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Abstract. Existing predicate abstraction tools rely on both theorem

provers (to abstract the original program) and model checkers (to check

the abstract program). This paper combines these theorem proving and

model checking components in a unified algorithm. The correctness of

the original, infinite-state program is expressed as a single query in con-

straint logic, which is sufficiently expressive to encode recursion and least

fixed-point computations. The satisfiability of this query is decided using

a combination of predicate abstraction, counterexample-based predicate

inference, and proof-based explication. Our algorithm avoids the Carte-

sian approximation while reducing the number of theorem prover queries.

1 Introduction

The combination of predicate abstraction and iterative abstraction refinement
has emerged as a promising strategy for model checking imperative, infinite-
state software [1, 16]. Existing tools leverage a theorem prover to generate an
abstraction of the original imperative program, and proceed to model check
this abstract, imperative program. This paper presents a unified approach that
combines the theorem proving and model checking components in a single ar-
chitecture that is potentially more efficient.

In this approach, the correctness of the original, infinite-state program is
expressed as a single logical query. To accommodate iterative and recursive con-
structs in the original program, we express this query in an extended constraint
logic (see [18]) that can directly express recursive and least fixed-point computa-
tions. The translation of imperative, infinite-state software into constraint logic
is the subject of a previous paper [10]; this paper focuses on determining the sat-
isfiability of the resulting constraint logic query. We present an algorithm for de-
ciding constraint logic queries using a combination of lazy predicate abstraction,
counterexample-based predicate inference, and proof-based explication. Perform-
ing the entire reasoning process within the constraint logic framework yields a
unified algorithm as well as potential gains in efficiency.



Our algorithm works by iteratively abstracting the given constraint logic
query to a decidable boolean query. This abstraction is conservative, in that
if the boolean query is unsatisfiable then so is the constraint logic query, and
the original program therefore satisfies the desired correctness property. If the
boolean query is satisfiable, we compute a derivation or trace for the boolean
query and a corresponding trace for the constraint logic query. If this constraint
logic trace is also satisfiable, it corresponds to a feasible execution of the orignal
program that violates the correctness property. If the constraint logic trace is un-
satisfiable, we use the proof of unsatisfiability to efficiently refine the abstraction
so that this trace is excluded on future iterations of the algorithm.

This refinement process infers additional predicates, in a similar fashion to
SLAM [1] and BLAST [16]. In addition, the refinement process also explicates
relevant facts of the underlying theories in a manner reminiscent of explicating
theorem provers [11, 2] and the sucessive approximation technique of Das and
Dill [6]. This explication achieves a similar result to the (exponentially-many)
theorem prover queries performed in predicate abstraction, but explicates this
information in a lazy fashion. This lazy approach avoids both the Cartesian
abstraction [16] while potentially reducing the number of theorem prover queries
necessary for predicate abstraction.

The presentation of our approach proceeds as follows. Section 2 illustrates
the generation of constraint logic queries on an example program. Section 3
contains a brief review of the constraint and boolean logics that we use. Section
4 describes the abstraction of constraint logic queries. Section 5 presents our
iterative abstraction algorithm, and Section 6 describes how satisfiable traces
are used to refine the current abstraction. Section 7 describes related work, and
we conclude with section 8.

2 Software Model Checking via Constraint Logic

To illustrate the use of constraint logic for software model checking, consider the
example program Rational shown in Figure 1(a). This class implements rational
numbers, where a rational is represented as a pair of integers for the numerator
and denominator. The example also contains a test harness, which reads in two
integers, x and y, ensures that y is not zero, creates a corresponding rational,
and then repeatedly prints out the truncation of the rational. We wish to check
that a division-by-zero error never occurs, and we express this property as an
assertion in the trunc method.

Throughout this paper, we assume the original program and the desired
correctness property have already been combined into an instrumented program,
which includes assert statements (such as the one in trunc) that check that
the desired correctness property is respected by the program. The focus of our
work is to statically determine if the instrumented program can go wrong by
failing an assertion.

