RETROSPECTIVE:

The Essence of Compiling with Continuations

Cormac Flanagan

Systems Research Center
HP Laboratories
flanagan@hpl.hp.com

Amr Sabry

Dept. of Computer Science
Indiana University
sabry@indiana.edu

Continuation-passing style (CPS) became a popular ingiate
representation for compilers of higher-order functiormalduages
during the 1980'’s (Rabbit [20], Orbit [13], SML/NJ [3, 4]) h€ au-
thors of such compilers often cited conventional engimgebiene-
fits. Appel [1, p.4] also stressed that one can perfBrrreduction
on the CPS intermediate language even though this is unsmund
the source language, which uses call-by-value. Indeedtiger-
vation is consistent with Plotkin’s [15] earlier work whafoalized
the reasoning principles associated with call-by-valuglemges
before and after CPS conversion. For optimizing a call-ale
source program one can only Usg)y reductions; after conversion
to CPS, one can ugen-reductions. Plotkin went on to prove that
one can perform strictly more optimizations uspgon the CPS-
converted program than usifigny on source programs.

This situation provided us with the motivation to study amd u
derstand reductions on CPS terms and how they relate totreadsic
on source programs. Building on Felleisen’s work)enalculi [8,

7, 9], Sabry and Felleisen produced a calculus for sourogranas
that exactly corresponds fin on CPS terms [17, 18]. The key in-
sight is to relate every transformation step on CPS ternatuiing
the administrative reductions) to a corresponding transétion on
source terms. The additional reduction relations cornegpo the
administrative reductions on CPS terms. Sabry and Fefieizied
those theA-reductions, and showed tHamy + A on a call-by-value
language is equivalent {8n on a CPS’ed call-by-name language.
Better still, the set ofA reductions is strongly normalizing, and
transforming a source term i-normal form into a continuation-
passing style term produces a term without administratidexes.
Sabry and Felleisen called this set of terms A-normal foréR).

Upon further experimentation with the abstract machineglde
oped by Felleisert al. [6], it became clear that everything that
CPS compilers do to their intermediate representationsddoel
done just as naturally on A-normal forms. In fact, the alestnaa-
chines that define the meaning of the intermediate formslaresh
identical. The selected paper describes the result oftiizretical
and practical experimentation.

Surprisingly, the paper immediately received much attenin
the functional compiler community. The reviews, though,rave
mixed. A large majority of compiler writers, including th@svho
had been historically dubious of CPS, reported that our pame-
firmed their understanding in a precise and formal way. Sofme o
the strong advocates of CPS compilers, however, were uimmmw/
that our analysis had captured the “essence” of their cargiln
particular ou3n model of CPS optimizations did not capture some

20 Years of the ACM/SIGPLAN Conference on Programming Lageu
Design and Implementation (1979-1999): A Select&603.
Copyright 2003 ACM 1-58113-623-4$5.00.

Bruce F. Duba

Dept. of Computer Science
Seattle University
bduba@seattleu.edu

Matthias Felleisen

College of Computer Science
Northeastern University
matthias@ccs.neu.edu

of the optimizations that CPS compilers perform. In pattcuAp-
pel and Kelsey considered those additional optimizatienaraes-
sential part of compiling with continuations.

This criticism motivated a follow-up investigation. In tiext
year's PLDI, Sabry and Felleisen [19] partially answeresldhes-
tion of the effect of the CPS transformation on the contral data
flow analysis. They explain the precise impact of CPS on thalte
of the most widely used analyses.

One last sticky point still remained to the story. In theiadit
phase of the compilation, CPS compilers represent cortonsg
as procedures and all calls to known procedures are codverte
immediate jumps. Naturally this also converts returns tovkm
continuations to jumps. Because continuations are noficxjui
the ANF representation this particular optimization contst be
expressed naturally. So in some sense, our model fails to cap
ture part of the “essence” of compiling with continuationget,
compiler writers abandoned CPS over the ten years following
paper anyway. This includes the SML/NJ compiler, which veas r
designed with a new intermediate form close to ANF (Privarac
munication: Daniel Wang) as well as other compilers writtgrce
then [21].

Both ANF and CPS have been shown to be closely related to the
SSA form [2, 12]. More recent compilers, such as Moby [16] and
MLton [10], exploit this connection by using a mixture of ANF
SSA, and CPS to address the sticky point regarding knownrcont
uations: only functions with known continuations are cotee to
CPSto produce a representation that is closely relatedAo B8s
enables conventional analyses and transformations todatwert
uses of known return continuations to direct jumps. Thistéoh
use of CPS is called “contification” [10] or “local CPS conver
sion” [16].

As a program representation, ANF had success beyond its orig
inal role as an intermediate representation suitable farpiing
and analyzing functional programs. For example, it becauite q
standard in the study of partial evaluation [11], and evethin
type-theoretic treatment of module systems [5, 14].

