirrors the reduction rules taught in grade
school arithmetic and secondary school algebra.

DrScheme’s intermediate level introduces the local binding construct, which al-
lows students to create local bindings. Since local-bindings are recursive and a
locally defined procedure may (eventually) escape this scope, the reduction rules
are more complex than the simple substitution-based let and application rules.
Instead, the reduction semantics lifts and renames the local definitions to the top-
level, as shown in figure 7. The bindings are renamed during lifting to avoid capture
in case a local expression is evaluated more than once and to avoid collision with
other top-level variables.

When runtime errors occur, the stepper displays the error along with the expres-



DrScheme: A Programming Environment for Scheme 15

Figure 5. An Arithmetic Reduction in the Stepper (MacOS version).

Figure 6. A Procedure Application in the Stepper (MacOS version).

Figure 7. Reducing local (MacOS version).

Figure 8. An Error in the Stepper (MacOS version).



16 Findler, Clements, Flanagan, Flatt, Krishnamurthi, Steckler, and Felleisen

Figure 9. DrScheme’s Syntax Checker (MacOS version).

sion that caused it. Figure 4, in section 3.4, showed a runtime error in DrScheme’s
evaluator. In figure 8, the same error is shown as it occurs during the stepper’s
evaluation. To locate the source of the offending empty , students may wish to view
earlier steps in the evaluation. The stepper therefore retains all evaluation steps,
so that students may step backward and forward as desired, using the Previous and
Next buttons.

The stepper is useful for students in two ways. First, it concretely demonstrates
the semantics of the language. Students that do not understand the evaluation rules
of Scheme can observe them in action and formulate their own examples. This is
particularly useful for students that prefer to learn by generalizing from examples,
rather than working directly from an abstract model. Secondly, it is used as a
debugging tool. Students observe the evaluation of their own programs, and can
step forward and backward to locate their mistakes.

The key to the construction of the stepper is the introduction of continuation
marks (Clements et al., 2001). Continuation marks allow the stepper to re-use the
underlying Scheme implementation, without having to re-implement the evaluator.
As a result, the stepper and the compiler always have the same semantics.

Future versions of DrScheme will extend the stepper to handle the Advanced and
Full Scheme levels. This will include side-effects, higher-order procedures, call/cc,
and multi-threaded programs. These extensions are based on Felleisen and Hieb’s
work (Felleisen & Hieb, 1992).

4.2 Syntax Checking

Programmers need help understanding the syntactic and lexical structure of their
programs. DrScheme provides a syntax checker that annotates the source text of



DrScheme: A Programming Environment for Scheme 17

Figure 10. MrSpidey: The static debugger (Windows version).

syntactically correct programs based on the syntactic and lexical structure of the
program. The syntax checker marks up the source text based on five syntactic
categories: primitives, keywords, bound variables, free variables, and constants.

When the programmer moves the mouse over an identifier, the syntax checker
displays arrows that point from bound identifiers to their binding occurrence, and
and vice-versa (see figure 9). The checker can also α-rename bound identifiers. To
do so, the user clicks on either a binding or bound occurrence of the identifier. This
pops up a menu (as shown in figure 9). After choosing Rename and specifying a
new name for the identifier, DrScheme renames all occurrences of the identifier to
the new name. In the teaching languages, students can click on a primitive to see
its contract and one-line description, as in step 1 of the design recipe in section 2.

4.3 Static Debugging

The most advanced DrScheme tool is MrSpidey, a static debugger (Bourdoncle,
1993; Flanagan et al., 1996) that uses a form of set-based analysis (Flanagan &
Felleisen, 1997; Heintze, 1994) to perform type inference and to mark potential er-
rors. The static debugger tool infers constraints on the flow of values in a Scheme
program. From those constraints, it infers value-set descriptions for each subex-
pression. On demand, it builds a graph that demonstrates how values flow though
the program. For each primitive program operator,4 the static debugger determines
whether its potential argument values are valid inputs.

Based on the results of the analysis, the static debugger annotates the program
with font and color changes. Primitive operations that may be misapplied are high-
lighted in red, while the rest are highlighted in green. By choosing from a popup
menu, the static debugger can display an inferred “value set” for program points,
and arrows overlaid on the program text describe data flow paths into program
points. Unlike conventional unification-based type systems, MrSpidey’s arrows pro-
vide a clear description of its inferences, which is especially helpful when searching
for the sources of potential errors. For each red-colored primitive, the programmer

4 Primitive program operators include if, cond, and procedure application.



18 Findler, Clements, Flanagan, Flatt, Krishnamurthi, Steckler, and Felleisen

Figure 11. Analyzing multiple units in MrSpidey (Windows version).

can use type and data flow path information to determine if a program has an error.
In some cases, MrSpidey’s analysis is too weak to capture a program invariant. In
those cases, the programmer might still use MrSpidey’s information to tune the
program to the analysis.