Checking such correctness properties of software is, in general, quite chal-
lenging, particularly for imperative, infinite-state software with heap-allocated



Program CLP rule set Boolean abstraction of rule set

class Rat {

int n, d;

Rat(int x, int y) {
n = x;

d = y;

}

int trunc() {
assert d != 0;

return n/d;

}
}

public void main() {
int x = readInt();

int y = readInt();

if( y == 0 ) {
return;

}
Rat r=new Rat(y,x);

int i=0;

while (i<100000) {
print(r.trunc());

i++;

}
}

TRat(x, y, n, d, h,

n′, d′, h′, this) :−
∧ select(h, this) = 0

∧ h′ = store(h, this, 1)

∧ n′ = store(n, this, x)

∧ d′ = store(d, this, y)

Etrunc(this, n, d) :−
select(d, this) = 0

TreadInt(r) :−
isInt(r)

Eloop(this, i, n, d) :−
∧ i < 100000

∧ ∨ Etrunc(this, n, d)

∨ Eloop(this, i + 1,

n, d)

Emain() :−
∧ TreadInt(x)

∧ TreadInt(y)

∧ y �= 0

∧ TRat(y, x, n, d, h,

n′, d′, h′, this)

∧ Eloop(this, 0, n′, d′)

TRat([[d′ = store(d, this, y)]]) :−
∧ isTrue([[select(h, this) = 0]])

∧ isTrue([[h′ = store(h, this, 1)]])

∧ isTrue([[n′ = store(n, this, x)]])

∧ isTrue([[d′ = store(d, this, y)]])

Etrunc([[select(d, this) = 0]]) :−
isTrue([[select(d, this) = 0]])

TreadInt() :−
isTrue([[isInt(r)]])

Eloop([[select(d, this) = 0]]) :−
∧ isTrue([[i < 100000]])

∧ ∨ Etrunc([[select(d, this) = 0]])

∨ Eloop([[select(d, this) = 0]])

Emain() :−
∧ TreadInt()

∧ TreadInt()

∧ isTrue([[y �= 0]])

∧ TRat([[d′ = store(d, this, y)]])

∧ Eloop([[select(d, this) = 0]])

∧ ( isTrue([[select(d′, this) = 0]])

∧ isTrue([[d′ = store(d, this, y)]])

⇒ isTrue([[y = 0]]))

Fig. 1. The example program Rational (column 1), the corresponding constraint logic

rule set (column 2), and a boolean abstraction of that rule set (column 3).

data structures. In an earlier paper [10], we proposed checking such programs
via translation into constraint logic. This approach translates each routine m in
the program into two relations in the constraint logic:

1. The error relation Em(state), which describes states from which the execu-
tion of m may go wrong by failing an assertion.

2. The transfer relation Tm(state, state ′), which, when m terminates normally,
describes the relation between the pre-state and post-state of m.

Loops in the instrumented source program may be accomodated in our frame-
work by desugaring them into tail-recursive routines, which then yield additional
relations. The query Emain is then satisfiable if the original program may go
wrong by failing an assertion. In this case, the satisfying derivation corresponds
to an erroneous program execution trace.

For the Rational program, the error and transfer relations are shown in Fig-
ure 1(b). (We follow Lamport’s use of ∧ and ∨ as bullets in large formulas



for clarity [20].) With respect to these relations, the query Emain is satisfiable,
indicating an error in the program. An investigation of the satisfying derivation
reveals the source of the error: the arguments are passed to the Rat constructor
in the wrong order. Note that since both arguments are integers, standard type
systems do not catch this error.

After fixing this bug, the query Emain is now unsatisfiable, indicating that a
division-by-zero error cannot occur. However, a standard (depth-first) constraint
logic implementation, such as SICStus Prolog [25], explicitly examines all 100,000
possible execution paths before answering that the query is unsatisfiable. Even
worse, a real program typically has infinitely many execution paths, and so a
standard depth-first search would diverge on the corresponding constraint logic
query. By comparison, the algorithm we propose determines the unsatisfiability
of Emain in just two iterations.

