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Abstract

The notion that certain procedures are atomic is a fundamental cor-
rectness property of many multithreaded software systems. A pro-
cedure is atomic if for every execution there is an equivalent serial
execution in which the actions performed by any thread while ex-
ecuting the atomic procedure are not interleaved with actions of
other threads. Several existing tools verify atomicity by using com-
mutativity of actions to show that every execution reduces to a cor-
responding serial execution. However, experiments with these tools
have highlighted a number of interesting procedures that, while in-
tuitively atomic, are not reducible.

In this paper, we exploit the notion of pure code blocks to verify the
atomicity of such irreducible procedures. If a pure block terminates
normally, then its evaluation does not change the program state,
and hence these evaluation steps can be removed from the program
trace before reduction. We develop a static analysis for atomicity
based on this insight, and we illustrate this analysis on a number
of interesting examples that could not be verified using earlier tools
based purely on reduction. The techniques developed in this paper
may also be applicable in other approaches for verifying atomicity,
such as model checking and dynamic analysis.

Categories and Subject Descriptors: D.2.4 [Software Engineer-
ing]: Software/Program Verification–reliability; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs.

General Terms: Languages, Verification, Reliability.

Keywords: Atomicity, purity, reduction, concurrent programs.

1 Introduction

Multiple threads of control are widely used in software develop-
ment because they help reduce latency and provide better utilization
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of multiprocessor machines. However, reasoning about the correct-
ness of multithreaded code is complicated by the nondeterministic
interleaving of threads and the potential for unexpected interference
between concurrent threads. Since exploring all possible interleav-
ings of the executions of the various threads is clearly impractical,
techniques for specifying and controlling the interference between
concurrent threads are crucial for the development of reliable mul-
tithreaded software.

A canonical and widely-applicable non-interference guarantee is
atomicity. A procedure (or code block) is atomic if for every (ar-
bitrarily interleaved) program execution, there is an equivalent ex-
ecution with the same overall behavior where the atomic procedure
is executed serially, that is, the procedure’s execution is not inter-
leaved with actions of other threads. The notion of atomicity pro-
vides multiple benefits.

• The non-interference guarantee provided by atomicity re-
duces the challenging problem of reasoning about an atomic
procedure’s behavior in a multithreaded context to the sim-
pler problem of reasoning about the procedure’s sequential
behavior. The latter problem is significantly more amenable
to standard techniques such as manual code inspection, dy-
namic testing, and static analysis.

• Atomicity is a natural methodology for multithreaded pro-
gramming, and experimental results indicate that many ex-
isting procedures and library interfaces already follow this
methodology [12].

• Many synchronization errors can be detected as violations of
atomicity.

Recently, a number of analyses have been developed for veri-
fying atomicity, using techniques such as theorem proving [18],
static type and effect systems [16, 17], dynamic analysis [12, 38],
and model checking [22]. All of these approaches use reduc-
tion [26, 32], which is based on commuting operations in an ex-
ecution performed by different threads when they do not interfere
with each other to obtain an equivalent serial execution (where the
operations of each atomic procedure are performed contiguously).
An expression is reducible if it consists of zero or more right movers
(steps that right-commute with steps of other threads), followed
by at most one atomic step (that need not commute with steps of
other threads), followed by zero or more left movers (steps that left-
commute with steps of other threads).

To illustrate this notion of reduction, consider the procedure setxy
shown below. In this procedure, the operation acquire(m) is a
right mover, and the operation release(m) is a left mover. More-
over, if all threads access x and y only while holding the lock m, then
the writes to x and y are both right-movers and left-movers since no
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other thread can concurrently access these variables. Thus, as illus-
trated below, we can reduce any execution of setxy interleaved
with arbitrary steps (“Z”) from other threads into an equivalent se-
rial execution.

Procedure setxy
atomic void setxy() {

acquire(m); x=1; y=2; release(m);
}
Reduction

Z Z Z  y=2   rel(m)acq(m)    x=1

Z Zacq(m) Z   x=1   y=2   rel(m)

1.1 Purity

Reduction suffices to verify the atomicity of many procedures that
use straightforward synchronization patterns, but it is often inade-
quate for procedures that use more subtle synchronization. A con-
crete example of this limitation is the procedure busy acquire
shown below, which uses a combination of busy-waiting and a
compare-and-swap (CAS) operation to acquire a mutually-exclusive
lock m (represented as a boolean).

Procedure busy acquire

atomic void busy acquire() {
while (true) {

if (CAS(m,0,1)) break;
}

}

The operation CAS(m,0,1) has no effect and returns false if
m �= 0. However, if m = 0, then the operation CAS(m,0,1)
sets m to 1 and returns true. This CAS operation does not com-
mute with operations of concurrent threads, since it inspects and
potentially updates the shared variable m. Hence, any execution
of busy acquire where the loop iterates multiple times cannot be
reduced to a serial execution, and previous tools based purely on re-
duction cannot verify the atomicity of busy acquire. In particular,
our previous type and effect system for atomicity [17] cannot ver-
ify the atomicity of irreducible procedures like busy acquire. The
model checking approach described in [10] can verify the atomicity
of busy acquire but is limited by the state-explosion problem.

