
pHluid � The Design of a Parallel Functional Language Implementation on

Workstations

Cormac Flanagan

Rice University

Department of Computer Science

Houston� Texas ����������� USA

cormac�cs�rice�edu

Rishiyur S� Nikhil

Digital Equipment Corp�

Cambridge Research Laboratory

One Kendall Square� Bldg� �		

Cambridge� Massachusetts 	��
�� USA

nikhil�crl�dec�com

Abstract

This paper describes the distributed memory implemen�
tation of a shared memory parallel functional language�
The language is Id� an implicitly parallel� mostly func�
tional language that is currently evolving into a dialect
of Haskell� The target is a distributed memory machine�
because we expect these to be the most widely available
parallel platforms in the future� The di�cult problem is
to bridge the gap between the shared memory language
model and the distributed memory machine model� The
language model assumes that all data is uniformly ac�
cessible� whereas the machine has a severe memory hi�
erarchy� a processor�s access to remote memory �using
explicit communication� is orders of magnitude slower
than its access to local memory� Thus� avoiding com�
munication is crucial for good performance� The Id lan�
guage� and its general data�ow�inspired compilation to
multithreaded code are described elsewhere� In this pa�
per� we focus on our new parallel runtime system and
its features for avoiding communication and for tolerat�
ing its latency when necessary� multithreading� schedul�
ing and load balancing	 the distributed heap model and
distributed coherent cacheing� and parallel garbage col�
lection� We have completed the
rst implementation�
and we present some preliminary performance measure�
ments�

Keywords� parallel and distributed implementations	
garbage collection and run�time systems	 data �ow�

� Introduction

This paper describes the distributed memory implemen�
tation of a shared memory parallel functional language�
The language is Id ���� an implicitly parallel� mostly
functional language designed in the data�ow group at
MIT� Id is semantically similar to Haskell ���� and is in
fact currently evolving into pH ���� a dialect of Haskell�

Economics seems to dictate that most scalable parallel
platforms in the next
ve to ten years will be clusters
of SMPs �symmetric�shared memory multiprocessors��
i�e�� machines consisting of a number of nodes that com�
municate using message passing over a switched inter�
connection network� where each node may be a small
SMP �bus�based� ��� processors�� Larger shared mem�
ory machines are of course possible� as demonstrated by
the Stanford DASH multiprocessor ����� and the KSR
machines ����� but they are likely to be high�end ma�
chines and not widely available� Further� scalable shared
memory machines �like the DASH� are also built with
physically distributed memories for scalability� and face
some similar problems with their memory hierarchies�
Even at small numbers of processors �such as � to ���
many more people are likely to have access to clusters of
uniprocessors of that size than SMPs� Thus� our target
for Id is a distributed memory� message passing ma�
chine� In our initial implementation� each node is a
conventional uniprocessor workstation� not an SMP� We
know how to extend this to exploit SMP nodes and be�
lieve it will be easy �handling distributed memory is the
major hurdle��

The di�cult problem is to bridge the gap between the
shared memory model of the language and the distribu�
ted memory model of the machine� In Id� as in Haskell�
SML and Scheme� the language model assumes that all
data is uniformly accessible� whereas the machine has
a severe memory hierarchy� a processor�s access to re�
mote memory �using explicit message passing� is typi�
cally orders of magnitude slower than its access to local
memory� Thus� minimizing communication� avoiding
communication if possible� and tolerating the latency of
remote operations� are all crucial for good performance�

The pHluid system is a compiler and runtime system for
the Id language that we have been building at Digital�s
Cambridge Research Laboratory for some years� Based
on ideas originating in data�ow architectures� ���� the
compiler produces multithreaded code for conventional
machines�

In this paper� we focus on novel aspects of a new par�
allel runtime system for pHluid� in particular features
that avoid communication and tolerate its latency when
necessary� multithreading� scheduling and load balanc�
ing	 a distributed heap model and distributed coher�

�The name pHluid is a play on Id� pH and data�ow�

ent cacheing� and parallel garbage collection� We also
present some preliminary performance data�

� Background on Id and its compilation to mul�
tithreaded code

�The important messages of this section are summarized
in its last paragraph� Readers familiar with topics such
as Id� Id compilation� data�ow� message driven execu�
tion�
ne grain multithreading� etc� may wish to skip
this section and just read the last paragraph��

Id ��� is an implicitly parallel� mostly functional� lan�
guage designed in the data�ow group at MIT� It has
many features common to other modern functional lan�
guages like Haskell and SML� higher�order functions�
a Hindley�Milner polymorphic type system with user�
de
ned algebraic types� pattern�matching notation� ar�
ray and list comprehensions� etc� The main novelty of
Id is its implicitly parallel evaluation model� everything
is evaluated eagerly� except for expressions inside con�
ditionals and inside lambdas� This is described in more
detail in ���� but a key behavior relevant to this paper
is that most data structures have I�structure semantics�
given an expression of the form�

cons e� e�

we allocate the data structure and evaluate e� and e� in
parallel� The reference to the cons cell is immediately
available as the result of the expression� Any consumer
of the data structure that attempts to read the head �or
the tail� of the cell will automatically block� if necessary�
until e� �or e�� has completed evaluation and is available
in the data structure�

The major phases of our pHluid compiler for Id are�

� Parsing� typechecking� simpli
cation� lambda lift�
ing� optimization� etc�� eventually producing P�
RISC assembler� a
ne grain multithreaded ab�
stract machine code ��parallel RISC���

� Translation and peephole optimization� converting
P�RISC assembler to Gnu C�

� Gnu C compilation� and linking with our new par�
allel runtime system� written in Gnu C�

We use various C extensions provided by Gnu C� such as

rst class C labels� and mapping C variables that con�
tain frequently accessed data such as the heap allocation
pointer into speci
c machine registers� First class C la�
bels allow us to represent
ne grain� dynamically sched�
uled threads conveniently� These Gnu C facilities have
also been used by other researchers for the same pur�
poses� An important point is that the entire compiler
is geared towards producing
ne grain multithreaded