3 Constraint Logic

This section provides an overview of our notation and syntax. We write �X for
a (possibly empty) sequence X1, . . . , Xn. We let x, y, z range over variables. A
term t is either a variable or the application of a function f to a sequence of
terms. A primitive constraint p(�t ) is the application of a predicate p to a term
sequence. A literal is a primitive constraint or its negation. Constraints include
literals, conjunctions, and disjunctions.

We let r, s range over user-defined relations. An atom r(�t ) is the application
of a user-defined relation r to a term sequence �t . Formulas extend constraints
with atoms in positive positions. A rule r(�x ) :− e provides a definition of the
relational symbol r. For example, the rule r(x, y) :− x = y defines r as the
identity relation. A rule set P is a sequence of rules, where each relation r
mentioned in the rule set has a unique defining rule. The operation e[x := t]
denotes the substitution of term t for free occurrences of x within the formula
e. The function vars extracts the free variables of a formula.

Syntax
(terms) t ::= x | f(�t )

(prim. constraints) h ::= p(�t )

(literals) l ::= h | ¬h

(atoms) a ::= r(�t )

(constraints) c ::= l | c ∧ c | c ∨ c

(formulas) e ::= l | e ∧ e | e ∨ e | a

(rules) d ::= r(�x ) :− e

(rule set) P ::= �d

The constraint logic language CLP (D) is parameterized by an underlying
constraint domain D. The constraint domain determines the set of function and
predicate symbols from which programs may be constructed, and may associate
an intended interpretation with those symbols. We require that the set of pred-
icate symbols includes equality, with the usual semantics, in order to express
parameter passing. In addition, for model checking many program correctness
properties [12], the constraint domain D may also include linear arithmetic,



functional maps (with the select and store functions), and equality with unin-
terpreted function symbols (EUF).

Constraint logic rules may be self- or mutually-recursive, and so a rule set may
yield multiple models. We are interested in the least model that is compatible
with the intended interpretation D of the functions and predicates. A CLP (D)
query is to determine if the least compatible model of the rule set P implies a
particular goal or nullary relation symbol r, which we write as P |=D r.

3.1 Traces

Each user-defined relation may be applied multiple times in a rule set. To help
distinguish these applications when reasoning about derivations, we associate
with each relation symbol r an unbounded number of variant relation symbols
s1, s2, . . .. The function base maps each variant back to the original relation
symbol: if base(s) = r, then s is a variant of r. We require that each relation
symbol r in the original rule set is a variant of itself, that is, base(r) = r.

The unrolling relation · → · on formulas replaces each call to a relation r with
a call to some variant s of r, and makes a committed choice on each disjunction.
It is formalized as the least relation such that, if ei → e′i and base(s) = r, then

r(�t ) → s(�t )
l → l

e1 ∧ e2 → e′1 ∧ e′2
e1 ∨ e2 → e′i

An instance of a rule r(�x ) :− e is a rule s(�x ) :− e′ that defines the variant s of
r as some unrolling e′ of e, where e → e′.

Given a rule set P with goal r, a trace is essentially a derivation of why r is
true with respect to P . To facilitate our technical development, a trace of P is
formalized as a rule set T that (1) contains a rule for the goal, (2) only contains
instances of rules from P , and (3) does not contain recursive invocations. The
following lemma states that every satisfiable query has a satisfiable trace.

Lemma 1 P |=D r if and only if there exists a trace T of P such that T |=D r.

To illustrate this idea, Figure 2 shows a trace for the Rational program (with
the bug removed). We use numeric superscripts to denote variants of relations
in the original rule set.

3.2 Boolean Logic Programming

Boolean logic is a particular instance CLP (B) of the constraint logic paradigm,
were the only values in the underlying domain B are the boolean constants true
and false; there are no function symbols; and there is a single unary predicate
symbol called isT rue, which only holds on the value true. Because of the domain
B is finite, CLP (B) queries are decidable, and thus are a natural target for
abstracting CLP (D) queries.



Emain() :−
∧ TreadInt1(x)

∧ TreadInt2(y)

∧ y �= 0

∧ TRat3(x, y, n, d, h, n′, d′, h′, this)

∧ Eloop4(this, 0, n′, d′)

TreadInt1(r) :−
isInt(r)

TreadInt2(r) :−
isInt(r)

TRat3(x, y, n, d, h, n′, d′, h′, this) :−
∧ select(h, this) = 0

∧ h′ = store(h, this, 1)

∧ n′ = store(n, this, x)

∧ d′ = store(d, this, y)

Eloop4(this, i, n, d) :−
∧ i < 100000

∧ Etrunc5(this, n, d)

Etrunc5(this, n, d) :−
select(d, this) = 0

Fig. 2. A trace for the fixed Rational program.

4 Abstracting Constraint Logic Queries

An abstraction αr = (αa
r , αe

r) for a constraint logic rule r(�x ) :− e is a pair that
describes how to abstract that rule into a corresponding boolean logic rule. The
first component αa

r is a sequence of primitive constraints over �x , and provides
an abstract interface for r. Essentially, whereas r defines some relation over the
formal parameters �x , the abstraction of r defines a coarser or larger relation
that is expressible as a boolean combination of the constraints in αa

r . We require
that αa

r is empty whenever �x is empty.
The second component αe

r of the abstraction is a constraint that explicates
various axioms and properties of the semantic domain D, and should be a tautol-
ogy with respect to D. Eventually, the explicated constraints of the various rules
should contain enough information about D that the unsatisfiability of the query
follows from these explicated constraints by purely propositional reasoning.

An abstraction α for a rule set P provides an abstraction for each relation
symbol r defined in the rule set. We use the notation αa

r to denote the abstract
interface for the relation r under this abstraction; similarly αe

r denotes the ex-
plicated constraints for r; and αr denotes the pair (αa

r , αe
r).



[[h]]α = isTrue([[h]])

[[¬h]]α = ¬isTrue([[h]])

[[e1 ∧ e2]]
α = [[e1]]

α ∧ [[e2]]
α

[[e1 ∨ e2]]
α = [[e1]]

α ∨ [[e2]]
α

[[r(�t )]]α = r([[h′
1]] . . . [[h

′
n]])

where r is defined as r(�x ) :− e

αa
r = h1 . . . hn

h′
i = hi[�x :=�t ]

[[r(�x ) :− e]]α = r([[h1]] . . . [[hn]]) :− [[e]]α ∧ [[αe
r]]

α

where αa
r = h1 . . . hn

[[d1 . . . dn]]α = [[d1]]
α . . . [[dn]]α

Fig. 3. The abstraction function [[·]]α.

A suitable abstraction δ for the fixed Rational program is given by:

δEtrunc = 〈{select(d, this) = 0}, true〉
δEloop = 〈{select(d, this) = 0}, true〉
δTRat = 〈{d′ = store(d, this, y)}, true〉
δEmain = 〈∅, (select(d′, this) = 0 ∧ d′ = store(d, this, y)) ⇒ y = 0〉
δTreadInt = 〈∅, true〉

This abstraction states that the behavior of the relations Etrunc and Eloop
crucially depends on whether select(d, this) = 0. In particular, these relations
hold whenever their arguments satisfy this constraint. Similarly, the primitive
constraint d′ = store(d, this, y) is relevant to the behavior of TRat. Finally, the
functions select and store have a particular intended interpretation satisfying
the axiom

(select(d′, this) = 0 ∧ d′ = store(d, this, y)) ⇒ y = 0

and this axiom is included in the explicated constraint for Emain, since it is
useful when reasoning about Emain.

