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Abstract. This paper investigates an approach for statically preventing
race conditions in an object-oriented language. The setting of this work is
a variant of Gordon and Hankin’s concurrent object calculus. We enrich
that calculus with a form of dependent object types that enables us
to verify that threads invoke and update methods only after acquiring
appropriate locks. We establish that well-typed programs do not have
race conditions.

1 Introduction

Concurrent object-oriented programs suffer from many of the errors common in
concurrent programs of other sorts. In particular, the use of objects does not
diminish the importance of careful synchronization. With objects or without
them, improper synchronization may lead to race conditions (that is, two pro-
cesses accessing a shared resource simultaneously) and ultimately to incorrect
behavior.

A standard approach for eliminating race conditions consists in protecting
each shared resource with a lock, requiring that a process acquires the cor-
responding lock before using the resource [5]. Object-oriented programs often
rely on this approach, but with some peculiar patterns. It is common to group
related resources into an object, and to attach the lock that protects the re-
sources to this object. Processes may acquire the lock before invoking the meth-
ods of the object; alternatively, the methods may acquire this lock at the start of
their execution. With constructs such as Java’s synchronized methods [2, 10],
some object-oriented languages support these synchronization patterns. How-
ever, standard object-oriented languages do not enforce proper synchronization;
it remains possible, even easy, to write programs with race conditions.

This paper investigates a static-analysis approach for preventing race condi-
tions in an object-oriented language. The approach consists in mapping shared
object components to sets of locks and in verifying that appropriate locks have
been acquired before each operation. In the object-oriented language that we
treat, the object components are methods; they can be both invoked and up-
dated. (Fields are a special case of methods [1].) Thus, the approach consists
in attaching locks to methods and in verifying that appropriate locks have been
acquired before each method invocation and update. Because a method invoca-
tion may trigger other operations, several locks may be required for it; only one
lock is required for a method update.



The annotations and checks necessary in our static analysis are expressed
in a type system. Like standard type systems, this type system assigns a type
to each of the methods of an object. In addition, it gives the set of locks that
must be held before invoking the method and the lock that must be held before
updating the method (or an indication that the update is forbidden). Each of
these locks may be external to the object, but it may also be a special lock
associated with self, that is, with this object.

Thus, we are led to a type system with dependent types, in which the type of
an object refers to values, namely to locks. However, the type system is restrictive
enough to preserve the important phase distinction between compile-time and
run-time [7, 11]. All our checking takes place at compile-time (without excluding
the possibility of further run-time checking).

The checking guarantees the absence of race conditions: if a program is well-
typed, then during its execution no two threads attempt to access an object
component at the same time. In addition, the checking guarantees the absence of
standard run-time type errors (“message-not-understood” errors). Our approach
can handle some interesting, common examples, as we demonstrate. Although it
is far from complete, we believe that it represents a sensible compromise between
simplicity and generality, and a worthwhile step in the ongoing investigation of
the use of types for safe locking.

Background

In a recent paper [8], we developed an analogous technique for a basic calcu-
lus without data structures (only reference cells). In that paper, singleton types
(types with one single element) enable the tracking of locks; existential types per-
mit the hiding of singleton types for locks. That paper also describes a technique
for avoiding deadlocks, which it should be possible to adapt to the setting of the
present paper. The substantial novelty of the present paper is the treatment of
objects, object types, and subtyping. Here we avoid the use of singleton types
and existential types, and resort to specialized dependent types instead. These
dependent types require somewhat less conceptual machinery and support more
flexible subtyping relations.

In addition to our own previous work, we rely on Gordon and Hankin’s
concurrent object calculus concς [9]. This calculus is a small but extremely
expressive concurrent object-oriented language; it features a compact and elegant
presentation of the concepts of expression, process, store, and configuration. We
refer the reader to Gordon and Hankin’s work for motivations for this calculus
and additional examples and technical developments.

The calculus concς extends a sequential calculus of Abadi and Cardelli [1],
adopting the basic type structure and subtyping relation of that sequential calcu-
lus. Here we extend the type system with our form of dependent types. Gordon
and Hankin’s type system does not attempt to guarantee the absence of race
conditions; our type system provides that guarantee.