�This non�strict behavior in fact makes Id semantically closer
to Haskell than to SML� despite its eager evaluation� Recogniz�
ing this semantic similarity� and because of various other syn�
tactic similarities� Id is currently evolving into pH ���� a dialect
of Haskell�

code for latency tolerance� we do not start with a com�
piler for sequential machines and add parallelism as an
afterthought�

Figure � shows an example P�RISC assembler transla�
tion of the following function that counts the nodes in
a binary tree�

def leaves Empty � �
� leaves �Node x l r� � leaves l � leaves r�

It is displayed here in graphical form as a control��ow
graph� but it is trivial to linearize with labels and ex�
plicit control transfers� The following features are worth

Figure �� P�RISC assembler� An ex�
ample

noting�

� The function�s code can be viewed as a collection
of threads� each of which is activated by the arrival
of a message �in practice� we optimize away many
messages� both statically and dynamically�� Mes�
sages always arrive at entry instructions� whose
arguments correspond to the message payload�

� At the top� a call message arrives� which allocates
a frame for this function� and delivers three argu�
ments to the top entry instruction� a continuation
frame pointer� cfp	 a continuation label �instruc�
tion pointer� cip� and the tree itself� T� The if
tests if the tree is empty	 if so� the result is ��
and the return instruction sends a message to the
continuation �cfp� cip� carrying the result�

� If the test fails� we initiate two �heap I�structure
loads�� the hiloads conceptually send messages
to the heap locations T��� and T�	� requesting
their contents� passing the current frame pointer
�implicitly� and the labels a
 and b
 respectively
�explicitly� as their respective continuations� The
current function invocation then goes dormant�
with no threads active�

� The heap location T��� eventually responds with
a message� kicking o� the thread at a
� placing
the value �the left sub�tree� into local variable L�
The last action of this thread is to initiate a recur�
sive call by sending a call message containing the

continuation �current frame pointer and label c
�
and argument subtree L� This recursive call even�
tually returns a message that starts the thread at
c
� loading the count of the left subtree into local
variable t��

� Similar actions take place at b
 and and d
� Thus�
two threads �from c
 and d
� arrive at the join
instruction� This instruction counts up the local
variable j �initialized to ��� Only the last thread
proceeds�
nding that the count j has reached the
terminal count ���	 earlier threads die at the join�
Thus� t� and t	 are guaranteed ready when the
sum is computed� This
nal thread computes the
sum and returns the result�

� It is undetermined whether thread a
 executes be�
fore b
 and whether c
 executes before d
� They
are scheduled asynchronously� as and when mes�
sages arrive� Thus� although these threads execute
in some sequential order �because they all execute
on the same processor�� the two overall load ac�
tions �communicating to the heap and back� occur
in parallel� and the two recursive function invoca�
tions execute in parallel� This kind of fundamental
attention to latency is quite unique to Id compil�
ers�

� The round�trip time for the request and response
messages of a function call of course depend on
how much work the function does� and whether
the function call is done locally or remotely� The
round�trip time for an hiload depends on a num�
ber of factors�

� Whether the heap location is local or remote�

� The current load on the processor that owns
the heap location� which a�ects how soon it
can handle the request�

� Whether the heap location is �empty� or not
when the request message arrives� Due to
the non�strict� I�structure semantics� the pro�
ducer may not yet have delivered the value	
in this case� the request message has to be
queued on that location until the value ar�
rives�

However� note that all these sources of delay are
handled uniformly by couching the code as mul�
tiple�
ne grain� message�driven threads� each of
which never suspends�

All this was by way of background� and is discussed in
more detail in ����� The important points to remember
for purposes of this paper are�

� Parallelism in pHluid is at two levels� the function
call is the unit of work distribution across proces�
sors� This is real parallelism� in that these proces�
sors actually execute simultaneously� Within each
function are a number of
ne grain threads that
are scheduled asynchronously based on message
arrival� This multithreading is pseudo�parallelism�
in that all threads in a function invocation are

multiplexed on the same processor� but it is vi�
tal because it permits overlapping communication�
synchronization and congestion latencies with use�
ful work� and is a clean model for adaptively re�
sponding to the dynamic parallelism of the pro�
gram�

� Unlike many other parallel languages� threads in
pHluid are unrelated to function boundaries� Each
function invocation allocates a frame that con�
tains� among other things� all the local variables
for all the threads of the function� However� be�
cause thread invocation does not involve any frame
or stack resource allocation� threads are extremely
lightweight�

� All functions share the same view of the heap� i�e��
the heap is a shared memory�

� Threads in pHluid never suspend� All function
calls and heap accesses are couched as split�phase
transactions� one thread issues a request message�
and a response message later initiates a separate
continuation thread� For heap accesses� the re�
quest message may be queued at the heap location
if the value is not yet available� Thus� data access
synchronization occurs at heap locations� never in
the accessing functions�

Note that checking the full�empty state of a heap loca�
tion is not an issue that is unique to I�structures in Id�
Almost exactly the same issue is faced in lazy language
implementations where we have to check whether a lo�
cation has been evaluated yet or still contains a closure�
This relationship is not surprising� because they are two
di�erent ways of implementing non�strictness �and they
are both equally di�cult to optimize away��

� The new parallel runtime system

This section describes the novel aspects of pHluid�s new
parallel runtime system� Recall that our target plat�
form is a distributed memory machine� each PE �Pro�
cessing Element� is a conventional uniprocessor work�
station� These PEs communicate by explicit message�
passing using active messages ����� i�e�� each message
contains a code pointer �a �handler��� and the message
is consumed by simply jumping to the handler with the
message itself as an argument� The handler is responsi�
ble for extracting items from the message and executing
arbitrary code that may free or reuse the message�

��� Scheduling and Work Distribution

����� Multithreading

When a thread is executed� it may enable other threads�
For example� consider the following code fragment de�
scribing two threads� starting at labels a
 and b
� re�
spectively�

a
 ��� b
 ���
hiload b T���
��� foo ���

the thread at a
 executes an hiload instruction to ini�
tiate access to a heap location� and continues �at foo��
Conceptually� it sends a message to the heap location�
which eventually produces a response message that en�
ables the other thread at b
�

Each processor maintains a scheduling stack containing
threads that are ready to run� Each entry in the stack
consists of a code pointer� a pointer to the frame of the
enclosing function� and a variable number of arguments�
A thread is pushed on this stack when a response to
a split�phase operation is received� When the current
thread terminates� the system pops and executes the
next thread on this stack�

We avoid a stack empty check on pops from the schedul�
ing stack by including a stack empty handler as the bot�
tom entry in this stack� This handler is invoked when�
ever the system runs out of executable threads� The
handler pushes itself back onto the stack� and then calls
the scheduler �described below� to create new threads�

����� Function calls

In pHluid� the function call is the unit of work distri�
bution across PEs� By default� the system chooses how
to do this distribution� However� by means of a source
code annotation at a function call site� the programmer
can direct that the call must run on a speci
c PE� Prim�
itive functions are available to discover the PE on which
the current function is executing� and the total number
of PEs in the current run �this number is decided when
starting the executable	 Id code is not compiled with a
knowledge of the number of PEs� expect for the special
case where we know we wish to compile for a uniproces�
sor��

Each function call is encoded as a split�phase action�
The function call itself involves creating a call record
containing the function pointer �or codeblock � described
below� and its arguments� including the continuation
argument� The programmer can annotate any function
call to specify which processor it should run on� When
there is no annotation �the usual case�� the runtime sys�
tem chooses where to execute the function� Each pro�
cessor maintains two scheduling queues containing call
records�

� The �xed queue contains call records that must be
executed on this processor�

� The stealable queue contains call records that can
be executed on any processor�

For function calls that have a processor annotation� the
call record is dispatched to the
xed queue of that pro�
cessor� For calls without a processor annotation� the
call record is placed on the local stealable queue� Call
records may migrate between the stealable queues of
various processors according to the work stealing algo�
rithm described below� However� a function call does
not migrate once it has begun executing�

Each function is described by a codeblock� which consists
of three function entry points�

� A fast entry point which assumes the call argu�
ments are already in registers�

� A
xed queue entry point which assumes that the
arguments need to be retrieved from a call record
on the
xed queue�

� A stealable queue entry point which assumes that
the arguments need to be retrieved from a call
record on the stealable queue�

The scheduler invokes a call record by jumping either to
the
xed or to the steabable queue entry point� The fast
entry point is used for an optimization described below�
The code at the entry point then extracts the argu�
ments from the call record� allocates a frame and starts
evaluating the function�s body� The function later ter�
minates when one of its threads sends a return message
to the function�s continuation� deallocates the function�s
frame� and dies�

����� Work Scheduling

Naive parallel work scheduling algorithms can result in
an exponential growth of the memory requirements of
an application as compared to a sequential execution by
creating a very large number of parallel threads� each of
which simultaneously requires some local storage�

The pHluid work scheduling algorithm is designed to
avoid this problem by reducing the number of simulta�
neously active functions� while still exploiting the avail�
able parallelism to keep all the PEs busy�

The scheduler gives work on the scheduling stack a pri�
ority higher than either the
xed or the stealable queue�
in order to complete existing function activations �if
possible� before creating new ones� The scheduler also
invokes call records on the
xed queue in preference to
those on the stealable queue� since call records on the
stealable queue may later be stolen to keep a di�erent
PE active�

The scheduler tries to approximate the depth �rst traver�
sal of the function call tree performed by a sequential
execution by treating the
xed and stealable queues as
LIFO queues� or stacks� When we execute a function
call with no processor annotation� or with an explicit
processor annotation specifying the current PE� we push
the call record on the appropriate local queue� Each
PE�s scheduler always pops work from these queues�
The net e�ect of our scheduler is that once all PEs have
work� each PE tends to settle into a depth�
rst traversal
of the call tree similar to that performed by a sequential
implementation�

����� Work Stealing

When a PE becomes idle� it sends a steal message to
a randomly�chosen victim PE� The steal message at�
tempts to steal a call record from the victim PE�s steal�
able queue�

Of course� the victim PE may not have any work to
steal� in which case the idle PE randomly chooses a new

victim PE� In order to avoid repeatedly bothering active
PEs with steal requests they cannot satisfy� we use a
linear backo� scheme to decide how long the idle PE
must wait before asking that victim PE again� i�e�� the
wait time increases linearly with the number of times
we fail� This scheme successfully adapts to both low�
granularity and high�granularity computations��

If the victim PE�s stealable queue is nonempty� then the
stealmessage returns the call record from the bottom of
that PE�s stealable queue �i�e�� away from the stack�like
end� to the idle PE� The reason for this approach is that
items deeper in the stack are likely to represent fatter
chunks of work� being higher in the call tree ���� ����

The net e�ect of our work�stealing algorithm is that we
do not gratuitously fork functions to other PEs� In�
stead� work request messages are only sent when some
PE is idle� and call records only migrate from busy PEs
to idle PEs�

����� Optimizations

The pHluid system is designed using general message�
sending mechanisms that work in all cases� For example�
the split�phase instruction�

hiload b T���

conceptually involves sending a hiload message to the
appropriate PE� which accesses the memory location
T���� and then sends a split�phase return message to
the original PE�

For cases where the original PE contains the memory at
location T���� we avoid the overhead of sending these
messages by immediately performing the hiload oper�
ation and pushing the enabled thread at b
 onto the
scheduling stack� We also avoid the message sending
overhead in other cases by inlining other split�phase op�
erations where possible�

We also optimize split�phase operations that are imme�
diately followed by a halt instruction� For example�
consider the following code fragment�

a
 hiload b T��� b
 ���
halt

If the hiload operation can be satis
ed on the current
processor� then the pHluid system performs the load
and immediately jumps to the thread at b
� without
the overhead of pushing that thread on the scheduling
stack and invoking the scheduler�

Similarly� for a function call with no processor anno�
tation followed immediately by a halt instruction� we
avoid the overhead of manipulating the stealable queue
by simply placing the arguments into appropriate regis�
ters and invoking the fast entry point �described above�
of that function�s codeblock�

�Our work�stealing algorithm is a variant of that used in the
Cilk system developed at MIT���� Our algorithm was developed
jointly with Martin Carlisle of Princeton University�

��� Distributed memory model and distributed
coherent cacheing

The memory of each PE is divided into
ve regions�

� Compiled code and static data� Static data in�
cludes data structures that describe codeblocks
and the other memory areas� etc�These are simply
replicated at the same address on all PEs�

� The heap� this contains actual Id data structures
�constructed data� arrays and closures�� and is de�
scribed in greater detail below�

� The store� this area contains objects that are ex�
plicitly allocated and deallocated by the runtime
system� and which are never accessed remotely�
These include frames for function invocations� the

xed scheduling queue� heap access requests that
are waiting on empty locations� etc� These objects
are managed in a freelist organized by object size�
Each PE maps its store at a di�erent address� so
that we can determine where a frame is located by
looking at its address �frames are never accessed
remotely� but we do need to know a frame�s PE so
that we can send a message to it� e�g�� for sending
a heap access response or for sending a result to a
function�s continuation��

� The stealable queue� in principle this could be al�
located in the store� but because it is manipulated
so heavily �since most function calls go through
the stealable queue�� we allocate a special region
for it and treat it as a deque with contiguous en�
tries� allowing cheap pushes and pops from both
ends�

� The scheduling stack� this stack is also allocated
in a contiguous memory area for performance rea�
sons�

In a previous sequential implementation� and in an ini�
tial parallel implementation� we allocated everything in
a single heap �as in the SML�NJ implementation ��� ����
However� we chose to separate out those objects that
can be explicitly deallocated and which are not accessed
remotely� in order to reduce garbage collection pres�
sure� Although explicit deallocation of system objects
incurs a small overhead� it does not require any com�
munication� and signi
cantly reduces the frequency of
communication�intensive global garbage collection�

����� The heap

Heap objects are represented quite conventionally� as
contiguous chunks of memory� An object consists of a
header word followed by one word for each
eld �arrays
have extra words for index bounds and pre�computed
index calculation coe�cients�� We use the lowest�order
bit to tag immediates� Thus� for example� integers lose
� bit of precision� but this is not a problem on our cur�
rent platform� ���bit Alpha workstations� If a
eld of
a heap object does not contain an immediate value� it
always contains a pointer� either to another heap ob�
ject or to a deferred list of continuations waiting for the

eld to transition from empty to full � Since the
eld
contains a pointer in either case� and since our point�
ers are always aligned to word boundaries� this frees up
another low�order bit to use as a full�empty bit and
distinguish between these two cases� This works even
if the
eld is of immediate type �e�g�� integer�� because
for the duration that it remains empty� it contains only
a pointer and not an immediate� and the full�empty bit
is available�

The heap is the only area that requires global access�
We use the operating system�s virtual memory mapping
facilities �mmap� so that the heap occupies the same ad�
dress range on all PEs� The heap consists of a number
of
xed�size �pages�� each of which is currently � KB
in size� We partition �ownership� of these pages across
the PEs� This� although each PE sees the whole address
range� it only owns pages representing only a chunk that
is ��P of the total heap size �where P is the number of
PEs�� and it can only allocate objects into these pages�
The remaining pages are treated as a cache for the data
owned by other PEs�

The advantage of this approach is that heap addresses
do not have to be translated or indirected in going from
one PE to another� Further� by examining an object�s
heap address� a PE can cheaply determine whether it
owns the object or only a cached copy� The downside
of this approach is that large amounts of address space
are required as we increase the number of processors�
Although this may somewhat limit the scalability of our
system on ���bit machines� it is not a problem on next�
generation ���bit architectures�

We conjecture that the amount of physical memory re�
quired per PE will scale in a reasonable fashion� since
only a small portion of the cache pages may actually be
used between garbage collection cycles� If this conjec�
ture does not hold in practice� we intend to implement
a scheme that limits the number of cache pages in use
at any time by explicitly deallocating cache pages�

����� Heap cacheing

Because Id is a mostly functional language� the vast
majority of objects in the heap are I�structure objects�
These objects are accessed via the hiload operation�
therefore we design our heap caching protocol to opti�
mize this operation�

Every heap location is tagged to specify whether it is full
or empty in order to implement I�structure semantics�
When a heap object is allocated� all its slots are initially
empty� and these slots become full when they are initial�
ized� Once an I�structures is initialized� it can never be
changed� This functional nature of I�structures allows
us to implement a very simple cache�coherence strategy�
The invariant maintained by our strategy is that each
cache page is always consistent with the corresponding
�real� page� in the sense that the only allowable di�er�
ence is that a cache page may be empty at a location
that is full �or de
ned� in the corresponding real page�

We associate a valid bit with every cache page� If a
cache page is marked invalid� it implies that each I�
structure in the page should be interpreted as being

empty� Initially� every cache page is marked invalid�
thus ensuring that the cache invariant holds at the start
of program execution�

On a local hiload� i�e�� an hiload to a heap address that
is owned by the current PE� we check the full�empty
tag	 if full� we return the value �more accurately� as de�
scribed before� push the value and enabled thread on the
local scheduling stack�� If empty� we queue the hiload�s
continuation on the heap location� allocating the queue
entries themselves in the store� not the heap�

On an hiload to a location owned by some other PE�
we check our cache at that location� If we�re lucky�
the location is full� and the value can be read imme�
diately� Otherwise� we need to retrieve the location�s
value from the owner PE of that page� Since we need
to communicate with the owner PE anyway� it makes
sense to request an up�to�date copy of that page at the
same time� in the expectation that future hiloads to
the same page can be satis
ed immediately using the
new copy of the page� Provided there is no outstanding
request for that page� we simply send a hiloadmessage
to the owner of the page� and also request an up�to�
date copy of the page� However� if there is already an
outstanding request for that page� then we queue the
hiload locally� and reprocess it as soon as the new copy
is received� since the new copy may allow us to satisfy
the hiload locally� without performing any additional
communication�

An histore ��heap I�store�� operation always writes
through the cache to the owner PE �there� it may cause
waiting continuations to be released�� However� most
histores are to locally�owned locations� Consider a
typical Id constructor expression of the form �e�e	��
the heap allocation for the pair� and the two histores
initializing the pair are part of the same function� and so
the histores are guaranteed to be local� since memory
allocation is always performed using the local memory
of each PE�

Because the histore operation only initializes a pre�
viously empty location� it does not a�ect the consis�
tency of existing cache copies of the page containing
that location� Thus� the PE that owns a page never
has to send any �invalidation� messages to other PEs
that have previously obtained copies of that page� In
fact� the owner does not have to keep track of which
PEs obtained cached copies� and it is perfectly safe for
the owner to send multiple copies of the same page at
di�erent times� A new copy of the page is guaranteed
to be consistent with a previous copy� the only di�er�
ences will be that some previously empty locations may
now be full�

A general observation here is that our distributed cache�
coherence protocol relies heavily on the mostly�function�
al nature of the source language	 the protocol is trivial
compared to those required for imperative languages ����

We mentioned that Id is not a pure functional language
� it has side�e�ecting constructs that operate on �M�
structures�� However� as in SML and unlike Scheme�
these side�e�ects are constrained by the type system
to speci
c objects and operations� and this allows the
compiler to isolate them into special P�RISC assembler

instructions� hmload �for �heap M�structure load�� and
hmstore �for �heap M�structure store��� These never
interfere with the �functional� hiload and histore op�
erations� i�e�� the same heap location cannot be accessed
by both I�structure and M�structure operations� Thus�
the consistency of I�structure cacheing is not compro�
mised� Our preliminary implementation of these side�
e�ecting instructions does not involve caching � they
always read and write through to the owner� We expect
the overhead to be acceptable on many programs be�
cause� as in SML� side e�ecting operations have a much
lower frequency compared to normal functional opera�
tions� However� programs that use M�structures exten�
sively will require a more sophisticated implementation
of these operations�

��� Parallel distributed garbage collection

The pHluid system uses a �stop�and�copy� approach for
performing parallel garbage collection� Whenever any
PE runs out of heap space� all the processors suspend
their current activities to participate in a global garbage
collection cycle� The garbage collector is a parallel ex�
tension of the conventional Cheney two�space copying
collector ���

The
rst action taken by each PE during garbage col�
lection is to deallocate the cache pages �using munmap��
since these pages will become inconsistent during gar�
bage collection� Special care must be taken with hiload
requests queued on a cache page� These hiload requests
are dispatched to the owner PE� where they are queued
on the speci
c locations that they refer to� This commu�
nication can amortized by bundling it with other com�
munication that is necessary during GC anyway�

Next� each PE allocates �with mmap� a to�space into
which local reachable objects will be copied� We ex�
pect that physical memory pages previously used for
the cache will be reused for the to�space�

Each PE maintains two pointers into its to�space in the
usual manner� a scan pointer and a free pointer� Ob�
jects in to�space below the scan pointer only contain
pointers to other objects in to�space� whereas objects
above the scan pointer may refer to objects in from�
space�

During GC� each PE then calls the function move object
on each of its local roots� This function copies an ob�
ject from the from�space into the to�space� For local
objects� this function behaves exactly as in a conven�
tional Cheney collector � it copies the object to the free
pointer� incrementes the free pointer and returns the
new address of that object�

For non�local objects� the function sends a move object
message to the owner PE of that object� That PE then
copies the object into to�space� and returns an active
message that� when invoked� updates the appropriate
location in the memory of the original PE with the new
address in to�space of the object� Since this operation
is implemented in a split�phase manner� the original PE
can continue copying other objects while the operation
is in progress�

To avoid deadlock� the pHluid system uses separate
queues for regular computation messages and GC mes�
sages� Each processor treats its incoming computation
message queue as part of its root set� and updates all
messages �via the function move object� to refer only to
to�space objects� We ensure that all outstanding com�
putation messages are received� and hence updated� by
their destination PE during GC by sending a flushmes�
sage along the FIFO pipe connecting each pair of PEs�

Detecting termination of a global GC cycle is di�cult
because each PE only has direct knowledge of its own
status� and messages characterizing the status of other
PEs may be out�of�date by the time they are received�

We characterize the status of a PE as inactive once that
PE has�

�� Copied all known live objects into its to�space�

�� Updated all entries in the computation message
queue�

�� Received all incoming flush messages� and

�� Received a response to each move object split�
phase operation�

A PE that is inactive may become active again on re�
ceipt of a move object message� The global garbage
collection cycle can only terminate when all PEs are in�
active simultaneously� We detect this situation using
the following protocol�

Conceptually� the PEs are organized as a ring� At any
time a particular PE �the �terminator�PE�� is respon�
sible for detecting GC termination� When this PE be�
comes inactive� it tries to send a PEs�inactive� mes�
sage around the ring of PEs� If this message encounters
an active PE� then that PE becomes the terminator�PE�
Otherwise� the message is successfully forwarded around
the ring and returned to the terminator�PE�

At this stage� the terminator�PE needs to ensure that
all PEs are still inactive� It does this by sending a
PEs�still�inactive� message around the ring of PEs�
If this message encounters a PE which has been ac�
tive since receiving the PEs�inactive� message� then
that PE becomes the terminator�PE� Otherwise� the
PEs�still�inactive� message is successfully returned
to the terminator PE� At this stage we can guaran�
tee that all PEs are inactive� The terminator�PE then
broadcasts a message announcing the termination of the
GC cycle� On receipt of this message� each PE returns
an acknowledgement and resumes computation�

To ensure that distinct GC cycles do not overlap� a PE
that exhausts its heap space sends a request for a new
GC cycle to the terminator�PE of the previous cycle�
That terminator�PE waits� if necessary� until all PEs
acknowledge termination of the last GC cycle� before
broadcasting a message initiating the new cycle�

� Preliminary Performance Measurements

We have just completed a
rst implementation of the
system as described above� We have taken some pre�
liminary performance measurements� but we have yet

to perform a detailed analysis of these timings in order
to understand exactly where the time goes�

Our implementation �both the compiler and the com�
piled code� runs on Digital Alpha workstations under
Digital Unix� using gcc to compile the C �object code�
and the runtime system� The parallel system runs on
any network of Alpha workstations� Currently� it uses
UDP sockets as the basic packet delivery mechanism�
UDP sockets are unreliable �packet delivery and packet
order are not guaranteed�� so we implemented a thin
reliability layer above UDP sockets called RPP� for Re�
liable Packet Protocol	 this is still advantageous over
TCP� which is a reliable protocol� for several reasons�
it is packet based� not stream based� and so does not
need �packet parsing� by the receiver� and it automat�
ically multiplexes incoming packets from all peers into
a single receive queue� instead of having to wait on N
receive queues� one per peer� With RPP� It will be triv�
ial for us in the future to exploit faster packet delivery
mechanisms� even if they are unreliable�

Our parallelism measurements were taken on a par�
ticular con
guration with eight ��� MHz Alpha work�
stations with an ATM interconnection network� run�
ning Digital Unix� Communication is still rather ex�
pensive relative to computation speed� The following
table shows the round trip latency from a UDP socket
send to a UDP socket receive� for various packet sizes�

Packet size Round trip latency
�Bytes� ��secs�

�� ���
��� ���
��� ���
���� ��
��� ����

The maximum bandwidth is about �� MBytes�sec �close
to the ATMmaximum�� Thus� it is not an easy platform
on which to get any parallel speedup�

For a sequential� uniprocessor baseline� we compared an
Id program compiled for a single processor and executed
on a single processor� with a conventional �sequential� C
program that implements the same algorithm but uses
conventional C idioms� The pHluid compiler was given
a �ag to produce code for a uniprocessor� so that it
could optimize away all message�passing code� For the
C compilation phase of the Id program� and for the C
program� we used the same gcc compiler with the same
�O	 optimization level� The program we used does a
lot of heap allocation� paraffins���� enumerates all
para�n molecules containing up to �� carbon atoms�
unique up to certain symmetry conditions� the Id pro�
gram is described in detail in ���� The C version did
not have any garbage collection �it simply had a large
enough heap�� One version of the C code used malloc��
for each heap allocation� and another version did its own
allocation out of a large chunk of memory allocated once
using sbrk�� at the start of the program�

paraffins���� Time �secs� Relative speed
pHluid ���� �x
C �malloc� ���� ���x
C �sbrk� ���� ���x

We believe that these indicate that pHluid�s uniproces�
sor performance for Id programs is approaching com�
petitive performance for functional language implemen�
tations �the study in ���� measures the performance of
another program� the pseudoknot benchmark� It com�
pares a functional version compiled with over �� func�
tional language compilers� and a C version� The best
functional versions were about ���x� ���x� ��x and ���x
slower than C��

The following table shows the elapsed time to call and
return from a trivial function that takes a void argu�
ment and simply returns a void result �in Id� void is the
trivial type with just one value of type void�� We mea�
sured this for two cases� a local call� where the function
executes on the same PE as the caller� and for a directed
remote call� where the function is directed� by means of
an annotation� to execute on a di�erent PE from the
caller �this does not involve any work stealing��

Local function call �secs
Remote function call ��� �secs

Recall that the remote function call involves allocating
a call record containing the function pointer� normal ar�
guments and continuation arguments	 sending it to the
remote PE	 at the remote PE� reading the message and
executing its handler which� in this case� places it on
the
xed queue	 executing the scheduler which takes the
call record o� this queue� allocates a frame� and invokes
the function at the
xed queue entry point� which un�
marshalls the normal and continuation arguments	 and�
follows a similar process for the return� The messages in
each direction are of the order of ��� Bytes� whose raw
round�trip latency is about ��� �secs �from the previ�
ous table�	 thus� the overhead is quite high� about ����
�secs� and is clearly an area with much room for im�
provement�

The following table shows the speed of the hiload and
histore heap access operations� All accesses are to full
I�structure locations �but they still perform the tests for
emptiness� etc���

Operation ��secs�
� Local hiload �
� Remote hiload� uncached� unmapped ����
� Remote hiload� uncached� mapped ���
� Remote hiload� cached �
� Local histore �
� Remote histore ����

The
rst line describes an hiload to a heap object that
is local� i�e�� on the same PE� The next three lines de�
scribe an hiload to a
eld of a remote object� i�e�� allo�
cated on a di�erent PE� Line � is for the case when the
remote object has not yet been locally cached� and the
page containing that object has not yet been mapped
into the local address space� In line �� the object is not
yet locally cached� but it is on a page that has been lo�
cally mapped �due to an earlier remote access to some
other location on that page�� Line � is for the case when
it has been locally cached� For lines � and �� we send

a relatively small request message� and we get back an
entire heap page �� KB in size�� The raw UDP commu�
nication latencies for this are about ��� � ��� �secs�
Thus� there is still about ��� �secs overhead beyond
the raw communication cost to fetch and install a cache
copy of a heap page� plus about ��� �secs if we have
to map the page in� Line � just shows that hiloads to
cached data proceed much faster �we do not know why
it is faster than the the local hiload in line ��� Simi�
larly� lines � and � are for a local and remote histore�
respectively� A remote histore involves a round�trip
communication �the return message is treated as an ac�
knowledgement that the histore has completed��

We have been able to measure parallel speedups only
for some small programs because of a current prob�
lem in an early phase of the pHluid compiler �which
was implemented before the parallel runtime system�
wherein list comprehensions are translated into sequen�
tial loops� thus eliminating parallelism �for example� our
paraffins program uses list comprehensions heavily�
and so we have not yet been able to measure its parallel
performance�� Figure � shows speedups for three small
programs� The trees program is a synthetic benchmark
that creates a balanced binary tree to a given depth�
copies the tree several times� counts the leaves and re�
turns the count� nqueens��	� is the standard N�queens
problem with a board size of ��� matrix�multiply�����
creates two ���x��� �oating point matrices� multiplies
them� and sums the resulting matrix� The last program
uses explicit distribution of work� directing a sub�matrix
computation to be performed on a speci
c PE�

These
gures were measured on a testbed system with
�only� eight processors� Eight processors is certainly
well within the range of SMPs� and one may argue that
there is no need to go to a distributed memory imple�
mentation� However� we believe that it is important to
look at distributed memory systems even at this size� for
several reasons� First� eight�processor workstation clus�
ters are a lot more common� and cheaper� than eight�
processor SMPs� Further� there is a growing trend away
from massively parallel multicomputers towards achiev�
ing the same power by assembling small�degree clusters
of small�degree SMPs�

Although these
gures are for relatively small programs
and do not supply any diagnostic detail about how and
where time is spent� we
nd them encouraging consider�
ing that we are using such an expensive communication
layer� It would not have been surprising to see very little
speedup at all� or even a slowdown� It appears that our
runtime system mechanisms for avoiding� eliminating
and tolerating communication are e�ective� We hope to
do much more detailed performance studies in the near
future�

� Related Work

We are not aware of any other implementations of con�
ventional shared memory functional languages for dis�
tributed memory machines� that address the cost of re�
mote communications as aggressively as pHluid does�
There have of course been several implementations on

shared memory machines �such as ���� and ����� and im�
plementations of message�passing functional languages
on distributed memory machines �such as Erlang �����
However� implementing a shared memory language on a
distributed memory machine appears to require a sub�
stantially di�erent approach� with latency�tolerance a
high priority throughout the design�

The Berkeley Id�TAM compiler ���� shares the same
data�ow heritage as our pHluid compiler and� not sur�
prisingly� has many similarities �although they share
no code�� TAM itself �Threaded Abstract Machine� is
somewhat similar to our P�RISC Assembler� but our
scheduling discipline for threads is quite di�erent �these
two scheduling disciplines have been compared in detail
by Ellen Spertus at MIT� and is reported in ������ The
Berkeley Id�on�TAM system has been implemented on
distributed memory machines with relatively fast com�
munication facilities� such as the Connection Machine
CM�� and the MIT J�Machine� but not to our knowl�
edge on workstation farms� The Berkeley Id�TAM sys�
tem does not use distributed cacheing� nor does it have
a garbage collector� We do not know what mechanism
is used for work and data distribution� and if it has any
automatic load balancing mechanism�

We have become aware of other implementations of func�
tional languages on distributed memory machines� on
Transputer networks some years ago� a parallel Haskell
at Glasgow over PVM more recently� and a distributed
memory implementation of Sisal currently in progress�
but we do not know what� if any� latency�tolerance fea�
tures they use� All these systems start with a com�
piler optimized for sequential execution� and incremen�
tally modify them for parallel execution� In contrast�
the pHluid and Berkeley TAM compilers have latency�
tolerance at the forefront throughout� and consequently
have a very di�erent abstract machine model based on

ne grain� message driven multithreading�

	 Conclusion

In this paper we have described our implementation of
a modern shared memory parallel functional language	
the novelty is in the way we target distributed mem�
ory machines� including workstations clusters with rel�
atively poor communication facilities� Here� aggres�
sive latency�tolerance is a central preoccupation� and is
achieved by a combination of the compilation strategy
�producing
ne grain threads�� a work�stealing mech�
anism that avoids distributing work unnecessarily� a
distributed coherent cacheing mechanism for the heap
that exploits the functional nature of the language� a
memory organization that reduces pressure for global
garbage collection by managing several dynamically al�
located objects purely locally� and a parallel garbage
collector� We also presented some preliminary perfor�
mance measurements�

Our pHluid implementation is new and still immature�
and there is a lot of work ahead� making it sturdy
enough to handle more substantial programs	 imple�
menting it on distributed memory platforms with faster
interconnects �such as Digital�s Memory Channel� which
achieves communication latencies of less than � �secs��

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Processors

trees
linear speedup

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Processors

nqueens(12)
linear speedup

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

S
pe

ed
up

Number of Processors

matrix multiply
linear speedup

Figure �� Parallel speedups of some small Id programs

taking detailed performance measurements and charac�
terizing the system to understand the bottlenecks	 im�
proving the heap cacheing model to be more economical
in memory use �to avoid each PE having to map the
full heap�	 exploiting SMPs as cluster nodes �i�e�� us�
ing shared memory when available�	 adding support for
large distributed arrays �currently no object� including
arrays� may be larger than one PE�s heap�	 etc�

Acknowledgements� The �P�RISC to Gnu C� phase
of the compiler was originally designed and implemented
on Sparcstations by Derek Chiou of MIT�s Lab for Com�
puter Science� We ported this implementation to our
Digital Alpha workstations� The work�stealing algo�
rithm with linear backo� was jointly developed with
Martin Carlisle of Princeton University	 he implemented
it in Cid� another parallel language implementation at
Digital CRL�

References

��� Aditya� S�� Arvind� Augustsson� L�� Maessen�
J��W�� and Nikhil� R� S� Semantics of pH� A Par�
allel Dialect of Haskell� In in Proc� Haskell Work�
shop �at FPCA ���� La Jolla� CA �June ����

��� Agarwal� A�� Simoni� R�� Hennessy� J�� and
Horowitz� M� An Evaluation of Directory
Schemes for Cache Coherence� In Proc� 	�th� Ann�
Intl� Symp� on Computer Architecture� Hawaii
�May �����

��� Appel� A� Garbage Collection can be Faster than
Stack Allocation� Information Processing Letters

�� � ������ �������

��� Appel� A�� and MacQueen� D� B� A Standard
ML Compiler� In Proc� Conf� on Functional Pro�
gramming and Computer Architecture� Portland�
Oregon �September ����� Springer�Verlag LNCS
����

��� Armstrong� J�� Virding� R�� and Williams� M�
Concurrent Programming in Erlang� Prentice Hall�
��� ISBN� �������������

��� Arvind� Heller� S�� and Nikhil� R� S� Program�
ming Generality and Parallel Computers� ESCOM
Science Publishers� P�O�Box ���� ���� AE Leiden�
The Netherlands� ���� pp� �������� Proc� �th Intl�

Symp� on Biological and Arti
cial Intelligence Sys�
tems� Trento� Italy� September ����

��� Augustsson� L�� and Johnsson� T� Parallel
Graph Reduction with the �nu�G��machine� In
Proc� Fourth Intl� Conf� on Functional Program�
ming Languages and Computer Architecture� Lon�
don �September ���� pp� ��������

��� Blumofe� R� D�� Joerg� C� F�� Kuszmaul�
B� C�� Leiserson� C� E�� Randall� K� H��
and Zhou� Y� Cilk� An E�cient Multithreaded
Runtime System� In Proc� �th� ACM Symp� on
Principles and Practice of Parallel Programming
�PPoPP�� Santa Barbara� CA �July ���� ����
pp� ��������

�� Cheney� C� J� A Nonrecursive List Compacting
Algorithm� Communications of the ACM 	�� ��
�November ����� ��������

���� Culler� D� E�� Goldstein� S� C�� Schauser�
K� E�� and von Eicken� T� v� TAM � A Com�
piler Controlled Threaded Abstract Machine� J�
Parallel and Distributed Computing� Special Issue
on Data�ow 	 �June ����

���� Gaudiot� J��L�� and Bic �editors�� L� Ad�
vanced Topics in Data��ow Computing� Prentice
Hall� ���

���� Halstead� R� Multilisp� A language for concur�
rent symbolic computataion� ACM Trans� Pro�
gram� Lang� Syst� �� � ������ ��������

���� Hartel� Pieter� H�� Feeley� M�� Alt� M�� Au�
gustsson� L�� Baumann� P�� Beemster� M��
Chailloux� E�� Flood� C� H�� Grieskamp� W��
van Groningen� J� H� G�� Hammond� K�� Haus�
man� B�� Ivory� M� Y�� Jones� R� E�� Lee� P��
Leroy� X�� Lins� R� D�� Loosemore� S�� Ro�
jemo� N�� Serrano� M�� Talpin� J��P�� Thack�
ray� J�� Thomas� S�� Weis� P�� and Went�
worth� E� P� Benchmarking Implementations of
Functional Languages with �Pseudoknot�� a Float�
Intensive Benchmark� In Workshop on Implemen�
tation of Functional Languages� J� R� W� Glauert
�editor�� School of Information Systems� Univ� of
East Anglia �September ����

���� Hudak� P�� Peyton Jones� S�� Wadler� P��
Boutel� B�� Fairbairn� J�� Fasel� J�� Guzman�

M� M�� Hammond� K�� Hughes� J�� Johnsson�
T�� Kieburtz� R�� Nikhil� R�� Partain� W��
and Peterson� J� Report on the Programming
Language Haskell� A Non�strict� Purely Functional
Language� Version ���� ACM SIGPLAN Notices

�� � �May ����

���� Kendall Square Research� Kendall Square Re�
search Technical Summary� ���

���� Kranz� D� A�� Halstead Jr�� R� H�� and Mohr�
E� Mul�T� A High Performance Parallel Lisp� In
Proc� ACM Symp� on Programming Language De�
sign and Implementation� Portland� Oregon �June
����

���� Lenoski� D�� Laudon� J�� Gharachorloo� K��
Weber� W��D�� Gupta� A�� Hennessy� J��
Horowitz� M�� and Lam� M� S� a� The Stanford
DASH Multiprocessor� IEEE Computer �March
���� �����

���� Nikhil� R� S� A Multithreaded Implementation of
Id using P�RISC Graphs� In Proc� �th� Ann� Wk�
shp� on Languages and Compilers for Parallel Com�
puting� Portland� Oregon� Springer�Verlag LNCS
�� �August ����� ���� pp� �������

��� Nikhil� R� S� An Overview of the Parallel Lan�
guage Id �a foundation for pH� a parallel dialect
of Haskell�� Tech� Rep� Draft� Digital Equipment
Corp�� Cambridge Research Laboratory� September
�� ���

���� Spertus� E�� and Dally� W� J� Evaluating the
Locality Bene
ts of Active Messages� In Proc� �th�
ACM SIGPLAN Symp� on Principles and Practice
of Parallel Programming �PPoPP�� Santa Barbara�
CA �July ���� ���� pp� ������

���� von Eicken� T�� Culler� D� E�� Goldstein�
S� C�� and Schauser� K� E� Active Messages�
a Mechanism for Integrated Communication and
Computation� In Proc� 	�th� Ann� Intl� Symp�
on Computer Architecture� Gold Coast� Australia
�May ���� pp� ��������

