
Theorem Proving using Lazy Proof Explication

Cormac Flanagan1, Rajeev Joshi1, Xinming Ou2, and James B. Saxe1

1 Systems Research Center, HP Labs, Palo Alto, CA
2 Princeton University, Princeton, NJ

Abstract

Many verification problems reduce to proving the validity of formulas
involving both propositional connectives and domain-specific functions
and predicates. This paper presents an explicating theorem prover ar-
chitecture that leverages recent advances in propositional SAT solving
and the development of proof-generating domain-specific procedures. We
describe the implementation of an explicating prover based on this archi-
tecture that supports propositional logic, the theory of equality with un-
interpreted function symbols, linear arithmetic, and the theory of arrays.
We have applied this prover to a range of processor, cache coherence, and
timed automata verification problems. We present experimental results
on the performance of the prover, and on the performance impact of
important design decisions in our implementation.

1 Introduction

In 1979, Nelson and Oppen [?] introduced a scheme for combining a collection of
decision procedures for disjoint underlying theories, together with backtracking
search, to obtain a theorem prover for formulas incorporating both proposi-
tional connectives and arbitrarily mixed application of functions and predicates
of the various theories. In this paper, we propose a prover architecture based
on a new style of interaction between propositional and theory-specific decision
procedures. Unlike the traditional Nelson-Oppen method, our architecture sep-
arates the propositional search from the work done by decision procedures for
the underlying theories. It thereby allows us to gain efficiency by taking advan-
tage of recent advances in propositional SAT solving and the development of
proof-generating decision procedures.

In the rest of this introduction, we illustrate the key ideas of our approach
by means of an example. In later sections, we describe our architecture in more
detail, report on our experience with a prototype implementation, discuss various
design choices that impact performance, and compare our work with related
approaches.

1.1 Our Approach

To simplify the exposition, we consider the problem of determining whether a
given formula, called the query, is satisfiable (this is the dual of the theorem-

2

proving problem). For instance, consider checking the satisfiability of:

(a = b) ∧ (¬(f(a) = f(b)) ∨ b = c) ∧ ¬(f(a) = f(c)) (1)

Our approach uses a propositional SAT solver together with suitable decision
procedures. For this example, we need only one theory-specific decision proce-
dure, for the theory of equality with uninterpreted function symbols (EUF).
A more useful prover would employ a larger collection of theories, cooperating
according to the Nelson-Oppen equality-sharing protocol.

We translate the given problem into a purely propositional formula by intro-
ducing propositional variables v1 . . . v4, called proxies, as shown below:

(

v1
︷ ︸︸ ︷

a = b) ∧ (¬(

v2
︷ ︸︸ ︷

f(a) = f(b)) ∨
v3

︷ ︸︸ ︷

b = c) ∧ ¬(

v4
︷ ︸︸ ︷

f(a) = f(c)) (2)

Replacing each atomic formula in the query with the corresponding proposi-
tional proxy, we obtain the propositional formula:

(v1) ∧ (¬v2 ∨ v3) ∧ (¬v4) (3)

We refer to the atomic formula associated with a proxy as its interpretation;
thus a = b is the interpretation of v1.

Formula (3) is an abstraction of query (1) in the sense that, given any satis-
fying assignment for (1) we can obtain a satisfying assignment for (3) simply by
assigning to each proxy the truth value of its interpretation. Clearly, however,
the converse does not hold in general, since the truth values are assigned to
the proxies without considering their interpretations. Our strategy is to use the
underlying theories to produce a sequence of successively stronger propositional
abstractions until either (a) the propositional abstraction becomes unsatisfiable
(in which case the original query was itself unsatisfiable), or (b) the abstraction
remains satisfiable even when the proxies are interpreted as atomic formulas (in
which case we have a satisfying assignment for the query).

We start by invoking a propositional SAT solver to solve the initial propo-
sitional abstraction (3). Suppose that our solver returns with the satisfying as-
signment that assigns true to v1 and false to v2, v3 and v4. Next, we assert the
associated interpretations of these proxies to the underlying EUF theory, which
detects that they are contradictory.

At this point, a conventional Nelson-Oppen prover like Simplify [12] would
backtrack and search for a different satisfying assignment for (3), perhaps coming
up with the assignment in which v1 and v3 are assigned true, while v2 and v4

are assigned false. This assignment would again be found inconsistent with
EUF, and so on. Note, however, that a = b and ¬(f(a) = f(b)) are mutually
inconsistent by themselves. Thus, there is no point in considering any further
assignments in which v1 is assigned true and v2 is assigned false.

To exploit this observation, we depart from the conventional approach and
assume the existence of a decision procedure for EUF that, given a conjunction
of inconsistent literals, is capable of producing a proof of the inconsistency.

3

Returning to our example, when the interpretations of the proxies are asserted
to the EUF procedure, it reports the inconsistency of a = b and ¬(f(a) = f(b))
by explicating the following “proof”, which is an instance of the congruence
axiom,

v1
︷ ︸︸ ︷

a = b ⇒
v2

︷ ︸︸ ︷

f(a) = f(b)

We use this proof to refine our propositional abstraction by adding the additional
clause (¬v1 ∨ v2), obtaining

(v1) ∧ (¬v2 ∨ v3) ∧ (¬v4) ∧ (¬v1 ∨ v2) (4)

Note that addition of this “explicated proof” to the propositional abstraction
allows the SAT solver to refute the SAT assignment using purely propositional
reasoning. Next, we invoke the SAT solver on (4). This time, it finds the satisfying
assignment in which v1, v2, v3 are assigned true, and v4 is assigned false. As
before, we assert the associated interpretations to the underlying EUF theory.
The theory finds the assignment to be inconsistent, and explicates the following
proof of inconsistency:

(

v1
︷ ︸︸ ︷

a = b ∧
v3

︷ ︸︸ ︷

b = c) ⇒
v4

︷ ︸︸ ︷

f(a) = f(c)

Using this proof, we refine our propositional abstraction to

(v1) ∧ (¬v2 ∨ v3) ∧ (¬v4) ∧ (¬v1 ∨ v2) ∧ (¬v1 ∨ ¬v3 ∨ v4) (5)

The SAT solver finds that (5) is now unsatisfiable, so we conclude that the
original query (1) was itself unsatisfiable.

1.2 Motivation

The ideas described in this paper grew out of experience with the design and
use of the theorem prover “Simplify” [12], which is based on the traditional
Nelson-Oppen design. During our use of Simplify, we observed two serious per-
formance problems. First, the backtracking search algorithm that we used for
propositional inference had been far surpassed by recently developed fast SAT
solvers [21, 24, 14]. Second, if the prover was in the midst of deeply nested case
splits when it detected an inconsistency with an underlying theory, the back-
tracking search engine gained no information about which tentative truth as-
signments (besides the most recent) actually contributed to the inconsistency.
Consequently the decision procedure was often forced repeatedly to rediscover
the same inconsistency in later branches of the search, which differed only in
the truth assignments to other, irrelevant atomic formulas. This led to our ex-
ploration of proof-generating decision procedures; such procedures essentially
identify useful theory-specific facts, which are then projected into the proposi-
tional domain. We thus leverage the efficiency of modern SAT solvers, which

4

can reuse the explicated clauses much more efficiently than the theory-specific
decision procedure could regenerate them.

Our explicated clauses resemble the conflict clauses generated by modern
SAT solvers such as GRASP [21], SATO [24], and Chaff [14, 25], in that (i) after
being generated once they can be reused many times, and (ii) they are gen-
erated on the basis of their demonstrated utility in refuting some attempted
satisfying assignment. The difference is that our explicated clauses are theory-
specific logical consequences of the interpretations of the proxy variables, and
they are discovered by the theory-specific decision procedures. In contrast, a
SAT solver’s conflict clauses are propositional consequences of the given clauses,
and they are discovered by analyzing contradictions detected during boolean
constraint propagation in the SAT solver.

We are by no means the only ones to notice that modern SAT solvers can
be usefully integrated into the Nelson-Oppen design. Similar ideas have been
recently proposed by Barrett, Dill and Stump [5] and by de Moura and Rueß [11].
Our approach differs from their work in a number of critical design decisions. This
paper discusses these design decisions and evaluates their performance impact.

2 Architecture

2.1 Terminology

We use terminology that is standard in the literature. A term is a variable or
an application of a function to terms. Thus, x, x + 3 and f(x, y) are all terms.
An atomic formula is a propositional variable or an application of a predicate
symbol to some terms. Thus, x + 3 < 5 and f(x) = f(y) are atomic formulae. A
literal is either an atomic formula or its negation, and a clause is a disjunction
of literals. A monome is a conjunction of literals in which no atomic formula
is both affirmed and negated. We identify a monome M with the partial truth
assignment that assigns true to atomic formulae that are conjuncts of M and
assigns false to atomic formulae whose negations are conjuncts of M .

The task of a satisfier is to decide whether an input formula, called a query,
is satisfiable for a given set of underlying theories. The underlying theories may
assume particular semantics for some predicate and function symbols, such as >
and +, while leaving others uninterpreted. A satisfying assignment for a query
is a monome that is consistent with the underlying theories of the satisfier and
entails the query by propositional inference alone (i.e., treating all syntactically
distinct atomic formulae as if they were distinct propositional variables).

2.2 Architecture

Figure 1 sketches the main algorithm for our satisfier. As shown, given a query
F , we introduce proxies for the atomic formulae of F , along with a mapping Γ
relating these proxies to the atomic formulae. This results in the SAT problem
Γ−1(F). We invoke the SAT solver on Γ−1(F) by invoking SAT-solve, which is

5

Input: A query F
Output: A monome satisfying F , or null, indicating that F is unsatisfiable

function satisfy(Formula F) : Monome {
while (true) {

allocate proxy propositional variables for atomic formulae in F , and
create mapping Γ from proxies to atomic formulae;

TruthAssignment A := SAT-solve(Γ−1(F));
if (A = null) { Γ−1(F) is unsatisfiable, hence so is F

return null;
} else {

Monome M := Γ (A);
Formula E := check(M);
if (E = null) { E is satisfiable, and so is F

return Γ (A);
} else { decision procedure found M inconsistent and explicated E

F := F ∧ E;
}

}
}

}
Fig. 1. A satisfiability algorithm using proof explication

expected to return either null (if the given SAT problem is unsatisfiable) or a
satisfying TruthAssignment A. If SAT-solve returns null, it means Γ−1(F) is
unsatisfiable, so we can deduce that F itself was unsatisfiable, and we are done.
Otherwise, we use the satisfying assignment A provided by the SAT solver, and
invoke the procedure check which determines if the monome M is consistent with
the underlying theories. If check returns null, it means that M is consistent with
the underlying theories, so we have obtained a satisfying assignment to our origi-
nal F and we are done. Otherwise, check determines that M is inconsistent with
the underlying theories, and returns a proof E of the inconsistency. We update
the query F by conjoining E to it, and continue by mapping the query using
Γ and reinvoking the SAT solver as described above. We assume that E is (1)
entailed by the axioms of the underlying theories, and (2) propositionally entails
the negation of the given monome M . Condition (2) suffices to show that the
algorithm terminates, since it ensures that at each step, we strictly strengthen
the query. Condition (1) suffices to show soundness, so that if the updated query
becomes propositionally unsatisfiable, we may conclude that the original query
was unsatisfiable. Thus, we can view the iterative process as transfering infor-
mation from the underlying theories into the propositional domain. Eventually
we either strengthen the query until it becomes propositionally unsatisfiable, or
the SAT solver finds a satisfying assignment whose interpretation is consistent
with the underlying theories.

6

3 Implementation and Evaluation

To explore the performance benefits of generating explicated clauses, we imple-
mented a satisfier, called Verifun, based on the architecture of Figure 1. Verifun
consists of approximately 10,500 lines of Java and around 800 lines of C code.
The bulk of the Java code implements explicating decision procedures for EUF,
rational linear arithmetic, and the theory of arrays. The decision procedure for
EUF is based on the E-graph data structure proposed by Nelson and Oppen [19],
which we adapted to explicate proofs of transitivity and congruence. The deci-
sion procedure for linear arithmetic is based on a variation [17] of the Simplex
algorithm that we have modified to support proof explication. Finally, the deci-
sion procedure for arrays uses pattern matching to produce ground instances of
select and store axioms. The C code implements the interface to the SAT solver.

The Verifun implementation extends the basic explicating architecture of
Figure 1 with a number of improvements, which we describe below.

3.1 Online vs. Offline Propositional SAT Solving

The architecture of Figure 1 uses an offline SAT solver, which is invoked from
scratch each time the SAT problem is extended with additional explicated clauses.
Each sucessive invocation is likely to repeat much of the work of the previous in-
vocation. To avoid this performance bottleneck, Verifun uses a customized online
variant of the zChaff SAT solver [14]. After reporting a satisfying assignment,
this online SAT solver accepts a set of additional clauses and then continues its
backtracking search from the point at which that assignment was found, and
thus avoids reexamining the portion of the search space that has already been
refuted.

To illustrate the benefit of online SAT solving, Figure 2(a) compares the
performance of two versions of Verifun, which use online and offline versions
of zChaff, respectively. We used a benchmark suite of 38 processor and cache
coherence verification problems provided by the UCLID group at CMU [7]. These
problems are expressed in a logic that includes equality, uninterpreted functions,
simple counter arithmetic (increment and decrement operations), and the usual
ordering over the integers. All experiments in this paper were performed on a
machine with dual 1GHz Pentium III processors and 1GB of RAM, running
Redhat Linux 7.1. Since Verifun is single-threaded, it uses just one of the two
processors. We consider an invocation of the prover to timeout if it took more
than 1000 seconds, ran out of memory, or otherwise crashed. As expected, the
online SAT solver significantly improves the performance of Verifun and enables
it to terminate on more of the benchmark problems. Note that the the ‘x’ in the
top right of of this graph (and in subsequent graphs) covers several benchmarks
that timed out under both Verifun configurations.

3.2 Partial vs. Complete Truth Assignments

As described in Section 2.2, the SAT solution A is converted to a monome M that
entails the query by propositional reasoning (although M may not be consistent

7

0.1 1.0 10.0 100.0 1000.0

Online SAT solver

0.1

1.0

10.0

100.0

1000.0

O
ff

lin
e

SA
T

 s
ol

ve
r

timeout

0.1 1.0 10.0 100.0 1000.0

Partial truth assignment

0.1

1.0

10.0

100.0

1000.0

C
om

pl
et

e
tr

ut
h

as
si

gn
m

en
t

timeout

0.1 1.0 10.0 100.0 1000.0

Proxy reuse

0.1

1.0

10.0

100.0

1000.0

N
o

pr
ox

y
re

us
e

timeout

(a) Offline vs online (b) Complete vs partial (c) No reuse vs reuse
SAT solver truth assignments of proxies

0.1 1.0 10.0 100.0 1000.0

Lazy explication of transitivity

0.1

1.0

10.0

100.0

1000.0

E
ag

er
 e

xp
lic

at
io

n
of

 t
ra

ns
it

iv
it

y

timeout

0.1 1.0 10.0 100.0 1000.0

Fine-grain explication

0.1

1.0

10.0

100.0

1000.0
C

oa
rs

e-
gr

ai
n

ex
pl

ic
at

io
n

timeout

0.1 1.0 10.0 100.0 1000.0

No new proxy hiding

0.1

1.0

10.0

100.0

1000.0

N
ew

 p
ro

xy
 h

id
in

g

timeout

(d) Eager vs lazy (e) Fine vs coarse (f) New proxy hiding
transitivity explication vs no hiding

Fig. 2. Scattergraph of running times (in seconds) comparing versions of Verifun on
the UCLID benchmarks. Except where labeled otherwise, Verifun used the online SAT
solver, partial truth assignments, proxy reuse, lazy transitivity, fine-grain explication,
and no hiding of new proxy variables.

with the semantics of atomic formulas as defined by the theories). By default, M
is complete, in that it associates a truth value with every atomic formula in the
query. An important optimization is to compute from M a minimal sub-monome
M ′ that still entails the query. Since any monome extending M ′ also entails the
query, M can be considered a random extension of M ′ that assigns arbitrary
truth values to atomic formulas not mentioned in M ′, which in turn may cause
check to explicate clauses that are not very useful. Therefore, we instead apply
check to the partial monome or truth assignment M ′. Figure 2(b) illustrates the
benefit of this optimization.

3.3 Proxy Reuse

Since standard SAT solvers require their input to be in conjunctive normal form
(CNF), Verifun first converts the given query to CNF. To avoid exponential
blow-up, Verifun introduces additional proxy variables for certain terms in the
query, as necessary. If a particular term appears multiple times in the query, an
important optimization is to reuse the same proxy variable for that term, instead
of introducing a new proxy variable for each occurrance of the term. Figure 2(c)
illustrates the substantial performance benefit of this optimization.

8

3.4 Eager Transitivity

By default, Verifun explicates clauses in a lazy manner, in response to satisfying
assignments produced by the SAT solver. An alternative approach proposed by
Velev [9] and others [7, 8, 13] is to perform this explication eagerly, before running
the SAT solver. The relative performance of the two approaches is unclear, in
part because lazy explication generates fewer clauses, but invokes the SAT solver
multiple times.

As a first step in comparing the two approaches, we extended Verifun to per-
form eager explication of clauses related to transitivity of equality. These clauses
are generated by maintaining a graph whose vertices are the set of all terms, and
whose edges are the set of all equalities that appear (negated or not) in the cur-
rent query. At each step, before the SAT solver is invoked, we add edges to make
the graph chordal, using the well-known linear-time algorithm of Tarjan and
Yannakakis [23]. Next, we enumerate all triangles in this graph that contain at
least one newly added edge. For each such triangle, we generate the three possi-
ble instances of the transitivity axiom. Figure 2(d) illustrates the effect of eager
explication on Verifun’s running time on the UCLID benchmarks. Interestingly,
although eager explication significantly reduces the number of iterations though
the main loop of Verifun, often by an order of magnitude, the timing results
indicate that eager explication does not produce a consistent improvement in
Verifun’s performance over lazy explication.

3.5 Granularity of Explication

When the check decision procedure detects an inconsistency, there is generally
a choice about which clauses to explicate. To illustrate this idea, suppose the
decision procedure is given the following inconsistent collection of literals:

a = b , b = c , f(a) �= f(c)

When the decision procedure detects this inconsistency, it could follow the
coarse-grain strategy of explicating this inconsistency using the single clause:

a = b ∧ b = c ⇒ f(a) = f(c)

A second strategy is fine-grain explication, whereby the decision procedure
explicates the proof of inconsistency using separate instances of the transitivity
and congruence axioms:

a = b ∧ b = c ⇒ a = c
a = c ⇒ f(a) = f(c)

Fine-grained explication produces more and smaller explicated clauses than
coarse-grained explication. This is likely to result in the SAT solver doing more
unit propagation, but may allow the SAT solver to refute more of the search
space without reinvoking the decision procedure. In the example above, the

9

clause a = c ⇒ f(a) = f(c) might help prune a part of the search space where
a = c holds, even if the transitivity chain a = b = c does not hold. By comparison,
the coarse-grain explicated clause would not have been useful.

Figure 2(e) compares the performance of coarse-grain verses fine-grain ex-
plication. On several benchmarks, the coarse-grain strategy times out because
it generates a very large number of clauses, where each clause is very specific
and only refutes a small portion of the search space. Fine-grained explication
terminates more often, but is sometimes slower when it does terminate.

We conjecture this slowdown is because fine-grain explication produces clauses
containing atomic formulas (such as a = c in the example above) that do not
occur in the original query, which causes the SAT solver to assign truth values
to these new atomic formulas. Thus, subsequent explication may be necessary
to refute inconsistent assignments to the new atomic formulas.

To avoid this problem, we extended Verifun to hide the truth assignment
to these new atomic formulas from the decision procedure. In particular, when
the SAT solver returns a satisfying assignment, Verifun passes to the decision
procedure only the truth assignments for the original atomic formulas, and not
for the new atomic formulas. Figure 2(f) shows that this hiding new proxies
strategy produces a significant performance improvement, without introducing
the problems associated with the coarse-grain strategy.

3.6 Comparison to Other Theorem Provers

We next compare the performance of Verifun with three comparable provers. Fig-
ure 3(a) compares Verifun with the Simplify theorem prover [12] on the UCLID
benchmarks, and shows that Verifun scales much better to large problems. In
several cases, Verifun is more than two orders of magnitude faster than Simplify,
due to its use of explicated clauses and a fast SAT solver.

Figure 3(b) compares Verifun to the Cooperating Validity Checker (CVC) [5]
on the UCLID benchmarks. The results show that Verifun performs better than
CVC on these benchmarks, perhaps because CVC uses coarse-grain explication,
which our experiments suggest is worse than Verifun’s fine-grain explication.

Figure 3(c) and (d) compare Verifun with the Stanford Validity Checker
(SVC) [?]. Figure 3(c) uses the UCLID benchmarks plus an additional bench-
mark provided by Velev that uses EUF and the theory of arrays. Figure 2 (d) uses
the Math-SAT postoffice suite3 of 41 timed automata verification problems [2,
1]. Interestingly, SVC performs better than Verifun on the UCLID benchmarks,
but worse on the postoffice benchmarks, perhaps because these tools have been
tuned for different problem domains. In addition, SVC is a relatively mature and
stable prover written in C, whereas Verifun is a prototype written in Java, and
still has significant opportunities for further optimization. For example, our deci-
sion procedures are currently non-backtracking and therefore repeat work across
invocations. In most cases, a large percentage of Verifun’s total running time

3 We have not been able to run either Simplify or CVC on the postoffice benchmarks,
due to incompatible formats.

10

0.01 0.10 1.00 10.00 100.001000.00

Verifun

0.01

0.10

1.00

10.00

100.00

1000.00

Si
m

pl
if

y

timeout

0.01 0.10 1.00 10.00 100.001000.00

Verifun

0.01

0.10

1.00

10.00

100.00

1000.00

C
V

C

timeout

(a) Verifun vs Simplify on UCLID (b) Verifun vs CVC on UCLID

0.01 0.10 1.00 10.00 100.001000.00

Verifun

0.01

0.10

1.00

10.00

100.00

1000.00

SV
C

timeout

0.01 0.10 1.00 10.00 100.001000.00

Verifun

0.01

0.10

1.00

10.00

100.00

1000.00

SV
C

timeout

(c) Verifun vs SVC on UCLID and Velev (d) Verifun vs SVC on postoffice

Fig. 3. Scattergraph of running times (in seconds) comparing Verifun with (a) Simplify,
(b) CVC, and (c) SVC on the UCLID benchmarks, and (d) comparing Verifun with
SVC on the postoffice benchmarks. Verifun used the online SAT solver, lazy transitivity,
fine-grain explication, and hiding of new proxy variables.

is spent inside these decision procedures. We expect that backtracking decision
procedures would significantly improve Verifun’s performance.

Math-SAT [2, 1] performs extremely well on the postoffice benchmarks, partly
because these benchmarks include hints that Math-SAT uses to direct the search
performed by the SAT solver. Verifun cannot currently exploit such hints, but
its performance is superior to Math-SAT if these hints are not provided. In
particular, on a 700MHz Pentium III with 1GB of RAM, Math-SAT is unable
to solve any of the 5 largest problems within an hour, whereas Verifun can solve
the largest one in 26 minutes.

4 Related Work

The idea of theorem proving by solving a sequence of incrementally growing SAT
problems occurs as early as the 1960 Davis and Putnam paper [10]. However their
algorithm simply enumerated all instantiations of universally quantified formu-
las in increasing order of some complexity measure, testing ever larger sets of
instantiations for propositional consistency with the initial query. While their
prover was, in principle, complete for first-order predicate calculus, it was un-
likely to complete any proof requiring quantified variables to be instantiated
with large terms before getting overwhelmed with numerous simpler but irrele-
vant instances.

11

The idea of adding support for proof explication to decision procedures has
been explored by George Necula in the context of his work on “proof-carrying-
code”(PCC) [15, 16]. However, in PCC, proof-generation is used with a different
purpose, viz., to allow code receivers to verify the correctness of code with re-
spect to a safety policy. Our concerns, on the other hand, are different: we are
interested in proof-generation in order to produce a sufficient set of clauses to
rule out satisfying assignments that are inconsistent with the underlying theory.
In particular, the quality of the explicated proofs is not as crucial in the context
of PCC.

More similar in nature to our work is the Cooperating Validity Checker
(CVC) [5]. CVC also uses explicated clauses in order to control the boolean
search. However, the CVC approach differs from Verifun’s in some crucial ways:

– CVC invokes its decision procedures incrementally as the SAT solver assigns
truth values to propositional variables.

– Explication in CVC is coarser-grained than in Verifun.
– CVC generates proofs as new facts are inferred. On the other hand, our

prover merely records sufficient information in the data structures so that
proofs can be generated if needed.

Recent work by de Moura and Rueß [11] is closely related to ours, in that they
too propose an architecture in which the decision procedures are invoked lazily,
after the SAT solver has produced a complete satisfying assignment. They note
the impact of proof-explicating decision procedures in pruning the search space
more quickly. They also contrast the lazy decision procedure invocation approach
with the eager invocation approach of provers like CVC. Our work differs from
theirs in that we have focused on studying the performance impact of various
design choices within the space of lazy invocation of decision procedures.

Another system employing a form of lazy explication is Math-SAT [2]. This
system is specialized to the theory of linear arithmetic, for which it incorporates
not only a full decision procedure but three partial decision procedures. Each
decision procedure is invoked only when all weaker ones have failed to refute a
potential satisfying assignment.

Verifun produces propositional projections of theory-specific facts lazily, on
the basis of its actual use of those facts in refuting proposed satisfying assign-
ments. An alternative approach is to identify at the outset and project to the
propositional domain all theory-specific facts that might possibly be needed for
testing a particular query. This “eager” approach has been applied by Bryant,
German, and Velev [6] to the domain of equality with uninterpreted function
symbols and arrays, and extended by Bryant, Lahiri and Seshia [8] to incorporate
counter arithmetic. Ofer Strichman [22] has investigated the eager preojection to
SAT for Presburger and linear arithmetic. When employing the eager approach
it is important not to explicate the exact theory-specific constraint on the atomic
formulas in the query, but to identify a set of theory-specific facts guaranteed
to be sufficient for deciding a query without being excessively large [9]. Where
this has been possible, the eager approach has been impressively successful. For
richer theories (in particular for problems involving quantification), it is unclear

12

whether it will be possible to identify and project all necessary theory-specific
facts at the outset without also including irrelevant facts that swamp the SAT
solver.

5 Conclusion

Our experience suggests that lazy explication is a promising strategy to harness
recent developments in SAT solving and proof-generating decision procedures.
Our comparisions of Verifun and Simplify indicate that this approach is more
efficient than the traditional Nelson-Oppen approach. Comparisions with other
approaches like SVC, though promising (as shown in Figure 3(c)), are not as
conclusive. This is partly because several obvious optimizations (such as back-
tracking theories) are not yet implemented in Verifun.

One advantage of our approach over that of CVC is that there is less depen-
dence on the SAT solver, which makes it easier to replace that SAT solver with
the current world champion. A potential advantage of lazy explication is that it
is easier to extend to additional theories than the eager explication approaches
of Bryant et al. and Strichman. In particular, we have recently extended our
implementation to handle quantified formulas. By comparison, it is unclear how
to extend eager explication to handle quantification.

Acknowledgments
We are grateful to Sanjit Seshia for providing us with the UCLID benchmarks
in SVC and CVC formats, to Alessandro Cimatti for helping us understand the
format of the Math-SAT postoffice problems, and to Rustan Leino for comments
on an earlier version of this paper.

References

1. Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Kornilow-
icz, and Roberto Sebastiani. Input files for Math-SAT case studies.
http://www.dit.unitn.it/~rseba/Mathsat.html.

2. Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Kornilowicz, and
Roberto Sebastiani. A SAT Based Approach for Solving Formulas over Boolean
and Linear Mathematical Propositions. In Proceedings of the 18th Conference on
Automated Deduction, July 2002.

3. Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. Validity checking for
combinations of theories with equality. In M. K. Srivas and A. Camilleri, editors,
Proceedings of the First International Conference on Formal Methods in Computer-
Aided Design (Palo Alto, CA), volume 1166, pages 187–201. Springer, 1996.

4. Clark W. Barrett, David L. Dill, and Aaron Stump. Checking satisfiability of
first-order formulas by incremental translation to SAT. In Proceedings of the 14th
International Conference on Computer Aided Verification, volume 2404 of Lecture
Notes in Computer Science, pages 236–249. Springer, July 2002.

5. Clark W. Barrett, David L. Dill, and Aaron Stump. Checking Satisfiability of
First-Order Formulas by Incremental Translation to SAT. In preparation, 2002.

13

6. Randal E. Bryant, Steven German, and Miroslav N. Velev. Exploiting Positive
Equality in a Logic of Equality with Uninterpreted Functions. In Proceedings 11th
International Conference on Computer Aided Verification, volume 1633 of Lecture
Notes in Computer Science, pages 85–98. Springer, July 1999.

7. Randal E. Bryant, Shuvendu K. Lahiri, and Sanjit A. Seshia. Deciding CLU Logic
Formulas via Boolean and Pseudo-Boolean Encodings. In Proceedings of the First
International Workshop on Constraints in Formal Verification, September 2002.

8. Randal E. Bryant, Shuvendu K. Lahiri, and Sanjit A. Seshia. Modeling and Veri-
fying Systems using a Logic of Counter Arithmetic with Lambda Expressions and
Uninterpreted Functions. In Proceedings of the 14th International Conference on
Computer Aided Verification, volume 2404 of Lecture Notes in Computer Science,
pages 78–92. Springer, July 2002.

9. Randal E. Bryant and Miroslav N. Velev. Boolean satisfiability with transitiv-
ity constraints. In Proceedings 12th International Conference on Computer Aided
Verification, pages 85–98, July 2000.

10. M. Davis and H. Putnam. A computing procedure for quantification theory. JACM,
7:201–215, 1960.

11. Leonardo de Moura and Harald Ruess. Lemmas on Demand for Satisfiability
Solvers. In Proceedings of the Fifth International Symposium on the Theory and
Applications of Satisfiability Testing, May 2002.

12. David Detlefs, C. Greg Nelson, and James B. Saxe. A theorem-prover for program
checking. Technical report, Hewlett-Packard Systems Research Center, 2003. In
preparation.

13. Shuvendu K. Lahiri, Sanjit A. Seshia, and Randal E. Bryant. Modeling and Ver-
ification of Out-of-Order Microprocessors in UCLID. In Proceedings of the Inter-
national Conference on Formal Methods in Computer Aided Design, volume 2517
of Lecture Notes in Computer Science, pages 142–159. Springer, November 2002.

14. Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. Chaff: Engineering an Efficient SAT solver. In Proceedings of the 39th Design
Automation Conference, June 2001.

15. George C. Necula. Compiling with Proofs. PhD thesis, Carnegie-Mellon University,
1998. Also available as CMU Computer Science Technical Report CMU-CS-98-154.

16. George C. Necula and Peter Lee. Proof generation in the Touchstone theorem
prover. In Proceedings of the 17th International Conference on Automated Deduc-
tion, pages 25–44, June 2000.

17. C. Greg Nelson. Techniques for Program Verification. PhD thesis, Stanford Univer-
sity, 1979. A revised version of this thesis was published as Xerox PARC Computer
Science Laboratory Research Report CSL-81-10.

18. C. Greg Nelson and Derek C. Oppen. Simplification by cooperating decision pro-
cedures. TOPLAS, 1(2):245–257, October 1979.

19. Greg Nelson and Derek C. Oppen. Fast Decision Algorithms based on congruence
closure. JACM, 27(2), October 1979.

20. Robert E. Shostak. Deciding combinations of theories. JACM, 31(1):1–12, January
1984.

21. João Marques Silva and Karem A. Sakallah. GRASP: A search algorithm for
propositionsal satisfiability. IEEE Transactions on Computers, 48(5):506–521, May
1999.

22. Ofer Strichman. On solving Presburger and linear arithmetic with SAT. In Pro-
ceedings Formal Methods in Computer-Aided Design, 4th International Conference,
pages 160–170, 2002.

14

23. Robert E. Tarjan and Mihalis Yannakakis. Simple Linear-Time Algorithms to
Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce
Acyclic Hypergraphs. SIAM Journal of Computing, 13(3):566–579, August 1984.

24. Hantao Zhang. SATO: An Efficient Propositional Prover. In Proceedings of the
14th International Conference on Automated Deduction, pages 272–275, 1997.

25. Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad Malik.
Efficient Conflict Driven Learning in a Boolean Satisfiability Solver. In Proceedings
of the International Conference on Computer Aided Design (ICCAD), November
2001.