4.1 Performing Abstractions

Let [[·]] map primitive constraints to boolean logic variables in an injective man-
ner. Each primitive constraint h is mapped to the boolean variable [[h]] that
represents the truth value of h. Given an abstraction α, we extend [[·]] to a
function [[·]]α that maps constraint logic formulas and rules to corresponding
formulas and rules in boolean logic: see Figure 3. The map [[·]]α preserves the
propositional structure of formulas, and maps each primitive constraint h to a



boolean constraint isT rue([[h]]). For a relation invocation r(�t ), instead of pass-
ing the (infinite state) values described by the terms�t , the abstract interface αa

r

of r is inspected to see what properties h1 . . . hn of the formal parameters �x are
considered relevant, the corresponding properties h′

i = hi[�x := �t ] of the argu-
ment terms �t are computed, and the boolean variables [[h′

1]] . . . [[h′
n]] are passed

instead.
When abstracting a rule definition r(�x ) :− e, the abstract interface αa

r is
consulted to determine the relevant properties h1 . . . hn of �x , and the CLP (B)
variables [[h1]] . . . [[hn]] are used as formal parameters of the abstract rule for r.
The boolean abstraction of each CLP (D) primitive constraint h to the CLP (B)
variable [[h]] ignores the semantics of CLP (D) constraints. The explicated con-
straint αe

r compensates for this loss of information by including properties or
instantiated axioms about the domain D, and its abstraction [[αe

r]]α is included
in the body of the abstract rule for r.

To illustrate this translation, Figure 1(c) shows the boolean rule set generated
from the fixed Rational example, using the abstraction δ of Section 4. This
boolean query is unsatisfiable, indicating that the abstraction δ is precise enough
to verify the correctness of the fixed Rational example.

The abstraction mapping is conservative in that it may make additional
queries satisfiable, but will never make a satisfiable query unsatisfiable.

Lemma 2 If P |=D r then [[P ]]α |=B r.

4.2 Ordering Abstractions

Abstractions enjoy a partial ordering: α � β if and only if for all relations r,
αa

r ⊆ βa
r and αe

r ⇐ βe
r . This ordering has minimal element ⊥ (that describes the

coarsest abstraction) and join operation α � β defined by:

⊥r = 〈∅, true〉
(α � β)a

r = αa
r ∪ βa

r

(α � β)e
r = αe

r ∧ βe
r

The abstraction mapping is anti-monotonic: if a query is satisfiable under
some abstraction α, then it is also satisfiable under any smaller (coarser) ab-
straction β.

Lemma 3 If [[P ]]α |=B r and β � α then [[P ]]β |=B r.

Conversly, any more precise abstraction δ′ � δ would suffice to verify that
the query for the fixed Rational program is unsatisfiable, and hence that that
program does not go wrong.

4.3 Abstractions for Traces

The operation replicate(α) replicates the abstraction for a relation r to all of its
variants. The inverse operation collapse(α) generates an abstraction for r as the



Algorithm car

Input query: P |=D r

Output: “satisfiable” or “unsatisfiable”

α := ⊥;

while true {
P ′ := [[P ]]α;

if P ′ �|=B r then return “unsatisfiable”; // Lemma 2

T ′ := satisfiable trace for P ′; // Lemma 1

T := corresponding trace for P ; // Lemma 4

γ := etc(T );

if γ = “satisfiable” then return “satisfiable”;

α := α � collapse(γ);

}

Fig. 4. The algorithm car.

join of the abstractions of its variants.

replicate(α)s = αbase(s)

collapse(α)r = �{αs | base(s) = r}

These operations enjoy the following properties: For any abstraction α,

1. α = collapse(replicate(α)),
2. α � replicate(collapse(α)), and
3. collapse and replicate are monotonic.

In addition, given a trace for the abstraction of a rule set P , we can generate a
corresponding trace for P .

Lemma 4 (Corresponding traces) Suppose α is an abstraction for P and T
is a trace for [[P ]]α. Then there exists a trace T ′ for P such that T is also a trace
for [[T ′]]replicate(α).

5 Deciding Constraint Logic Queries

We now present a semi-algorithm car (constraint abstraction refinement) that
decides constraint logic queries by iterative abstraction refinement. The algo-
rithm, shown in Figure 4, abstracts the given constraint logic query to a decid-
able boolean query. If the boolean query is unsatisfiable, then so is the original
query, by Lemma 2. Otherwise we use a satisfiable trace from the boolean query
to construct (by Lemma 4) a corresponding trace of the constraint logic query,



which may or may not be satisfiable. If the constraint logic trace is satisfiable,
then so is the original constraint logic query, by Lemma 1. Otherwise we use
the unsatisfiable trace to refine the abstraction so that this trace is excluded the
from future consideration, and repeat the process.

Our car algorithm leverages the Explicating Trace Checker (etc) algorithm
for constraint logic traces described in the following section. Given a constraint
logic trace T and goal r such that T |=D r is unsatisfiable, the etc algorithm
generates an abstraction γ such that the abstract query [[T ]]γ |=D r is unsatisfi-
able. If T |=D r is satisfiable, the etc algorithm returns “satisfiable”.

Lemma 5 (Correctness) The car algorithm only reports correct answers.

Proof: If the algorithm reports unsatisfiable, then [[P ]]α �|=B r, and hence by
Lemma 2, P �|=D r. If the algorithm reports satisfiable, then the query has
satisfying trace, and hence by Lemma 1, P |=D r.

Lemma 6 (Progress) The car algorithm never applies the etc algorithm to
a particular trace more than once.

Proof: Suppose the algorithm considers a concrete trace T . If T is unsatisfiable,
then etc returns an abstraction γ such that [[T ]]γ is unsatisfiable, and the ab-
straction α is joined with collapse(γ). Since α only increases, at any later stage
we have α � collapse(γ).

If the trace T is later reconsidered, then T comes from some satisfiable trace
[[T ′]]replicate(α) for [[α]]α. But replicate(α) � replicate(collapse(γ)) � γ, and hence
[[T ]]γ is satisfiable. From this contradiction, we infer that the concrete trace T is
never reconsidered.

For the fixed Rational program, the car algorithm requires just two iter-
ations. The first iteration computes [[P ]]⊥, which yields the trace of Figure 2,
and the etc algorithm yields the abstraction δ for this trace. On the second
iteration, the car algorithm computes [[P ]]δ, yielding the boolean query of Fig-
ure 1(c). This boolean query is unsatisfiable, and hence the algorithm concludes
that the fixed Rational program is correct.

In general, the car algorithm may require multiple iterations to infer all the
interface predicates and explicated clauses necessary to verify the program.

6 An Explicating Theory for Constraints

This section presents the etc algorithm (explicating theory for constraints) for
determining the satisfiability of traces. Given a trace T , the etc algorithm de-
cides if T |=D r is satisfiable. In addition, if T |=D r is unsatisfiable, the algorithm
returns an abstraction γ such that [[T ]]γ |=B r is unsatisfiable, i.e., γ explicates
(at the boolean level) why T is unsatisfiable.

The etc proceeds by first flattening the given query into a constraint. Since
a particular variable name x may appear multiple times in a trace, during the



flattening process we label variables with relation symbols, as in xr, to avoid
collisions between distinct variables. The operation tr applies the relation symbol
r to each variable in a term t. For example, (f(x, y))r ≡ f(xr , yr). The operation
flatT

r (c) flattens a constraint c appearing within trace T , where the relation
symbol r is applied to each variable in c, and invoked relation definitions are
flattened recursively:

flatT
r (s(t1, . . . , tn)) = ( ∧i xs

i = tri ) ∧ flatT
s (e)

if T contains s(x1, . . . , xn) :− e

flatT
r (p(t1, . . . , tn)) = p(tr1, . . . , trn)

flatT
r (¬p(t1, . . . , tn)) = ¬p(tr1, . . . , t

r
n)

flatT
r (e1 ∧ e2) = flatT

r (e1) ∧ flatT
r (e2)

The flattened constraint is equi-satisfiable to the trace that produced it.

Lemma 7 For any trace T, T |=D r if and only if |=D flatT
r (r).

The etc algorithm relies on a proof-generating decision procedure for D. As
mentioned earlier, for our intended application of software model checking, the
domain D should include at least equality with uninterpreted function symbols
(EUF), linear arithmetic, and functional maps (via the select and store func-
tions). Several proof-generating decision procedures or theorem provers for this
domain has been developed using the Nelson-Oppen framework of cooperating
decision procedures for individual theories [23]; examples include Verifun [11],
CVC [2] and Touchstone [22]. Given a constraint c, the proof-generating decision
procedure either reports that the constraint is satisfiable, or generates a proof of
its unsatisfiability. We illustrate this idea with the following proof that the trace
of Figure 2 is unsatisfiable. In this proof, we abbreviate dEtrunc5

by d5, etc.

select(d5, this5) = 0

d5 = d4 this5 = this4

select(d4, this4) = 0

d4 = d′

this4 = this

select(d′, this) = 0

d′3 = store(d3, this3, y3)

d′3 = d′ d3 = d

this3 = this y3 = y

d′ = store(d, this, y)

y = 0 y �= 0

false

To simplify our development, instead of deadling with such proof trees, we
assume the proof is represented as a conjunction of clauses d1 ∧ ... ∧ dn, where
each clause is a tautology with respect to D, and where the unsatisfiability of
c ∧ d1 ∧ ... ∧ dn follows by purely propositional reasoning. Thus, we represent
the above proof as the conjunction of the following clauses, where each clause is
written as an implication, for clarity:

(select(d5, this5) = 0 ∧ d5 = d4 ∧ this5 = this4) ⇒ select(d4, this4) = 0
(select(d4, this4) = 0 ∧ d4 = d′ ∧ this4 = this) ⇒ select(d′, this) = 0
(d′3 = store(d3, this3, y3) ∧ d′3 = d′ ∧ d3 = d ∧ this3 = this ∧ y3 = y)

⇒ d′ = store(d, this, y)
(select(d′, this) = 0 ∧ d′ = store(d, this, y)) ⇒ y = 0



We require in addition that the proof satisfy certain hygiene conditions. For
each rule r(�x ) :− e in the rule set, let args(r) = �x and vars(r) = vars(e). A
clause is hygenic if there exists some relation r such that for each literal l in the
clause, either:

1. vars(l) ⊆ vars(r),
2. l is a variable binding equality xs

i = tri for some callee s of r, or
3. vars(l) ⊆ args(s) for some callee s of r.

The above proof satisfies this hygine requirement. This notion of hyginic proofs is
closely related to the Craig interpolants [5] used to derive parsimonous predicate
abstractions in the BLAST model checker [17].

We compute the desired abstraction γ from the proof, starting with γ = ⊥
and processing each clause in the proof in turn. For each clause di, let di be
hygienic with respect to r. We first remove from di each variable binding equality.
We next consider in turn each remaining literal l in di. If vars(l) ⊆ args(s) where
r includes a call s(t1, . . . , tn) and args(s) = x1, . . . , xn, then the literal l expresses
a property of the call of s that is relevant in proving that the current trace is
unsatisfiable. Hence we record the positive form of l as an interface predicate
by adding it to γa

s . In addition, we replace l in di by l[xi := t1]. After these
operations, the modified clause di satisfies vars(di) ⊆ vars(r), and we add di to
γe

r (unless di is trivially true via propositional reasoning).

Lemma 8 The computed abstraction γ is such that [[T ]]γ �|=B r.

When applied to the above proof, this process yields the abstraction δ (shown
in Section 4), which is precise enough to refute the Rational trace of Figure 2.

For the fixed Rational program, the car algorithm requires just two itera-
tions. The first iteration computes [[P ]]⊥, which yields the trace of Figure 2, and
the etc algorithm yields the abstraction δ for this trace. On the second itera-
tion, the car algorithm computes [[P ]]δ, yielding the boolean query of Figure 1,
column 3. This boolean query is unsatisfiable, and hence the algorithm concludes
that the fixed Rational program is correct. In general, the car algorithm may
require multiple iterations to infer all the interface predicates and explicated
clauses necessary to verify the program.