In this paper, we present a lightweight and scalable static analy-
sis for verifying the atomicity of irreducible procedures such as
busy acquire. We present our analysis as an effect system (es-
sentially, a collection of syntax-directed rules). This effect system
is analogous to traditional type systems, except that it reasons about
effects (which describe computations) as opposed to types (which
describe values).

A key novelty of our analysis is the exploitation of purity when rea-
soning about atomicity. Essentially, a code block is pure if, when-
ever its evaluation terminates normally, it does not change the pro-
gram state. This restriction does not apply when the block termi-
nates exceptionally, for example, via a break or return statement.
The body of the while loop in busy acquire is pure, since if it
updates m it immediately terminates exceptionally via the break
statement. Otherwise, control is returned to the loop head without

changing the program store. We introduce the pure-while state-
ment to indicate a pure loop and rewrite the busy acquire proce-
dure as follows:

Procedure busy acquire with a pure loop
atomic void busy acquire() {

pure-while (true) {
if (CAS(m,0,1)) break;

}
}

The intuition behind the reasoning of our analysis for
busy acquire is shown in the following figure. The fig-
ure shows an execution of busy acquire consisting of three
normally-terminating loop iterations in which the CAS fails,
followed by an exceptionally-terminating iteration in which the
CAS operation succeeds.

Execution trace for busy acquire

Z ZCAS(m,0,1) Z CAS(m,0,1) CAS(m,0,1) CAS(m,0,1)

(pure removed)
Z CAS(m,0,1)Z Z

(failed) (failed) (failed) (success)

Since the normally-terminating iterations do not change the pro-
gram state, our verification technique essentially removes them
from the execution trace to yielding a trace containing a single loop
iteration in which the CAS operation succeeds. Since every execu-
tion of busy acquire is serializable in this manner, our analysis
can conclude that busy acquire, although irreducible, is atomic.

1.2 Abstraction via purity

A more interesting example of our analysis technique is the follow-
ing procedure alloc, which searches for a free disk block. The
flag free[i] indicates whether the i-th disk block is currently un-
used, and this flag is protected by the mutually-exclusive lock l[i].
When alloc identifies a free block, it allocates the block by setting
the appropriate bit to false and returns the index of that block. The
alloc procedure returns -1 if it fails to find a free block.

Procedure alloc
atomic int alloc() {

int i = 0;
int r = -1;
while (i < max) {

pure {
acquire(l[i]);
if (free[i]) {

free[i] = false;
release(l[i]);
r = i;
break;

}
release(l[i]);

}
i++;

}
return r;

}
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Execution trace for alloc

rel(l[0]) acq(l[1]) free[1]=falseZ Z Z Z ZZacq(l[0]) rel(l[1])test(free[0]) test(free[1])

ZZ ZZ ZZ

(pure elided)

free[1]=falseacq(l[1]) test(free[1])skip

acq(l[0]) rel(l[0]) ZZ Z ZZ Zfree[1]=falseacq(l[1])

(reduced)

test(free[1])test(free[0])

Z Z

(reduced after pure elided)

Z ZZ Z skip acq(l[1]) test(free[1]) free[1]=false

rel(l[1])

rel(l[1])

rel(l[1])

This procedure is not actually serializable, since there exist some
(non-serial) executions of this procedure that are not equivalent to
any serial executions. In particular, a concurrent thread could en-
sure that there is always at least one free block at any point in time,
yet the sequential search performed by alloc could still fail to find
a free block. Thus the concrete implementation of alloc is not
atomic, and this lack of atomicity significantly complicates reason-
ing about the behavior or correctness of alloc. However, alloc
is atomic in an abstract sense because any execution performs the
atomic action of either allocating a block or returning -1 if no free
block was found.

In order to facilitate sequential reasoning for non-atomic proce-
dures such as alloc, this paper introduces the notion of abstract
atomicity and shows that the procedure alloc is atomic under a
more permissive or abstract semantics. In this abstract seman-
tics, the execution of the pure block in alloc is optional, and
may or may not be executed on any loop iteration. Thus, the ab-
stract semantics introduces additional nondeterminism and admits
additional execution sequences for alloc. Despite this additional
nondeterminism, every serial execution of alloc under the abstract
semantics satisfies the correctness specification of returning either
−1 or the index of a free block. This correctness property can be
verified using sequential reasoning techniques.

Given that every serial execution of alloc is correct, the contri-
bution of our analysis is to verify that every possible interleaved
execution of alloc yields the same behavior as some serial execu-
tion, thus allowing us to conclude that all interleaved executions of
alloc are also correct. Thus, our analysis enables reasoning about
behavior and correctness of abstractly atomic (though not atomic)
procedures such as alloc using sequential reasoning. In contrast,
previous techniques only achieved this goal (of enabling sequential
reasoning) for procedures that are both atomic and reducible.

The central intuition behind the reasoning performed by our anal-
ysis to verify abstract atomicity is illustrated graphically in the ex-
ecution traces for alloc shown above. The first trace contains an
execution of alloc that succeeds on the second loop iteration, in-
terleaved with arbitrary actions “Z” of concurrent threads. We only
show steps of alloc that modify shared variables. By reduction, we
can prove that each individual loop iteration is reducible. Since the
first execution of the pure block is normally-terminating and hence
effect-free, we replace it with skip in the execution sequence, at
which point applying reduction a second time yields an equivalent
serial execution.

The Calvin-R checker [18] can verify similar atomicity properties.
However, that tool focuses on checking more complete functional
specifications of concurrent programs and has a higher annotation
overhead and analysis complexity than the technique in this paper.

1.3 Abstraction via instability

Our analysis also supports unstable variables, such as performance
counters, which do not affect program correctness. These variables
are typically not protected by locks and have race conditions on
them. Consequently, accesses to these variables do not commute.
Our analysis verifies atomicity with respect to an abstract semantics
in which every write access to an unstable variable writes a nonde-
terministic value and every read access reads a nondeterministic
value. Under such an abstract semantics, read and write accesses
to unstable variables both right and left commute. For example, a
program may use an unstable packetCount variable to record the
number of packets received for tracking performance. Operations
on that variable do not affect the atomicity of the code in which they
appear. We present a complete example in Section 4.4.

Outline. The presentation of our results proceeds as follows. The
following section introduces an idealized language that we use for
studying atomicity. Section 3 presents the effect system for atom-
icity, and Section 4 illustrates this analysis on a number of example
programs. Section 5 sketches an extension of our technique based
on a more flexible notion of purity. We discuss related work in
Section 6 and conclude with a discussion of future directions in
Section 7.

2 The language CAP

We formalize our ideas in terms of CAP, a small, imperative, multi-
threaded language with higher-order functions and dynamic thread
creation. In essence, CAP is a restricted subset of C, extended with
facilities for reasoning about atomicity and purity.

CAP expressions include values, variable reference and assign-
ment, primitive and function applications, conditionals, and let-
expressions. The fork e expression creates a new thread for the
evaluation of e. Values are constants and function definitions. Con-
stants must include integer constants but are otherwise unspecified.
The definition f(x) e introduces a function named f . The formal
parameters x are bound within the body e, and they may be α-
renamed in the usual fashion. For generality, we leave the set of
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primitives unspecified, but they might include, for example, syn-
chronization primitives such as lock creation, acquire, and release
operations for mutual exclusion locks. We assume the set of primi-
tives also include arithmetic operations and assert.

In addition to terminating normally and yielding a resulting value,
the evaluation of a CAP expression can also terminate exceptionally
via the break construct, which transfers control from the current
expression to the end of the closest dynamically-enclosing block
construct. The construct loop e repeatedly evaluates e until e
break’s to an enclosing block.

To facilitate our atomicity analysis, expressions can be annotated
with the keyword pure. The evaluation of an expression pure e
is optional, and may be skipped. The keyword pure states that,
when the expression e is evaluated and terminates normally, that
evaluation does not change the program state. (Only exceptionally
terminating evaluations of a pure expression are allowed to change
the program state.) If a pure expression temporarily changes the
program state, for example, by acquiring a lock, then it must restore
the state by releasing the lock before terminating normally. The
language CAP supports unstable variables, so the set of variable
names is divided into stable and unstable variables. By convention,
unstable variable names begin with “ ”.

Syntax

e ∈ Expr ::= v | xr | xr := e | p(e) | eF (e)
| if e e e | loop e | block e | break
| let x = e in e | fork e
| atomic e | pure e

v ∈ Value ::= c | f(x) e
r ∈ Tag ::= • | ε

x ∈ Var = StableVar � UnstableVar
f ∈ FnName

F ∈ 2FnName

p ∈ Prim
c ∈ Const

We introduce syntactic sugar for some common constructs.

e1; e2 ≡ let x = e1 in e2 for x not free in e2
while e1 e2 ≡ block loop { if e1 e2 break }

pure-while e1 e2 ≡ block loop pure { if e1 e2 break }
Note that if e1 and e2 are pure, then while e1 e2 and
pure-while e1 e2 are semantically equivalent (that is, replacing
pure-while e1 e2 in a program with while e1 e2 does not change
the observable behaviors of the program).

To simplify our presentation, the CAP effect system does not reason
about race conditions, control flow, or purity, since these topics can
be addressed by other analyses. Instead, we assume the program
has already been annotated and checked by alternative analyses as
follows:

1. Each variable access (read or write) has a conflict tag, which is
• if that access may be involved in a race condition on a stable
variable, and is ε otherwise. Thus, all accesses to unstable
variables or correctly synchronized stable variables will have
conflict tag ε. Existing analysis techniques [4, 11, 20, 36, 14]
can be used to infer these conflict tags.

2. Each function call eF (e) has a call tag F denoting the set of

functions that may be invoked by that call. These call tags can
be computed by a standard flow analysis.

3. Each pure e expression is side-effect free when e evaluates
normally. We present an effect system to check purity in the
Appendix. Nielson, Nielson, and Hankin [30] provide a gen-
eral overview of other effect-based techniques for tracking
side effects, and these may be extended for our purposes as
well.

We also assume programs being checked have passed a conven-
tional type checker to catch basic type errors, such as performing
an arithmetic operation on non-numeric arguments. Factoring these
other issues enables us to focus on the key aspects of this work with-
out the added complexity of these other analyses. The core focus of
our analysis is on verifying that every expression or procedure that
is annotated as atomic is, in fact, serializable.