For an illustration, reconsider the flawed Length program from Section 3.4, shown
in Figure 10. After the static debugger completes its analysis, it opens a window
containing the analyzed program, with each primitive colored either red or green.
In this example, add1 is the only primitive colored red, indicating that the static
debugger cannot prove that the argument is always a number. The programmer can
now display the type of add1 ’s argument. The static debugger inserts a box that
contains the type of the argument to the right of its text, as shown in Figure 10.
In this case, the type contains nil , the type of empty , explaining why the static
debugger concluded that add1 may be misapplied. To explain how empty may flow
into the argument of add1 , the static debugger displays an arrow pointing from
the constant empty to the argument of add1 , as shown in Figure 10. At this point,
the static debugger has given the programmer enough information to uncover the
bug, that a recursive application of Length can result in the flow of empty into the
argument of add1 .

MrSpidey can also perform componential analysis on programs divided into units
in separate files. Figure 11 shows the analysis of a program containing two units,
where each unit is contained in a separate file. One unit defines a procedure Length,
which (this time correctly) calculates the length of a list. The other unit imports
the Length procedure, and applies it to a string. MrSpidey is able to track the data
path for the definition of Length across unit boundaries. As shown in the figure,
the instances of the variable lst in the procedure body are inferred to be strings.
Hence, the occurrence of cdr is highlighted as unsafe.

MrSpidey is useful for realistic programs. Recently the authors, in collaboration
with Paul Graunke, designed and implemented an extensible Web server (Graunke
et al., 2001). We developed the server in DrScheme and used MrSpidey to verify its
basic correctness properties. Currently, the server consists of about one thousand
lines of code. Using MrSpidey, the authors uncovered several small bugs in the



DrScheme: A Programming Environment for Scheme 19

implementation that tests had not revealed. MrSpidey also pinpointed a potential
fault site in a string-processing primitive that the authors did not understand until
after deployment of the server. While using MrSpidey for large projects is not yet
simple enough for ordinary Scheme programmers, we believe that including tools
such as MrSpidey in modern programming environments illustrates their use and
creates future demand.

5 Related Work

DrScheme integrates a number of ideas that are important for programming with
functional languages, especially at the introductory level: well-defined simple sub-
languages, a syntax checker with lexical scope analysis, a read-eval-print loop
(repl) with transparent semantics, precise run-time error reporting, an algebraic
printer, an algebraic stepper, and a full-fledged static debugger. The restriction of
the full language to a hierarchy of simplified sub-languages, the syntax checker, the
algebraic stepper for full Scheme, the transparent repl, and the static debugger are
novel environment components that no other programming environment provides.

Most of the Scheme implementations available are simple repls that do not pro-
vide a development environment. One notable exception is Bee (Serrano, 2000), a
programming environment designed for professional programmers. It has many ad-
vanced features and outstanding debugging tools, in particular an excellent memory
profiler and memory debugger (Serrano & Boehm, 2000).

In lieu of good error reporting, other Scheme implementations provide tracers,
stack browsers, and conventional breakpoint-oriented debuggers. In our experience,
these tools are too complex to help novice students. Worse, they encourage students
with prior experience in Pascal or C++ to fall back into the traditional tinker-until-
it-works approach to program construction.

Other functional language environments provide some of the functionality of
DrScheme. Specifically, SML/NJ provides a repl similar to the one described
here for the module language of ML (Blume, 1995; Harper et al., 1994). Unfor-
tunately this is useless for beginners, who mostly work with the core language.
Also, OCaml (Leroy, 1997), MLWorks (Harlequin Inc., 1996), and SML/NJ (AT&T
Bell Labratories, 1993) have good source reporting for run-time errors but, due
to the unification-based type inference process, report type errors of programs at
incorrect places and often display incomprehensible messages.