For simplicity, we omit the cloning construct from concς. We also replace the
synchronization primitives that Gordon and Hankin presented as an extension to



concς. Those primitives are two separate operations for acquiring and releasing a
lock. Instead, we use the expression lock v in a, which acquires the lock denoted
by v, evaluates a, then releases the lock. Like Java’s synchronized construct,
the expression lock v in a automatically guarantees the proper nesting of lock
operations, helping static checking. Moreover, our calculus associates locks with
objects (unlike concς, but like Java).

There are some other languages that we might have used as a starting point
for this work instead of concς, in particular Di Blasio and Fisher’s concurrent
object calculus [6]. However, we prefer to base our work on that of Gordon and
Hankin, for two main reasons. First, Di Blasio and Fisher’s calculus permits
object extension but not subtyping, unlike concς and unlike most typed object-
oriented languages; we wish to treat subtyping. Furthermore, Di Blasio and
Fisher’s calculus combines synchronization mechanisms with the primitive oper-
ations on objects. Like Gordon and Hankin, we prefer to keep synchronization
separate from object operations, although our object types do mention locks.
Di Blasio and Fisher’s interesting study does not address race conditions, but
shows that certain pieces of synchronization code do not have side-effects.

Other pieces of related work are discussed in our recent paper. These rely on
a variety of techniques, including program-verification methods and data-flow
analyses, for example. One of the most relevant is the work of Kobayashi and
Sumii [13, 16], which develops a type-based techniques for avoiding deadlocks
(not necessarily race conditions) in the context of a process calculus. Another one
is Warlock [15], a system for partial detection of race conditions and deadlocks in
ANSI C programs. We are not aware of any work that specifically addresses race
conditions in object-oriented programs. In another direction, there have been
intriguing explorations of the combination of dependent types with objects and
subtyping, but with an emphasis on logical frameworks rather than programming
languages [12, 3].

Outline

The next section presents the syntax and informal semantics of the concurrent
object-oriented language that we treat. Section 3 develops our type system for
this calculus. Section 4 shows some example applications of our type system.
Section 5 considers formal properties. Finally, section 6 concludes. An appendix
contains some technical details. Proofs are omitted for lack of space.

2 A Concurrent Object Calculus

This section describes our variant of Gordon and Hankin’s concurrent object
calculus. It is largely a review.

2.1 Syntax

We define the sets of results, denotations, lock states, and terms by the grammars:



Syntax

u, v ::= results
x variable
p name

d ::= denotations
[�i = ς(xi)bi

i∈1..n]m object
m ::= lock states
• locked
◦ unlocked

a, b, c ::= terms
u result
(νp)a restriction
p �→ d denomination
u.� method invocation
u.�⇐ ς(x)b method update
let x=a in b let
a � b parallel composition
lock u in a lock acquisition
locked p in a lock acquired

Results include both variables and names. Variables represent intermediate
values, and are bound by methods ς(x)b and by let expressions let x=a in b;
both of these constructs bind the variable x with scope b. Names represent the
addresses of stored objects. They are introduced by a restriction (νp)a, which
binds the name p with scope a. We let fv(a) and fn(a) denote the sets of free
names and free variables in a, respectively. We write a{{u ← b}} to denote the
capture-free substitution of b for all free occurrences of u in a. We write a = b to
mean that a and b are equal up to the renaming of bound variables and bound
names, and the reordering of object methods.

2.2 Informal Semantics

A denotation [�i = ς(xi)bi
i∈1..n]m describes an object containing a collection of

methods. Each method consists of a self parameter xi and a body bi. In addition,
each object also has an associated lock whose state is described by m. If m = •,
the lock is held by some term in the program; if m = ◦, the lock is unlocked. (As
a straightforward extension, each object could have several associated locks.)

A denotation may appear in a denomination p �→ d, which associates the
name p with the denotation d. Intuitively, this term represents the portion of
the store containing the object d, and p represents the address of that object.
The term (νp)a introduces a fresh name p and then evaluates a. This operation
corresponds to allocating a fresh address p at which objects can be stored. Thus
the language separates name introduction (νp)a from name definition p �→ d; the
type system forbids programs with multiple definitions of the same name.



A method invocation u.� invokes the method � of the object u. A method
update u.�⇐ ς(x)b replaces the method � of u with ς(x)b. The term let x=a in b
first evaluates a to yield a result, binds x to this result, and then evaluates b. A
parallel composition a � b evaluates both a and b in parallel. The result of this
parallel composition is the result of b; the subterm a is evaluated only for effect.

The lock operation lock u in a functions in a similar manner to Java’s
synchronized statement: the lock on the object u is acquired; then the sub-
term a is evaluated; and finally the lock is released. The implementation of this
construct relies on an auxiliary construct locked p in a, which indicates that the
lock p has been acquired and that the term a is being evaluated.

The appendix contains a detailed formal semantics of the language. It is a
chemical semantics in the style of Berry and Boudol [4], and consists of a group
of structural congruence rules, which permit the rearrangement of terms, and a
group of reduction rules, which model proper computation steps.

A typical structural congruence rule is:

a � E [ b ] ≡ E [ a � b ] (if fn(a) ∩ bn(E) = ∅)

where E denotes an evaluation context:

E ::= [ ] | let x=E in b | E � b | a � E | (νp)E | locked p in E

and the binding names bn(E) of an evaluation context are the names p bound
by a restriction (νp)E ′ that encloses the hole [ ].

For our purposes, the two most interesting reduction rules are:

(p �→ [. . .]◦) � lock p in a → (p �→ [. . .]•) � locked p in a (Red Lock)
(p �→ [. . .]•) � locked p in u → (p �→ [. . .]◦) � u (Red Locked)

where [. . .] represents an object (excluding its lock state). The rule (Red Lock)
evaluates a lock operation by acquiring the lock associated with p, and yielding
the term locked p in a. Subsequent reduction steps may then evaluate a. Once
a is reduced to some result u, the rule (Red Locked) releases the lock on p and
returns u as the result of the locked expression.

2.3 An Example

For clarity, we present example programs in an extended language with integers,
and we introduce the following abbreviations: a; b ∆= let x=a in b (provided
x �∈ fv (b)) and a.�

∆= let x=a in x.� (provided a is not a result).
A counter that has a read method and an increment method, and initially

contains the integer n, can be defined as:

countn
∆= [val = ς(x)n,

read = ς(x)x.val ,
inc = ς(x)let t=x.val + 1 in x.val ⇐ ς(x)t]



The following program allocates a counter (initially containing 0), increments
the counter, and then reads the value of the counter.

(νp)(p �→ count0 � p.inc; p.read)

As expected, this program reduces to (νp)(p �→ count1 � 1), since the counter
works correctly in a sequential setting. In the presence of concurrency, how-
ever, the counter may exhibit unexpected behavior. To illustrate this danger, we
consider the following program, which creates a counter and then increments it
twice, in parallel.

(νp)(p �→ count0 � p.inc � p.inc)

This program is non-deterministic. It may reduce to (νp)(p �→ count2 � p � p), as
expected. Alternatively, if the evaluations of the two calls to inc are interleaved,
the program may also reduce to (νp)(p �→ count1 � p � p), which is presumably
not what the programmer intended. Thus the program has a race condition: two
threads may attempt to update the method val simultaneously, with incorrect
results.

We can fix this error by adding appropriate synchronization to the counter:

sync countn
∆= [val = ς(x)n,

read = ς(x)lock x in x.val ,
inc = ς(x)lock x in let t=x.val + 1 in x.val ⇐ ς(x)t]

In this synchronized counter, the method val is protected by the lock of the
counter. This lock should be held whenever the method val is invoked or updated,
and thus the methods read and inc both acquire that lock. The modified counter
implementation is race-free and will behave correctly even if used by multiple
threads, provided those threads access val only through read and inc, or acquire
the lock before accessing val directly. We revisit this example in later sections.

3 The Type System

Race conditions, such as that in countn, are a common bug in concurrent object-
oriented programs, just as they are in concurrent programs of other kinds. In
practice, race conditions are often avoided by the same strategy that we employed
in sync countn; each mutable component is protected by a lock, and is only
accessed when that lock is held. In this section, we describe a type system that
supports this programming discipline.

3.1 The Type Language

The set of types in our system is described by the grammar:



Types

A, B ::= [�i : ς(xi)Ai ·ri ·si
i∈1..n] | Proc | Exp types

r ::= {v1, . . . , vn} permissions
s ::= v | + protection annotations

An object type [�i : ς(xi)Ai ·ri ·si
i∈1..n] describes an object containing n

methods labeled l1, . . . , ln. Each method li has result type Ai, permission ri,
and protection annotation si. The permission ri is a set of results describing
the locks that must be held before invoking li. The protection annotation si is
a result describing the lock that must be held before updating li. In the case
where li is never updated, si may alternatively be the symbol ‘+’. Since methods
are commonly protected by the self lock (that is, the lock of the object itself),
the description of each method also binds the self variable xi; this variable may
occur free in Ai, ri, and si.

An example type is [l : ς(x)A·∅·+], which describes an object containing a
single method l with result type A. The permission ∅ indicates that no locks
need to be acquired before invoking this method; the protection annotation ‘+’
indicates that the method cannot be updated. The type [l : ς(x)A · {x} ·x] is
similar, except that it describes an object whose method l can be updated. The
self lock of the object must be acquired before invoking or updating that method.

As a slightly more complicated example, a suitable type for the synchronized
counter sync countn described earlier is:

[val : ς(x)Int ·{x}·x, read : ς(x)Int ·∅·+, inc : ς(x)[ ]·∅·+]

This type states that the method val is protected by the self lock, which must
be acquired before invoking or updating that method. The methods read and
inc are read-only; they cannot be updated. Furthermore, since these methods
perform the necessary synchronization internally, no locks need to be held when
invoking these methods.

In addition to object types, the type language also includes the types Exp and
Proc. The type Exp describes all results that may be returned by expressions;
the type Proc is a supertype of Exp that also covers terms that never return
results, such as a denomination p �→ d.

3.2 Clean and Defined Names

In addition to checking that the appropriate locks are held whenever a method
is invoked or updated, the type system also verifies that each lock is held by at
most one thread at any time. That is, for each name p, there is at most one term
of the form locked p in . . . in the program.

Verifying this mutual exclusion property is a little tricky, since any term
that contains the denomination p �→ [. . .]◦ can potentially acquire the lock on p
via the reduction rule (Red Lock). Therefore, we introduce the notion of clean
names, and we say that p is a clean name of a term if the term includes either



locked p in . . . or p �→ [. . .]◦ in an evaluation context. (The restriction to evalu-
ation contexts excludes some nonsensical programs.) The set of clean names of
a term is preserved during evaluation, even though the set of locks held by the
term may vary. The type system checks that for any parallel composition a � b,
the clean names of the subterms a and b are distinct. This check ensures that a
lock cannot be simultaneously held by two terms executing in parallel.

The type system also verifies that every name that is introduced is associated
with a unique denotation. We say that a name is defined by a term if it is
associated with a denotation in an evaluation context.

Clean and defined names

p ∈ clean(a) if a = E [ p �→ [. . .]◦ ] or a = E [ locked p in b ] and p �∈ bn(E)
p ∈ defined(a) if a = E [ p �→ d ] and p �∈ bn(E)

3.3 Type Rules

We define the type system using the following six judgments and associated
typing rules. In these judgments, an environment E is a sequence of bindings of
results to types, of the form ∅, u1 : A1, . . . , un : An.

Judgments

E 
 � E is a well-formed environment
E 
 A given E, type A is well-formed
E 
 r given E, permission r is well-formed
E 
 A<:B given E, A is a subtype of B
E 
 r<:r′ given E, r is a subpermission of r′

E; r 
 a : A given E and r, term a has type A

Typing rules

(Env ∅)

∅ 
 �

(Env u)
E 
 A u /∈ dom(E)

E, u : A 
 �

(Perm)
E 
 � r ⊆ dom(E)

E 
 r

(Type Proc)
E 
 �

E 
 Proc

(Type Exp)
E 
 �

E 
 Exp

(Type Object) (�i distinct)
E 
 � E, xi : [ ] 
 Bi<:Exp E, xi : [ ] 
 ri si ∈ ri ∪ {+} ∀i ∈ 1..n

E 
 [�i : ς(xi)Bi ·ri ·si
i∈1..n]

(Val Object) (where A = [�i : ς(xi)Bi ·ri ·si
i∈1..n])

E = E1, p : A, E2 E 
 � E, xi : A; ri 
 bi : B′
i

B′
i{{p← xi}} = Bi defined(bi) = clean(bi) = ∅ ∀i ∈ 1..n

E; ∅ 
 p �→ [�i = ς(xi)bi
i∈1..n]m : Proc

(Val u)
E, u : A, E′ 
 �

E, u : A, E′; ∅ 
 u : A

(Val Select)
E; ∅ 
 u : [�i : ς(xi)Bi ·ri ·si

i∈1..n] j ∈ 1..n

E; rj{{xj ← u}} 
 u.�j : Bj{{xj ← u}}



(Val Update) (where A = [�i : ς(xi)Bi ·ri ·si
i∈1..n])

E; ∅ 
 u : A E, xj : A; rj 
 b : B sj �= + j ∈ 1..n
B{{u← xj}} = Bj defined(b) = clean(b) = ∅

E; {sj{{xj ← u}}} 
 u.�j ⇐ ς(xj)b : A

(Val Let)
E; r 
 a : A E, x : A; r 
 b : B

defined(b) = clean(b) = ∅ E 
 B

E; r 
 let x=a in b : B

(Val Res)
E, p : A; r 
 a : B E 
 r E 
 B

p ∈ defined(a) p ∈ clean(a)
E; r 
 (νp)a : B

(Val Par)
E; ∅ 
 a : Proc E; r 
 b : B

defined(a) ∩ defined(b) = ∅ clean(a) ∩ clean(b) = ∅

E; r 
 a � b : B

(Val Lock)
E; ∅ 
 u : [ ] E; r ∪ {u} 
 a : A

defined(a) = clean(a) = ∅

E; r 
 lock u in a : A

(Val Locked)
E; ∅ 
 p : [ ] E; r ∪ {p} 
 a : A

p �∈ clean(a)
E; r 
 locked p in a : A

(Val Subsumption)
E; r 
 a : A E 
 A<:B E 
 r<:r′

E; r′ 
 a : B

(Subperm)
E 
 r E 
 r′ r ⊆ r′

E 
 r<:r′

(Sub Refl)
E 
 A

E 
 A<:A

(Sub Trans)
E 
 A<:B E 
 B<:C

E 
 A<:C

(Sub Exp)
E 
 A A �= Proc

E 
 A<:Exp

(Sub Proc)
E 
 �

E 
 Exp<:Proc

(Sub Object) (�i distinct)
E 
 [�i : ς(xi)Bi ·ri ·si

i∈1..n+m]
E 
 [�i : ς(xi)Bi ·ri ·si

i∈1..n+m]<:[�i : ς(xi)Bi ·ri ·si
i∈1..n]

Many of the rules of the type system are based on corresponding rules in
Gordon and Hankin’s system, which is in turn based on Abadi and Cardelli’s
calculi. The novel aspects of our system mainly pertain to locking; they include
the treatment of permissions and dependent types.

The core of the system is the set of rules for the judgment E; r 
 a : A (read “a
is a well-typed expression of type A in typing environment E with permission r”).
Our intent is that, if this judgment holds, then a is race-free and yields results
of type A, provided the free variables of a are given bindings consistent with the
typing environment E, and the current thread holds at least the locks in r.

The type system thus tracks the set of locks that are assumed to be held
at each program point. The rule (Val Object) checks that each method body
is race-free, based on the assumption that the locks described by the method’s
permission are held. The rule (Val Select) ensures that these locks are held



whenever the method is invoked. The rule (Val Update) ensures that a lock pro-
tecting a method is held whenever that method is updated. The rule (Val Lock)
for lock u in a typechecks a with the assumption that the lock u is held. The
rule (Val Subsumption) allows for subsumption on both types and permissions:
if E 
 r<:r′, then any term that is race-free with permission r is also race-free
with the superset r′ of r.

The type system provides dependent types, that is, a type may contain a
result that refers to an object. In some cases, an object can be the referent of
several results, for example, its self variable and some external name for the
object. The type rules contain a number of substitutions that support changing
the result used to refer to a particular object. The rule (Val Select) for a method
invocation u.�j replaces occurrences of the self variable xj in the type Bj with
the result u, since xj and u refer to the same object, and xj is going out of scope.
A similar substitution is performed on the permission rj . The rules (Val Object)
and (Val Update) perform the converse substitution; in the type of each method
body, these rules replaces occurrences of the external name of the object with
the self variable.

In order to accommodate self-dependent types, where the description of an
object’s method may refer to the object itself, the rule (Type Object) checks that
the result type and permission of each method is well-formed in an extended
environment that contains a binding for the self variable. Because types may
refer to results, the rules (Val Let) and (Val Res) check that a type that is lifted
outside a result binding is still well-formed. The rule (Val Res) also has a similar
requirement on permissions.

The type rules include conditions on the clean and defined names of subterms.
The rule (Val Par) for a � b requires that the defined names of the subterms a and
b be disjoint. Furthermore, the clean names of the subterms must also be disjoint.
The latter condition implies that the two subterms cannot simultaneously hold
the same lock. The rule (Val Res) for (νp)a requires that the name p being
introduced be defined in a, and that the lock associated with p is either unlocked
or is held by a. The rule (Val Locked) disallows nested acquisitions of the same
lock. In addition, in order to ensure that the clean and defined names of a term
are invariant under evaluation, the type rules require that terms not in evaluation
contexts do not have any clean or defined names.

The rule (Sub Object) defines the usual subtyping relation on object types
(appropriately adapted to our type syntax). Since the protection annotation +
can be considered a variance annotation [1], we could extend the type system
with a more powerful subtyping rule. This rule would allow the result types and
permissions of immutable components to behave covariantly. (We conjecture that
the extended system would still be race-free.)

4 Examples

In this section we show a few applications of our type system in examples.



4.1 Counters

The unsynchronized counter implementation countn described earlier can be
assigned the type:

[val : ς(x)Int ·{x}·x, read : ς(x)Int ·{x}·+, inc : ς(x)[ ]·{x}·+]

This type states that the method val is protected by the self lock of the object,
and this self lock must be acquired before invoking the methods read and inc.

The method val may be considered private to the implementation of the
counter, and can be dropped via subtyping, yielding:

[read : ς(x)Int ·{x}·+, inc : ς(x)[ ]·{x}·+]

This type describes the public interface to the counter; it states that the self
lock of the counter must be acquired before invoking the counter’s methods. This
interface expresses a synchronization protocol that is sufficient to ensure that the
counter operates correctly. The type system requires that this protocol be obeyed
by each client of the counter. Programs which do not obey this synchronization
protocol, such as (νp)(p �→ count0 � p.inc � p.inc), are forbidden.

4.2 Input Streams

In some cases, we may wish to provide similar synchronized and unsynchronized
interfaces to the same object. For example, an input stream may provide both a
synchronized method read (for reading characters from the stream), and a faster
but unsynchronized method read ′. (The Modula-3 I/O package provides both of
these methods [14].)

An outline implementation of such an input stream might be:

instream ∆= [buffer = ς(x) . . . , internal data structure
read ′ = ς(x) · · · buffer · · · , fast, unsynchronized read
read = ς(x)lock x in x.read ′] slower, synchronized read

The method buffer contains some internal data structures of the input stream
and is protected by the self lock. The method read ′ assumes that the self lock is
held, and returns the next input character based on some manipulation of buffer .
The method read does not assume that the self lock is held; it first acquires that
lock and then dispatches to read ′.