3 Effect system

We formalize our static analysis for abstract atomicity as an effect
system. Previous type and effect systems [17, 16] could only ver-
ify the atomicity of procedures that are reducible. By introduc-
ing optionally-executed pure blocks and unstable variables, our ef-
fect system can also verify many interesting irreducible procedures,
such as those in Sections 1 and 4, are still atomic.

Each expression in our language can terminate either normally (by
evaluating to a value) or exceptionally (via break). For each termi-
nation mode, our effect system assigns to each expression an atom-
icity from the following set:

a, b, c ∈ Atomicity = {R, L, B,⊥, A,�}

This atomicity identifies whether the evaluation of the expression

• right-commutes with operations of other threads (R);
• left-commutes with operations of other threads (L);
• both right- and left-commutes (B);
• cannot terminate in that mode (⊥);
• can be viewed as a single atomic action (A); or
• exhibits none of these properties (�).

Atomicities are partially ordered by the relation �, as follows:
�

A

L R

B

⊥
Let � denote the join operator based on this ordering. If atomicities
a1 and a2 reflect the normal-termination behavior of expressions e1
and e2 respectively, then the sequential composition a1; a2 reflects
the normal-termination behavior of e1; e2, and is defined by the
following table.
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Effect System

Γ 	 e : a ↑ b

[EXP CONST]

Γ 	 c : B ↑ ⊥

[EXP FUN]
Γ(f) = 〈a, b〉 Γ 	 e : a ↑ b

Γ 	 f(x) e : B ↑ ⊥

[EXP PRIM]
Γ 	 e : a ↑ b

Γ 	 p(e) : (a; Γ(p)) ↑ b

[EXP READ]

Γ 	 xε : B ↑ ⊥

[EXP READ RACE]

Γ 	 x• : A ↑ ⊥

[EXP ASSIGN]
Γ 	 e : a ↑ b

Γ 	 xε := e : (a;B) ↑ b

[EXP ASSIGN RACE]
Γ 	 e : a ↑ b

Γ 	 x• := e : (a; A) ↑ b

[EXP LET]
Γ 	 e1 : a1 ↑ b1 Γ 	 e2 : a2 ↑ b2

Γ 	 let x = e1 in e2 : (a1; a2) ↑ (b1 � (a1; b2))

[EXP IF]
Γ 	 e : a ↑ b Γ 	 ei : ai ↑ bi

Γ 	 if e e1 e2 : (a; (a1 � a2)) ↑ (b � (a; (b1 � b2)))

[EXP LOOP]
Γ 	 e : a ↑ b

Γ 	 loop e : ⊥ ↑ (a∗; b)

[EXP FORK]
Γ 	 e : a ↑ b

Γ 	 fork e : A ↑ ⊥

[EXP INVOKE]
Γ 	 e : a ↑ b Γ 	 ē : a′ ↑ b′

a′′ = �{a | f ∈ F ∧ Γ(f) = 〈a, b〉}
b′′ = �{b | f ∈ F ∧ Γ(f) = 〈a, b〉}

Γ 	 eF (e) : (a; a′; a′′) ↑ (b � (a; b′) � (a; a′; b′′))

[EXP BLOCK]
Γ 	 e : a ↑ b

Γ 	 block e : (a � b) ↑ ⊥

[EXP BREAK]

Γ 	 break : ⊥ ↑ B

[EXP ATOMIC]
Γ 	 e : a ↑ b a, b � A

Γ 	 atomic e : a ↑ b

[EXP PURE]
Γ 	 e : a ↑ b a � A

Γ 	 pure e : B ↑ b

Γ 	 ē : a ↑ b

[EXP EMPTY SEQ]

Γ 	 ε : B ↑ ⊥

[EXP SEQ]
Γ 	 ē : a ↑ b Γ 	 e : a′ ↑ b′

Γ 	 (ē.e) : (a; a′) ↑ (b � (a; b′))

; ⊥ B L R A �
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
B ⊥ B L R A �
L ⊥ L L � � �
R ⊥ R A R A �
A ⊥ A A � � �
� ⊥ � � � � �

Similarly, if atomicity a reflects the normal-termination behavior
of e, then the iterative closure a∗ reflects the normal-termination
behavior of executing e zero or more times, and is defined by

⊥∗ = B
A∗ = �
a∗ = a for a ∈ {B, L, R,�}

Note that

1. sequential composition is associative and B is the left and
right identity of this operation,

2. iterative closure is idempotent, and
3. sequential composition distributes over joins.

An effect environment Γ maps each function name to a pair of
atomicities 〈a, b〉 that describe the function’s behavior under nor-
mal and exceptional termination. In addition, Γ also maps each
primitive operation to a corresponding atomicity (note that primi-
tives never terminate exceptionally):

Γ : (FnName → Atomicity × Atomicity)
∪ (Prim → Atomicity)

The atomicity of some common primitives are:

Γ(assert) = B
Γ(CAS) = A

Γ(+) = B

Γ(new lock) = B
Γ(acquire) = R
Γ(release) = L

The core of our effect system is a set of rules for reasoning about
the judgment:

Γ 	 e : a ↑ b

This judgment states that the expression e has atomicity a under
normal termination, and atomicity b under exceptional termination.
The rules defining these judgments are mostly straightforward. For
example, the “evaluation” of a constant terminates normally, does
not interfere with other threads, and cannot terminate exceptionally.