Commercial programming environments (Borland, 1983, 2000; Metrowerks, 1993–
1996; Microsoft, 1995) for imperative programming languages like C++ incorporate
a good portion of the functionality found in DrScheme. Their editors use online
real-time syntax coloring algorithms,5 the run-time environments trap segmenta-
tion faults and highlight their source location, but that is much less useful than
catching safety violations. Their debuggers serve as primitive repls, though with
much less flexibility than the repls that come with Scheme or ML. None of these

5 These syntax coloring tools typically ignore macro systems, making the task much easier.



20 Findler, Clements, Flanagan, Flatt, Krishnamurthi, Steckler, and Felleisen

tools, however, provides language levels, full-fledged algebraic printers, steppers,
α-renaming or static debuggers, which we have found to be extremely useful for
teaching and development.

Also, commercial environments have sophisticated, integrated, online documen-
tation systems. DrScheme’s Help Desk is a sophisticated, online documentation sys-
tem, but it is not as well integrated into the environment as those available in com-
mercial development systems. Since Scheme’s facilities for constructing programs
(macros, load , eval , etc.) are so permissive it is impossible to know much about the
structure of the program without evaluating it. Future releases6 of DrScheme will
incorporate program construction features that allow us to integrate the online doc-
umentation and other tools more tightly, without giving up on the expressiveness
of the conventional Scheme top-level.

One other Scheme programming environment was specifically designed for begin-
ners: EdScheme (Schemer’s Inc., 1991). It supports a rich set of pedagogic graphics
libraries. Compared to DrScheme, however, it lacks a sophisticated editor, language
levels, and the tools that DrScheme supports.

6 Experience

All five faculty members who teach the introductory computer science course at
Rice University use DrScheme. DrScheme is used on a daily basis for the lectures,
tutorials, and homework assignments. Also, several upper level courses at Rice have
used DrScheme, including the programming languages course, a program construc-
tion course, the artificial intelligence course, the graphics course and a reduction
semantics course. Programs in these courses range from 10 lines to 5000 lines.

We have also received enthusiastic reports from professors and teachers around
the world who use DrScheme in their classes. Our mailing lists consist of several
hundred people in academia and industry who use DrScheme and its application
suite. DrScheme is used in several hundred colleges, universities, and high schools.
We are also aware of several commercial efforts that are incorporating portions of
our suite into their products.

DrScheme has grown past its original goals as a pedagogic programming environ-
ment. DrScheme now has libraries for most common tasks, including networking,
and full-featured GUI programs. DrScheme has a class-based object system that
supports mixins (Flatt et al., 1999a) and a sophisticated module system that sup-
ports component programming (Flatt & Felleisen, 1998). DrScheme also includes
a project manager to manage multi-file programs that is integrated with the syn-
tax checker. In fact, the authors use DrScheme almost exclusively when developing
DrScheme, which consists of more than 200,000 lines of Scheme code.



DrScheme: A Programming Environment for Scheme 21

Figure 12. Erroneous ML program and OCaml’s response (MacOS version).

7 From Scheme to ML and Haskell

Many of DrScheme’s ideas apply to ML and Haskell programming environments
mutatis mutandis. For example, many functional programming language implemen-
tations already have an algebraic printer. The syntax checker applies equally well to
any other programming language whose binding structure is syntactically apparent.
A stepper should be as useful for ML and Haskell as it is for Scheme. The stepper’s
implementation technique applies to both ML and Haskell, since it supports state,
continuations, multiple threads of control and lazy evaluation (Clements et al.,
2001).

In principle, Haskell and ML would be excellent choices for teaching introductory
programming. Indeed, their type discipline helps enforce our design discipline from
section 2. Unfortunately, the error messages for programs that do not type-check are
often confusing to beginners. Consider the program in figure 12. OCaml highlights
the first pattern in the definition of helper , which is not where where the logical
error occurs.

While Duggan (Duggan & Bent, 1996), Wand (Wand, 1986), and others have
studied the problem of understanding type errors, their solutions do not apply to
introductory programming environments, since they require the student to under-
stand the type system. DrScheme’s development suggests an alternative to these
approaches. Specifically, stratifying both the type language and the core language
into several levels would benefit both Haskell and ML. For example, the first teach-
ing level could enforce the syntax of first-order, explicitly mono-typed function
definitions. The next level could introduce polymorphism and first-class functions.
In Haskell, the introductory languages could hide type classes. If, in addition, the
elaborator is aware of these language levels, the programming environment could
produce type errors that are appropriate to the teaching level. The programming
environment could also mimic DrScheme’s source-sensitive macro-elaborator and
thus produce error messages in terms of the source text, instead of the elaborated
core-language program.