A suitable type for this input stream is:

[buffer : ς(x)Buffer ·{x}·x, read ′ : ς(x)Char ·{x}·+, read : ς(x)Char ·∅·+]

Subtyping then allows us to view an input stream as having either the synchro-
nized interface [read : ς(x)Char ·∅·+] or the faster but unsynchronized interface
[read ′ : ς(x)Char ·{x}·+].



4.3 Lines and Points

The examples above describe objects whose components are protected by the
self lock of the object. In addition, object components can also be protected
by a lock external to the object. To illustrate this possibility, we consider the
following example consisting of point and line objects.

point ∆= [x = ς(s)0,
y = ς(s)0,
bmp = ς(s)let t=s.x + 1 in s.x⇐ ς(s)t]

line ∆= [start = ς(s)pt1,
end = ς(s)pt2,
bmp = ς(s)lock s in (s.start .bmp; s.end .bmp)]

A point contains a method bmp that increments the x-coordinate of the point.
(An analogous method for y is omitted for brevity.) Each line object includes two
methods for its end points, start and end , and a method bmp that increments
the x-coordinate of both end points of the line. This method first acquires the
self lock of the line, then calls the method bmp of both end points. These points
do not perform any synchronization internally; their mutable methods x and y
are protected by the lock of the enclosing line object. Appropriate types for lines
and points are:

Pointz
∆= [x : ς(s)Int ·{z}·z, y : ς(s)Int ·{z}·z, bmp : ς(s)Proc ·{z}·+]

Line ∆= [start : ς(s)Points ·∅·+, end : ς(s)Points ·∅·+, bmp : ς(s)Proc ·∅·+]

where the type Pointz describes a point whose mutable methods are protected
by the lock z. The type Line states that the methods start and end yield points
whose mutable components are protected by the lock of the enclosing line object.

4.4 Encoding Functions as Race-Free Objects

We encode function abstraction and application in our calculus as follows, much
as in other object calculi [1, 9]:

Encoding functions

λ(x)b ∆= [new = ς(s)[arg = ς(s)s.arg , val = ς(s)let x=s.arg in b]] for s /∈ fv(b)
b(a) ∆= let t=b.new in lock t in (t.arg ⇐ ς(x)a).val for t /∈ fv(a)

In the absence of cloning, we need to use a method new to create a fresh
object with the usual methods arg and val . The method val is immutable; no
locks need be acquired before invoking this method. The method arg is mutable,
and is protected by the self lock. This lock is held whenever the method arg is
invoked or updated.



This translation provides an encoding for the simply-typed call-by-value λ-
calculus; a function of type A→ B is mapped to an object of type:

[new : ς(s)[arg : ς(s)A·{s}·s, val : ς(s)B ·{s}·+]·∅·+]

This translation cannot encode dependent function types, in which the result
type depends on the argument value. Encoding dependent function types in our
calculus seems to require an extension, for example allowing the use of terms
(and not just results) as locks.

4.5 Other Encodings (Sketches)

We can translate programs of the imperative object calculus impς [1] into our
calculus in a straightforward manner, much as Gordon and Hankin. (Since our
calculus does not include cloning, this translation only works for clone-free pro-
grams.) The translated program includes a single global lock, which protects all
object components in the program. Since the program is single-threaded, this
lock needs to be acquired only once, at the start of the program’s execution;
it is then held throughout the execution, allowing unrestricted invocations and
updates of object components.

Gordon and Hankin describe an encoding of the π-calculus into their concur-
rent object calculus. Their encoding is based on an implementation of channels.
A similar approach works in our setting, but not as neatly. Because the locks
of our calculus are not semaphores, our implementation of channels uses busy-
waiting; for example, reading from a channel may involve looping until a value
is written to that channel by some other thread.