In summary, our paper succeeded in making compiler writers r
consider their decisions about intermediate representatilt be-
came clear that their publicly stated reasons for choosipr§ Gad
been invalidated. They had to analyze their decisions ithddfhe
resultis that compilers now mostly use intermediate repmdions
based on ANF but with a local CPS transformation to enablé add
tional optimization. We believe that our theoretical irigstion
has thus produced a well thought out practical compromise.

REFERENCES

[1] Andrew W. Appel.Compiling with Continuations
Cambridge University Press, 1992.

[2] Andrew W. Appel. SSA is functional programmingCM
SIGPLAN Notices33(4):17-20, April 1998.

[3] Andrew W. Appel and David B. MacQueen. Standard ML of
New Jersey. In J. Matuszyhski and M. Wirsing, editors,
Proceedings of the 3rd Int. Symposium on Programming
Language Implementation and Logic Programming,
PLILP91, Passau, Germaniecture Notes in Computer
Science, pages 1-13. Springer-Verlag, August 1991.

[4] Andrew W. Appel and David B. MacQueen. Standard ML of
New Jersey. Technical Report TR-329-91, Princeton
University, Computer Science Department, June 1991.

[5] Matthias Blume and Andrew W. Appel. Lambda-splitting: A
higher-order approach to cross-module optimizations. In
Proceedings of the 1997 ACM SIGPLAN International
Conference on Functional Programmingages 112-124,
Amsterdam, The Netherlands, 9-11 June 1997.

[6] M. Felleisen and D. P. Friedma@ontrol operators, the
SECD-machine, and thecalculus pages 193-217.
North-Holland, 1986.

[7] Matthias Felleisen\-v-CS: An extended-calculus for
Scheme. IrProc. of 1988 ACM Conf. on Lisp and Functional
Programming, Snowbird, UT, USA, 25-27 July 1988ges
72-85. ACM Press, New York, 1988.

[8] Matthias Felleisen, Daniel P. Friedman, Eugene Kohtbec
and Bruce Duba. Reasoning with continuationsPiac. of
1st Ann. IEEE Symp. on Logic in Computer Science,
LICS’'86, Cambridge, MA, USA, 16-18 June 1988&ges
131-141. IEEE Computer Society Press, Washington, DC,
1986.

[9] Matthias Felleisen and Robert Hieb. A revised reporthon t
syntactic theories of sequential control and stateoretical
Computer Sciencd03(2):235-271, 1992.

[10] Matthew Fluet and Stephen Weeks. Contification using
dominators. In Cindy Norris and Jr. James B. Fenwick,
editors,Proceedings of the Sith ACM SIGPLAN
International Conference on Functional Programming
(ICFP-01), volume 36, 10 oACM SIGPLAN noticepages
2-13, New York, September 3-5 2001. ACM Press.

[11] John Hatcliff and Olivier Danvy. A computational
formalization for partial evaluatioMathematical Structures
in Computer Scien¢&(5):507-541, October 1997.

[12] Richard A. Kelsey. A correspondence between continnat
passing style and static single assignment fok@M
SIGPLAN Notices30(3):13—-22, March 1995.

[13] David Kranz, , Richard Kelsey, Jonathan Rees, Paul Kuda
James Philbin, and Norman Adams. Orbit: An optimizing
compiler for SchemeSIGPLAN Notices?21(7):219-233,
July 1986.Proceedings of the ACM SIGPLAN 86
Symposium on Compiler Construction

[14] Xavier Leroy. A syntactic theory of type generativitydh
sharing.Journal of Functional Programming(5):667—698,
September 1996.

[15] G. Plotkin. Call-by-name, call-by-value, and thealculus.
Theoretical Computer Scienck(2):125-159, 1975.

[16] John Reppy. Local CPS conversion in a direct-style damp
In Proceedings of the Third ACM SIGPLAN Workshop on
Continuations (CW'01)pages 13-22, January 2001.

[17] Amr Sabry and Matthias Felleisen. Reasoning about
programs in continuation-passing style Aroc. of 1992
ACM Conf. on Lisp and Functional Programming, San
Francisco, CA, USA, 22—-24 June 19%iages 288-298.
ACM Press, New York, 1992.

[18] Amr Sabry and Matthias Felleisen. Reasoning about
programs in continuation-passing styllésp and Symbolic
Computation 6(3—4):289-360, 1993.

[19] Amr Sabry and Matthias Felleisen. Is continuationsiag
useful for data flow analysis? Proceedings of the
Conference on Programming Language Design and
Implementationpages 1-12, New York, NY, USA, June
1994. ACM Press.

[20] Jr. Steele, Guy L. Rabbit: A compiler for Scheme. Techhi
Report AITR-474, Massachusetts Institute of Technology,
May 1978.

[21] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Hargewl
P. Lee. TIL : A type-directed optimizing compiler for ML. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implemantatigeges
181-192, New York, May 21-24 1996. ACM Press.