[EXP CONST]

Γ 	 c : B ↑ ⊥
The rule [EXP LET] states that the normal atomicity of a let expres-
sion let x = e1 in e2 is the sequential composition a1; a2 of the
normal atomicities of e1 and e2. The exceptional atomicity of a let
expression reflects the places where the let expression could break.

[EXP LET]
Γ 	 e1 : a1 ↑ b1 Γ 	 e2 : a2 ↑ b2

Γ 	 let x = e1 in e2 : (a1; a2) ↑ (b1 � (a1; b2))

Another example of how the exceptional atomicity reflects all the
ways in which an expression may break is the [EXP IF] rule.

[EXP IF]
Γ 	 e : a ↑ b Γ 	 ei : ai ↑ bi

Γ 	 if e e1 e2 : (a; (a1 � a2)) ↑ (b � (a; (b1 � b2)))

The rule [EXP LOOP] states that the normal atomicity of the loop is
⊥, since it never terminates normally. The exceptional atomicity for
a loop reflects the fact that the loop body could terminate normally
many times before terminating exceptionally.

[EXP LOOP]
Γ 	 e : a ↑ b

Γ 	 loop e : ⊥ ↑ (a∗; b)
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The atomicity of a variable read xr depends on the conflict tag r. If
r = ε, then this read commutes with steps of other threads, and so
has normal atomicity B. If r = •, then this read has normal atom-
icity A, indicating that it is an atomic action that may not commute
with steps of other threads. The rules for variable writes are similar.

[EXP READ]

Γ 	 xε : B ↑ ⊥

[EXP READ RACE]

Γ 	 x• : A ↑ ⊥

A block e expression never terminates exceptionally. Either the
body e terminates normally, or it executes a break expression that
terminates e early. In the latter case, we still consider block e to
exit normally. A break expression only terminates exceptionally
and is a both mover.

[EXP BLOCK]
Γ 	 e : a ↑ b

Γ 	 block e : (a � b) ↑ ⊥

[EXP BREAK]

Γ 	 break : ⊥ ↑ B

A key innovation of our effect system is our treatment of pure
blocks. The rule [EXP PURE] for pure e states that the normal
atomicity of the body of a pure block must be at most A. This
requirement ensures that any side effects during the evaluation of e
are not visible to other threads. Since, under normal termination,
the pure block has no observable effect, our effect system “opti-
mizes” the normal atomicity of pure block to a both-mover B.

[EXP PURE]
Γ 	 e : a ↑ b a � A

Γ 	 pure e : B ↑ b

Finally, the normal and exceptional atomicities of the body of an
atomic construct are required to be at most A.

[EXP ATOMIC]
Γ 	 e : a ↑ b a, b � A

Γ 	 atomic e : a ↑ b

Our effect system is sound in the sense that any execution trace of
a well-typed program is equivalent to a serial execution of that pro-
gram. In this serial execution, the steps of each atomic block are
executed sequentially, without steps interleaved from other threads.
To verify this serializability property, we first reduce each normally-
terminating pure block into a sequence of contiguous steps and
we replace that sequence with a single skip step. We then reduce
atomic blocks in the modified execution to obtain an equivalent se-
rial execution. We refer the interested reader to an extended version
of this paper for a full proof of this result [13].

4 Applications

In this section, we present several examples to illustrate the expres-
siveness of our effect system for atomicity. In these examples, we
sometimes enclose expressions in parentheses or braces and use ad-
ditional constructs such as return for clarity. We start by consid-
ering the double-checked initialization pattern, commonly used to
ensure that a shared variable is initialized exactly once [35].1

1Our analysis assumes a sequentially consistent memory model.
Double-checked initialization may not work correctly under other
memory models.

4.1 Double-checked initialization

To avoid excessive synchronization overhead, the variable x below
is initially tested without holding its protecting lock l. If the first
test fails, the lock is acquired, and if x is still null, then it is initial-
ized. Note that the read xε is not a conflicting access, since it com-
mutes with concurrent reads, but the write x• may conflict with
reads of other threads. Since the procedure consists of an atomic
operation (the first read of x) followed by a right-mover operation
(acquire(l)), the procedure is not reducible and cannot be veri-
fied as atomic using previous analyses.

Double-Checked Locking
atomic void init() {

block {
pure { if (x• != null) break; }
acquire(l);
if (xε == null) x• = new();
release(l);

}
}

Our approach exploits the fact that the first test of x is both pure
and optional; omitting this test does not affect the correctness of the
program, only its performance, and thus we can enclose this test in
a pure construct. If the first test succeeds, the procedure returns via
a reducible trace. If the first test fails, then that test has no effect on
the program store and we replace it by skip in the trace (just as for
alloc), yielding a reducible trace through the function init. By
this reasoning, our effect system verifies each possible execution of
init has an equivalent serial execution, and hence init is atomic.

4.2 Caching

In the next example, the function compute constructs the value for
a given key but is an expensive operation, so we wish to cache
previously-computed results. We assume the cache operations
cachePut and cacheGet are atomic (for example, because they
acquire the lock protecting the cache); cacheGet is a pure (side-
effect free) function; and that compute is a both-mover. We would
like to verify that lookup is atomic, to ensure that it still behaves
correctly even if when concurrently invoked by multiple threads.