5 Well-Typed Programs Don’t Have Races

The fundamental property of the type system is that well-typed programs do not
have race conditions. We formalize the notion of race condition as follows. A term
b reads p.� if there exists some E such that b = E [ p.� ] and p �∈ bn(E). Similarly,
a term b writes p.� if there exists some E , x, and c such that b = E [ p.�⇐ ς(x)c ]
and p �∈ bn(E). A term accesses p.� if it either reads or writes p.�. A term b
has an immediate race condition if there exists some c1, c2, and p.� such that
b ≡ E [ c1 � c2 ], c1 and c2 both access p.�, and at least one of those accesses
is a write. Finally, a term b has a race condition if its evaluation may yield a
term with an immediate race condition, that is, if there exists a term c such that
b→∗ c and c has an immediate race condition.

The type system ensures that, in a well-typed program, every access to a
method is protected by the appropriate locks. The following lemma formalizes a
property along these lines.

Lemma 1. If E; r 
 b : B and b accesses p.� then E; ∅ 
 p : [� : ς(x)A·r′ ·s]
and s{{x ← p}} ∈ clean(b) ∪ r ∪ {+}. Furthermore, if the access is a write, then
s �= +.



Since each lock can be held by at most one term at any time, a well-typed
program does not have an immediate race condition.

Lemma 2. If E; ∅ 
 b : B then b does not have an immediate race condition.

Furthermore, typing is invariant under reduction.

Lemma 3. If E; r 
 b : B and b→ c then E; r 
 c : B.

Using the previous lemmas, we can prove that well-typed programs do not
have race conditions.

Theorem 1. If E; ∅ 
 b : B then b does not have a race condition.

6 Conclusion

As this paper shows, a simple type system can help detect and avoid some
synchronization errors in concurrent object-oriented programs. Our type system
builds on the underlying object constructs: it extends standard object types with
locking information. Through operational arguments, we establish that well-
typed programs do not have race conditions.

A static-analysis technique such as ours is necessarily incomplete. In practice,
it probably should be complemented with mechanisms for escaping its require-
ments, that is, with means for asserting that program fragments do not have
race conditions even when these fragments do not typecheck. Complementarily,
we are currently investigating type systems more sophisticated and liberal than
the one presented in this paper. (It seems easier to start with a simple system
and add power than to start with a powerful system and add simplicity.) In the
context of Java, we are also considering implementations of our methods.
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Appendix: Formal Semantics

The formal semantics of our calculus closely follows that of Gordon and Hankin.
It consists of a group of structural congruence rules (≡), which permit the re-
arrangement of terms, and a group of reduction rules (→), which model proper
computation steps. In addition to the rules listed here, we also use a set of rules
that imply that ≡ is a congruence relation.

Structural congruence rules

(Struct Res E)
p /∈ fn(E) ∪ bn(E)

(νp)E [ a ] ≡ E [ (νp)a ]

(Struct Par E)
fn(a) ∩ bn(E) = ∅

a � E [ b ] ≡ E [ a � b ]



Reduction rules

(Red Let)

let x=p in b→ b{{x← p}}

(Red Select)
d = [�i = ς(xi)bi

i∈1..n]m j ∈ 1..n

(p �→ d) � p.�j → (p �→ d) � bj{{xj ← p}}
(Red Update)
d = [�i = ς(xi)bi

i∈1..n]m j ∈ 1..n d′ = [�j = ς(x)b, �i = ς(xi)bi
i∈(1..n)−{j}]m

(p �→ d) � (p.�j ⇐ ς(x)b)→ (p �→ d′) � p

(Red Lock) (where [. . .] = [�i = ς(xi)bi
i∈1..n])

(p �→ [. . .]◦) � lock p in a→ (p �→ [. . .]•) � locked p in a

(Red Locked) (where [. . .] = [�i = ς(xi)bi
i∈1..n])

(p �→ [. . .]•) � locked p in u→ (p �→ [. . .]◦) � u

(Red E)
a→ a′

E [ a ]→ E [ a′ ]

(Red Struct)
a ≡ a′ a′ → b′ b′ ≡ b

a→ b
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