6 At the time of this writing, the current release of DrScheme is 103.



22 Findler, Clements, Flanagan, Flatt, Krishnamurthi, Steckler, and Felleisen

Finally, the semantics of ML’s “infinite let” style repl can mask bugs in students’
programs, just as Scheme’s repl can. Consider this erroneous program:

− fun helper [] n = n
| helper (x::l) n = helper l n;

val helper = fn : α list → β → β

− fun len l = helper l 0;
val len = fn : α list → int

Suppose a student decides to fix the program by resubmitting the helper function
to the repl:

− fun helper [] n = n
| helper (x::l) n = helper l (n+1 );

val helper : α list → int → int

When the student then tests the new function:

− len [1, 2, 3];
val it = 0 : int

the bug is still present, even though helper has been fixed. Thus, Haskell and ML
environments would benefit from a DrScheme-style repl.

8 Conclusion

The poor quality of programming environments for Scheme distracts students from
the study of computer science principles. DrScheme is our response to these prob-
lems. We hope that DrScheme’s success with students, teachers, and programmers
around the world inspires others to build programming environments for functional
languages.

DrScheme is available on the web at http://www.drscheme.org/.

Acknowledgments

Thanks to R. Cartwright and D.P. Friedman for valuable feedback on early drafts of
this paper. Thanks to the JFP reviewers and the PLILP reviewers and audience for
their valuable comments and feedback. Thanks also to our users for their patience
and feedback, which has helped improve DrScheme tremendously over the years.

References

Abelson, Harold, Sussman, Gerald Jay, & Sussman, Julie. (1985). Structure and interpre-
tation of computer programs. MIT Press.

AT&T Bell Labratories. (1993). Standard ML of New Jersey. AT&T Bell Labratories.

Blume, Matthias. (1995). Standard ML of New Jersey compilation manager. Manual
accompanying SML/NJ software.

Borland. (1983, 2000). Borland C++Builder 5 developer’s guide. INPRISE Corporation,
Inc.



DrScheme: A Programming Environment for Scheme 23

Bourdoncle, François. (1993). Abstract debugging of higher-order imperative languages.
Pages 46–55 of: ACM SIGPLAN conference on Programming Language Design and
Implementation.

Cadence Research Systems. (1994). Chez Scheme Reference Manual.

Clements, John, Flatt, Matthew, & Felleisen, Matthias. (2001). Modeling an algebraic
stepper. European Symposium on Programming.

Clinger, William, & Rees, Jonathan. (1991). The revised4 report on the algorithmic
language Scheme. ACM Lisp pointers, 4(3).

Duggan, Dominic, & Bent, Frederick. 1996 (June). Explaining type inference. Science of
Computer Programming.

Felleisen, Matthias. (1988). An extended λ-calculus for Scheme. Pages 72–84 of: ACM
symposium on Lisp and Functional Programming.

Felleisen, Matthias. (1991). On the expressive power of programming languages. Science
of Computer Programming, 17, 35–75.

Felleisen, Matthias, & Hieb, Robert. (1992). The revised report on the syntactic theories
of sequential control and state. Pages 235–271 of: Theoretical Computer Science.

Felleisen, Matthias, Findler, Robert Bruce, Flatt, Matthew, & Krishnamurthi, Shriram.
(2001). How to Design Programs. MIT Press.

Flanagan, Cormac, & Felleisen, Matthias. (1997). Componential set-based analysis. ACM
SIGPLAN conference on Programming Language Design and Implementation.

Flanagan, Cormac, Flatt, Matthew, Krishnamurthi, Shriram, Weirich, Stephanie, &
Felleisen, Matthias. 1996 (May). Catching bugs in the web of program invariants.
Pages 23–32 of: ACM SIGPLAN conference on Programming Language Design and
Implementation.

Flatt, Matthew. (1997). PLT MzScheme: Language manual. Technical Report TR97-280.
Rice University.

Flatt, Matthew, & Felleisen, Matthias. 1998 (June). Units: Cool modules for HOT lan-
guages. Pages 236–248 of: ACM SIGPLAN conference on Programming Language De-
sign and Implementation.

Flatt, Matthew, & Findler, Robert Bruce. (1997). PLT MrEd: Graphical toolbox manual.
Technical Report TR97-279. Rice University.