Caching
atomic void cachePut(String k, Object val) { ...}
atomic pure Object cacheGet(String k) { ... }

// expensive operation
both-mover Object compute(String k) { ... }

atomic Object lookup(String k) {
pure {

Object r = cacheGet(kε);
if (rε != null) return rε;

}
Object r = compute(kε);
cachePut(kε,rε);
return rε;

}
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The function lookup is irreducible, since it contains sequentially
composed atomic operations, cacheGet and cachePut. Note that
the alternative implementation of holding the cache lock throughout
lookup would introduce undesirable contention, since compute is
a long-running operation. However, the cache lookup is clearly an
optimization and can be omitted without affecting program correct-
ness. We exploit this fact by enclosing the cache lookup in a pure
construct. If the cache lookup is successful, the function lookup
immediately returns via a reducible trace. If the cache lookup fails,
it has no effect on the program store. Our analysis leverages this
information (documented by the pure keyword) to essentially “re-
move” the cache lookup from the trace by replacing it with skip
and to produce an equivalent, reducible trace. Thus, all executions
through the function lookup have an equivalent serial execution,
and so the function lookup is atomic.

4.3 Wait and notify

The wait and notify routines facilitate notification between con-
current threads. The routine wait(l) should only be called if the
lock l is held; this routine then releases l, blocks until a concurrent
thread calls notify(l), and then returns after re-acquiring l. Typ-
ically, the routine wait(l) is called inside a loop that iterates until
a desired condition holds, and concurrent threads call notify(l)
whenever a state change may affect the desired condition. We
model wait(l) and notify(l) as {release(l);acquire(l)}
and skip, respectively. This model captures the essence that other
threads may acquire l during the execution of wait(l). In other
words, wait is not atomic.

The following code fragment illustrates the use of wait to iterate
until the variable x (protected by lock l) is false, and we assume
that body is atomic.

Wait example
acquire(l);
while x {

wait(l);
}
body ;
release(l);

For this example, even though wait(l) is not atomic, our type sys-
tem can verify that the entire code fragment, although irreducible,
is still atomic. Before applying our type system, we first need to
refactor this code using the following equivalence rules for program
expressions:

Equivalence rules

e; block e′ = block e; e′ if e cannot break
e; loop {e′; e} = loop {e; e′}

break = break; e
if e1 {e2; e} {e3; e} = {if e1 e2 e3}; e

Applying these rules to the above code fragment in the appropriate
manner yields the following refactored code that has equivalent be-
havior, but where the body of the loop is now pure. (Note that not
all uses of wait can be refactored in this manner.)

Refactored wait example
block loop pure {

acquire(l);
if x release(l) break;

}
body ;
release(l);

The purity of the refactored loop allows our effect system to ver-
ify that each loop iteration except the last has no side-effect and
can be elided from the execution sequence. The resulting execu-
tion sequence acquires the lock, checks that x is false, executes
body, and releases the lock. This sequence is both atomic and re-
ducible. Since every possible execution of the original code frag-
ment is equivalent to such an atomic execution, the original code
fragment is atomic.

4.4 Packet counter

The following example counts the number of packets received in
a program with the packetCount variable, which is used only
for monitoring or performance purposes. To avoid synchronization
overhead, the program accesses packetCount without synchro-
nization, with the expectation that the resulting race conditions will
not cause the resulting count to be substantially incorrect. By mark-
ing packetCount as unstable, we can still consider procedures
like receive to be atomic, despite the presence of race conditions.
(We do need to check the sequential correctness of receive under
the abstract semantics where packetCount may change nondeter-
ministically.)

Packet counter
int packetCount;
Queue packets;

atomic void enqueue(Queue q, Packet p) { ... }

atomic void receive(Packet p) {
packetCountε++;
enqueue(packetsε, pε);

}

5 Abstraction via weak purity

The technique of optionally-executed pure blocks is sufficient to
handle many examples, such as those described in Section 4. In
this section, we sketch a more general notion of purity that yields a
more expressive effect system for atomicity.

Consider the following function which models optimistic concur-
rency control based on transaction retry. We have a shared data
variable z that we wish to update according to z = f(z). How-
ever, the function f is a long-running operation, so we do not wish
to hold z’s protecting lock m when computing f. Instead, we record
a local copy x of z, compute f(x), and then update z if the value of
z has not changed. If z has changed, then we retry the transaction.
This technique ensures that the update of z to f(z) is serialized
with respect to other updates to z, without requiring the lock guard-
ing z to be held while computing f(z).
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Transaction retry
atomic void apply f() {

int x, fx;
weak-pure {

acquire(m);
xε = zε;
release(m);

}
weak-pure-while (true) {

fxε = f(xε);
acquire(m);
if (xε == zε) {

zε = fxε;
release(m);
break;

}
xε = zε;
release(m);

}
}

The code block before the loop is not pure because it modifies the
local variable x. The body of the while loop is also not pure because
it modifies the local variables x and fx. To deal with this prototyp-
ical example, we introduce a weaker notion of purity that allows
us to prove the atomicity of apply f. We first classify variables
as either thread-local or shared, depending on whether the variable
may be accessed by one or multiple threads, respectively. A code
block can be annotated as weak-pure if it is atomic and does not
modify any shared variables under normal termination. Its evalu-
ation may modify thread-local variables, making weak-pure less
restrictive than pure (which may not modify either thread-local or
shared variables under normal termination).