7 Related Work

This paper is a synthesis of ideas from extended static checking [8, 12], soft-
ware model checking [1, 16], and explicating theorem provers [11, 2]. An extended
static checker translates the given program into a logical formula. However, the
translation of (recursive) procedure calls requires programmer-supplied specifi-
cations. We build on top of the ESC approach, but avoid the need for procedure
specifications by targeting constraint logic, which can express recursion directly.

The software model checkers SLAM [1] and BLAST [16] use a combination of
predicate abstraction [15] and automatic predicate inference. This paper shows



that these ideas also apply in a natural and efficient manner to constraint logic,
which provides a natural means for expressing correctness properties of the im-
perative programs.

Lahiri et al present an alternative approach for avoiding many theorem prov-
ing queries during predicate abstraction [19]. Instead, they formulate a symbolic
representation of predicate abstraction step, reduce it to be quantified Boolean
formula, and use Boolean reasoning to extract the abstract transition relation.
Their experimental results are quite promising. McMillan and Amla present a
technique for automatic abstraction of finite state systems based on a proof of
unsatisfiability for all traces up to a given bound [21]. In contrast, our approach
performs abstraction refinement based on single traces of infinite state systems.
Developing a synthesis of these approaches is an interesting area for future work.

The explicating theorem provers Verifun [11] and CVC [2] iteratively conjoin
the given query with explicated axiom instantiations until the conjoined query is
unsatisfiable by boolean reasoning. This paper adapts these ideas to constraint
logic to infer explicated clauses, thus avoiding the need for a exponential number
of queries to the decision procedures.

The depth-first search of standard constraint logic implementations [25] cor-
responds to explicit path exploration, much like that performed by software
model checkers, such as Bandera [9]. However, whereas Bandera relies on the pro-
grammer to supply abstractions for (infinite-state) data variables, the constraint
logic implementation reasons about data values using collections of constraints,
thus providing a form of automatic data abstraction. The programmer-supplied
abstractions of Bandera do provide stronger termination guarantees, but may
yield false alarms. Delzanno and Podelski [7] also explore the use of constraint
logic for model checking. They focus on concurrent systems expressed in the
guarded-command specification language proposed by Shankar [24], which does
not provide explicit support for dynamic allocation or recursion. The perfor-
mance of their constraint logic-based model checking approach is promising.

Bruening [3] has built a dynamic assertion checker based on state-space ex-
ploration for multithreaded Java programs. Stoller [26] provides a generalization
of Bruening’s method to allow model checking of programs with either message-
passing or shared-memory communication. Both of these approaches operate
on the concrete program without any abstraction. Abstract interpretation [4] is
the standard framework for developing and describing program analyses, and
provides the semantics basis for the abstractions in our work.

8 Conclusion

This paper proposes model checking infinite state, imperative software via trans-
lation to constraint logic queries. The translation into constraint logic is de-
scribed in a previous paper [10]; this paper focuses on determining the sat-
isfiability of the generated queries. Standard depth-first search techniques are
inadequate, since realistic software typically admits infinitely many execution
paths. This paper presents the car algorithm for deciding the satisfiability of the



generated queries via a combination of predicate abstraction, iterative abstrac-
tion refinement, and proof-based explication. While more practical experience is
needed, our prototype implementation of this algorithm has performed well on
the number of small example programs, and has better termination properties
than standard depth-first search.

An important direction for future work is applying the car algorithm to
model checking multithreaded software systems. For such systems, techniques
such as thread-modular reasoning help combat state explosion. Thread-modular
reasoning is naturally expressed as a (possibly infinite state) least fixed point
computation [13], which is turn expressible as a constraint logic query. Given
such a query, our car algorithm can potentially infer both the reachable states
and the environment assumptions and guarantees for each thread, using iterative
abstraction refinement an unified manner to infer all of these relations. Similarly,
reduction-based model checking can be also formulated as a least fixed point
constraint logic query [14], again potentially allowing the car algorithm to infer
both the access predicates of program variables and the reachable states of the
reduced program.
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