Flatt, Matthew, Krishnamurthi, Shriram, & Felleisen, Matthias. (1999a). A program-
mer’s reduction semantics for classes and mixins. Formal syntax and semantics of Java,
241–269. preliminary version appeared in proceedings of Principles of Programming
Languages, 1998.

Flatt, Matthew, Findler, Robert Bruce, Krishnamurthi, Shriram, & Felleisen, Matthias.
1999b (Sept.). Programming languages as operating systems (or revenge of the son of
the Lisp machine). Pages 138–147 of: ACM SIGPLAN International Conference on
Functional Programming.

Francez, Nissim, Goldenberg, Shalom, Pinter, Ron Y., Tiomkin, Michael, & Tsur, Shalom.
(1985). An environment for logic programming. SIGPLAN Notices, 20(7), 179–190.

Graunke, Paul, Krishnamurthi, Shriram, Hoeven, Steve Van Der, & Felleisen, Matthias.
2001 (April). Programming the web with high-level programming languages. European
symposium on programming.

Hanson, Chris, The MIT Scheme Team, & A Cast of Thousands. (1993). MIT Scheme
Reference.

Harlequin Inc. (1996). MLWorks. Harlequin Inc.

Harper, Robert, Lee, Peter, Pfenning, Frank, & Rollins, Eugene. (1994). Incremental



24 Findler, Clements, Flanagan, Flatt, Krishnamurthi, Steckler, and Felleisen

recompilation for Standard ML of New Jersey. Technical Report CMU-CS-94-116.
Carnegie Mellon University.

Heintze, Nevin. (1994). Set based analysis of ML programs. ACM symposium on Lisp and
Functional Programming.

Hsiang, J., & Srivas, M. 1984 (July). A Prolog environment. Tech. rept. 84-074. State
University of New York at Stony Brook, Stony Brook, New York.

Kohlbecker, Eugene E. 1986 (Aug.). Syntactic extensions in the programming language
Lisp. Ph.D. thesis, Indiana University.

Kohlbecker, Eugene E., Friedman, Daniel P., Felleisen, Matthias, & Duba, Bruce F. (1986).
Hygienic macro expansion. Pages 151–161 of: ACM symposium on Lisp and Functional
Programming.

Komorowski, Henryk Jan, & Omori, Shigeo. (1985). A model and an implementation of
a logic programming environment. SIGPLAN Notices, 20(7), 191–198.

Koschmann, Timothy, & Evens, Martha Walton. (1988). Bridging the gap between object-
oriented and logic programming. IEEE software, 5(July), 36–42.

Krishnamurthi, Shriram, Erlich, Yan-David, & Felleisen, Matthias. 1999a (Mar.). Express-
ing structural properties as language constructs. Pages 258–272 of: European Sympo-
sium on Programming. Lecture Notes in Computer Science, no. 1576.

Krishnamurthi, Shriram, Felleisen, Matthias, & Duba, Bruce F. 1999b (Sept.). From
macros to reusable generative programming. Pages 105–120 of: International Sym-
posium on Generative and Component-Based Software Engineering. Lecture Notes in
Computer Science, no. 1799.

Lane, A. (1988). Turbo Prolog revisited. Byte, 13(10), 209–212.

Leroy, Xavier. (1997). The Objective Caml system, Documentation and User’s guide.

Metrowerks. (1993–1996). CodeWarrior. Metrowerks.

Microsoft. (1995). Microsoft Developer Studio. Microsoft.

Pitman, Kent M. (1980). Special forms in lisp. Pages 179–187 of: Lisp conference.

Schemer’s Inc. (1991). EdScheme: A Modern Lisp.

Serrano, Manuel. (2000). Bee: an integrated development environment for the Scheme
programming language. Journal of Functional Programming.

Serrano, Manuel, & Boehm, Hans J. (2000). Understanding memory allocation of Scheme
programs. Pages 245–256 of: ACM SIGPLAN International Conference on Functional
Programming.

Stallman, Richard. (1987). GNU Emacs Manual. Free Software Foundation Inc., 675
Mass. Ave., Cambridge, MA 02139.

Texas Instruments. (1988). PC Scheme User’s Guide & Language Reference Manual—
Student Edition.

Wadler, Philip. (1987). A critique of Abelson and Sussman, or, why calculating is better
than scheming. SIGPLAN Notices, 22(3).

Wand, Mitch. (1986). Finding the source of type errors. Pages 38–43 of: ACM conference
principles of programming languages.