The construct weak-pure-while e1 e2 is desugared in a fashion
similar to pure-while:

weak-pure-while e1 e2 ≡
block loop weak-pure { if e1 e2 break }

and is semantically equivalent to while e1 e2 (provided
{if e1 e2 break} is weakly-pure).

The abstract semantics executes weak-pure e as normal, except
that if e accesses a shared variable x, then an arbitrary value is re-
turned. This arbitrary value is consistent for all accesses to x during
a single execution of e. Thus the abstract semantics for weak-pure
introduces additional execution traces and we need to check (for-
mally or informally) the sequential correctness of apply f under
this abstract semantics. The choice of abstract semantics ensures
that weak-pure blocks neither read nor modify values of shared
variables, and enables us to treat atomic weak-pure blocks as both-
movers.

The typing rule for weak-pure is identical to the rule used to reason
about pure blocks. The rule requires that the normal atomicity of
the body of a weak-pure block must be at most A and “optimizes”
the normal atomicity of the block to a both-mover B.

[EXP WEAKPURE]
Γ 	 e : a ↑ b a � A

Γ 	 weak-pure e : B ↑ b

6 Related work

Lipton [26] first proposed reduction as a way to reason about dead-
locks in concurrent programs without considering all possible in-
terleavings. Reduction has subsequently been extended to support
proofs of general safety and liveness properties [8, 3, 25, 6, 29].
Bruening [5] and Stoller [37] have used reduction to improve the
efficiency of model checking. Flanagan and Qadeer have pursued a
similar approach [15], and Qadeer et al [33] have used reduction to
infer procedure summaries in concurrent programs.

We previously applied reduction to verify atomicity in a static type
and effect system for Java programs [17, 16]. This paper improves
on that approach by enabling us to reason about the atomicity of
code that is not immediately reducible.

The Calvin-R checker for multithreaded code relates procedure im-
plementations to their functional specifications with an abstraction
relation based on both reduction and simulation [18]. While ca-
pable of checking the atomicity of the examples in this paper, the
overhead of that approach, in terms of annotation size and analysis
complexity, is much greater. In contrast, the approach presented in
this paper is more scalable, intuitive, and easier to use for checking
atomicity properties.

Wang and Stoller [38] have developed a dynamic algorithm that
can verify the atomicity of some irreducible code sequences. Their
approach constructs the feasible interleavings of steps from two
blocks of code and then determines whether all such interleavings
are serializable. Unlike our approach, that algorithm does not re-
quire abstraction or auxiliary analysis to recognize pure blocks, and
it is in some sense a complementary approach to ours.

The Atomizer is another dynamic analysis tool for detecting atom-
icity violations [12]. Our experience with the Atomizer, which
uses reduction, suggests that the techniques developed in this pa-
per could eliminate a nontrivial number of spurious warnings in
reduction-based atomicity checkers.

The use of model checking for verifying atomicity is being ex-
plored by Hatcliff et al [22], and they present two approaches, based
on Lipton’s theory of reduction and partial-order reductions [19],
respectively. Model checking offers several advantages over our
effect system. For example, it requires many fewer programmer-
inserted annotations and can accommodate complex synchroniza-
tion disciplines more easily. Their experimental results suggest that
verifying atomicity via model-checking is feasible for unit-testing.
Their approach currently only verifies the atomicity of reducible
procedures, but we believe that integrating our notions of abstrac-
tion and atomicity into their system could yield many of the benefits
of both approaches.

In related work, Robby et al [34] demonstrate how to refactor code
in order to extract some reducible code blocks embedded inside ir-
reducible functions. This technique could, for example, refactor
alloc to utilize an auxiliary (and reducible) method that contains
a variant of the code inside the body of the for loop. In this way,
one could check the atomicity of the auxiliary method, and possibly
specify its behavior with standard pre- and post-conditions. How-
ever, the entire alloc function could not be shown to be atomic
in an abstract sense, without performing an analysis like the one
outlined in this paper.

A number of tools have been developed for detecting race con-
ditions, both statically and dynamically. The Race Condition
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Checker [11] uses a type system to catch race conditions in Java
programs. This approach has been extended [4] and adapted to
other languages [20]. Other static race detection tools include War-
lock [36], for ANSI C programs, and ESC/Java [14], which catches
a variety of software defects in addition to race conditions.

Atomicity is a semantic correctness condition for multithreaded
software. It is related to strict serializability [31], a correctness con-
dition for database transactions, and linearizability [23], a correct-
ness condition for concurrent objects. It is possible that techniques
for verifying atomicity can be leveraged to develop lightweight
checking tools for related correctness conditions.

Other languages have included a notion of atomicity as a prim-
itive operation. Hoare [24] and Lomet [28] first proposed the
use of atomic blocks for synchronization, and the Argus [27] and
Avalon [9] projects developed language support for implementing
atomic objects. Persistent languages [1, 2] augment atomicity with
data persistence in order to introduce transactions into program-
ming languages. Other recent approaches to supporting atomicity
include lightweight transactions [21, 39] and automatic generation
of synchronization code from high-level specifications [7].

7 Conclusion

Atomicity is an important correctness property for multithreaded
software. Current reduction-based tools can verify atomicity re-
quirements in common cases, but they cannot handle situations in
which code that is intuitively atomic is not immediately reducible.
A number of frequently used programming idioms fall into this cat-
egory.

This paper describes a static analysis technique capable of veri-
fying the atomicity of many such problematic cases, by applying
reduction to an abstraction of the program. The abstraction no-
tions we have presented —based on optional execution, purity, and
instability— are intuitive, and the correctness of abstractly atomic
procedures under the serial abstract semantics can be verified using
sequential reasoning techniques. Our static analysis then verifies
that all interleaved executions of these abstractly atomic procedures
are also correct.

Although we present our analysis as an effect system, these con-
cepts may be applicable in other domains. For example, software
model checkers (such as [22]) could identify and exploit pure code
blocks while performing reduction. Dynamic analyses for atomic-
ity [12] could potentially benefit from these ideas as well.
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A Effect system for purity

We present in this appendix an effect system to check that all
normally-terminating pure expressions in a program are side-
effect-free. This effect system is relatively simple but sufficient
to check all examples in this paper. The effect system essentially
tracks all locks acquired by each pure expression to ensure that
these locks are released before termination. More complex analy-
ses could improve precision by, for example, tracking more precise
control-flow and data-flow information.

The effect system reasons about the judgment

Π,X 	p e : L → L′

where Π is the set of functions that are side-effect-free under
normal-termination, and X is the set of variables that may change
during evaluation of e. The set L is the set of locks held at the be-
ginning of evaluation of e, and L′ is the set of locks held after e
terminates normally.

Most rules are straightforward. Any variable may be read, but only
variables not appearing inX may be modified.

[PURE READ]

Π, X 	p xr : L → L

[PURE ASSIGN]
Π, X 	p e : L1 → L2

x ∈ X
Π, X 	p xr := e : L1 → L2

The rules typically construct the set of locks held after evaluation
by “threading” the lockset through each subexpression, as demon-
strated by the rule for let expressions:

[PURE LET]
Π, X 	p e1 : L1 → L2

Π,X ∪ {x} 	p e2 : L2 → L3

Π, X 	p let x = e1 in e2 : L1 → L3

We introduce specific rules for the primitive operations that acquire
and release mutual exclusion locks, as well as for the idiom of
breaking when a CAS operation succeeds. Additional rules could
model other synchronization primitives, as necessary.

[PURE ACQ]
x �∈ X x �∈ L

Π, X 	p acquire(x) : L → L ∪ {x}

[PURE REL]
x �∈ X x ∈ L

Π, X 	p release(x) : L → L \ {x}

[PURE IF CAS]
Π, X 	p ei : L → L

Π, X 	p if CAS(e1, e2, e3) break e4 : L → L

The top-level judgment

Π 	p P

states that the annotation pure e is valid if

Π,UnstableVar 	p e : ∅ → ∅
That is, a pure block may not change any stable variables or termi-
nate with a different set of locks held than when evaluation started:
see [PURE PROG]. This rule also requires that every function in Π
is pure.
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Purity Effect System

Π, X 	p e : L1 → L2

[PURE CONST]

Π, X 	p v : L → L

[PURE WRONG]

Π, X 	p wrong : L → L

[PURE PRIM]
Π, X 	p e : L1 → L2

p is effect-free
Π,X 	p p(e) : L1 → L2

[PURE READ]

Π, X 	p xr : L → L

[PURE ASSIGN]
Π, X 	p e : L1 → L2

x ∈ X
Π, X 	p xr := e : L1 → L2

[PURE ACQ]
x �∈ X x �∈ L

Π, X 	p acquire(x) : L → L ∪ {x}

[PURE REL]
x �∈ X x ∈ L

Π, X 	p release(x) : L → L \ {x}

[PURE IF CAS]
Π,X 	p ei : L → L

Π, X 	p if CAS(e1, e2, e3) break e4 : L → L

[PURE LOOP]
Π, X 	p e : L → L

Π, X 	p loop e : L → L

[PURE LET]
Π,X 	p e1 : L1 → L2

Π,X ∪ {x} 	p e2 : L2 → L3

Π, X 	p let x = e1 in e2 : L1 → L3

[PURE IF]
Π,X 	p e : L1 → L2
Π,X 	p ei : L2 → L3

Π, X 	p if e e1 e2 : L1 → L3

[PURE BREAK]

Π,X 	p break : L → L′

[PURE INVOKE]
Π, X 	p e : L1 → L2
Π, X 	p ē : L2 → L3

F ⊆ Π

Π,X 	p eF (e) : L1 → L3

Π,X 	p ē : L1 → L2

[PURE EMPTY SEQ]

Π, X 	p ε : L → L

[PURE SEQ]
Π, X 	p ē : L1 → L2 Π, X 	p e : L2 → L3

Π, X 	p ē, e : L2 → L3

Π 	p P

[PURE PROG]
P contains f(x) e and f ∈ Π ⇒ Π,UnstableVar 	p e : ∅ → ∅

P contains pure e ⇒ Π,UnstableVar 	p e : ∅ → ∅
Π 	p P
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