
20

Online Appendix to:
Types for Atomicity: Static Checking
and Inference for Java

CORMAC FLANAGAN

University of California at Santa Cruz

STEPHEN N. FREUND and MARINA LIFSHIN

Williams College

and

SHAZ QADEER

Microsoft Research

We present in this appendix the formal development for ATOMICJAVA and our type
inference algorithm. We begin with the semantics of ATOMICJAVA in Appendix A
and present additional details about the type system in Appendix B.

Appendix C shows the key property of our type system: atomic blocks in
well-typed ATOMICJAVA programs are serializable, based on Lipton’s theory of
reduction [Lipton 1975].

The remaining appendices show auxiliary properties that are needed in the
key serializability proof. Appendix D shows that evaluation preserves typing,
and Appendix E describes when a thread has exclusive access to a field. Finally,
Appendix F shows that the type inference algorithm is sound with respect to
the type rules.

For reference, we include indexes of the symbols and judgments used
throughout this Appendix in Tables III and IV.

A. FORMAL SEMANTICS

We specify the operational semantics of ATOMICJAVA using the abstract machine
in Figure 16. The machine evaluates a program by stepping through a sequence
of states. A state consists of two components: an object store and a sequence
of expressions, each of which is a thread. New threads are added to the end of
the sequence. We use T.T ′ to denote the concatenation of two sequences. Each
thread is given a unique thread identifier, or thread id, which is the thread’s
position in the sequence.

To express intermediate runtime states, we extend the ATOMICJAVA syn-
tax in the following ways. (These new constructs should not appear in
source programs.)

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

20:2 • Flanagan et al.

Table III. Symbols

Symbol Page Meaning

{|db |}o
c 49 object record

[[d]] 28 meaning function mapping closed atomicity expressions to atomicities

α(E, e) 60 atomicity of an expression e in environment E.

� 49 program state

ρ 49 object address

σ 49 object store

θ 13 substitution

A 28 atomicity assignment

a 10 atomicity (either basic or conditional)

b 10 basic atomicity

B(t) 15 atomicity of a read/write to field of type t
C 27 atomicity constraint d �� s
c 7 class type

ci 49 class instantiation

cn 7 class name

db 49 object field value map

d 27 syntactic atomicity expression

E 49 evaluation context

e 7 expression

E 12 typing environment

fd 7 field name

g 7 field guard

IS(l , a) 56 atomicity of in-sync l e, where e has atomicity a
lift(P, E, d) 27 atomicity expression to lift meaning of d to be valid in environment

E
l 7 lock expression

ls 57 lock set

md 7 method name

n 7 number

o 49 object lock state

P 7 program

R(a) 18 atomicity of assert-atomic e, where e has atomicity a
R(d) 27 atomicity expression for assert-atomic e, where d is the atomicity

expression for e
S(l , d) 27 atomicity expression for synchronized l e, where d is the atomicity

expression for e
S(l , a) 17 atomicity of synchronized l e, where e has atomicity a
s 26 open atomicity (ie, atomicity a or atomicity variable α)

T 49 thread sequence

t 7 type

v 7 value

x, y 7 variable

Y (E , a) 60 atomicity a, simplified with respect to the locks held in context E

—Values now include the special value wrong, which indicates that a thread
has gone wrong by dereferencing null. (This construct will occur only at the
top-level in a thread.)

—Values also include addresses, ranged over by the meta-variable ρ.

—Expressions now include the in-sync and in-atomic constructs. The con-
struct in-sync ρ e indicates that e is being evaluated while holding the lock

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

Types for Atomicity: Static Checking and Inference for Java • 20:3

Table IV. Logical Relations and Judgments

Form Page Meaning

a1 � a2 10 ordering relation for atomicities

a1 ≡ a2 10 semantic equivalence for atomicities

P ; E � e : t · a 14 expression e has type t and atomicity a in environment E
P � E 16 environment E is well-formed

P ; E � t 16 type t is well-formed

P ; E � a 16 atomicity a is well-formed

P ; E �lock l 16 expression l is a well-formed lock expression

P ; E � a ↑ a′ 16 atomicity a′ is the well-formed smallest atomicity greater than

or equal to a
P ; E � field 16 field is well-formed

P ; E � meth 16 meth is well-formed

P ; E � defn 16 defn is well-formed

P � wf 16 P is well-formed

A |= C 28 constraint C is satisfied by assignment A
P ; E � e : t · d · C̄ 29 expression e has type t and atomicity expression d in environ-

ment E under any assignment satisfying C̄
P � E · C̄ 31 environment E is well-formed under any assignment satisfying

C̄
P ; E � t · C̄ 31 type t is well-formed under any assignment satisfying C̄
P ; E � s · C̄ 31 open atomicity s is well-formed under any assignment satisfying

C̄
P ; E �lock l · C̄ 31 expression l is a well-formed lock expression under any assign-

ment satisfying C̄
P ; E � field · C̄ 31 field is well-formed under any assignment satisfying C̄
P ; E � meth · C̄ 31 meth is well-formed under any assignment satisfying C̄
P � defn · C̄ 31 defn is well-formed under any assignment satisfying C̄
P � C̄ 31 P is well-formed under any assignment satisfying C̄
A →C̄ A′ 33 one step in the iterative constraint solver for C̄
A →C̄ ERROR 33 constraints C̄ are not satisfiable by A or any larger assignment

a →h
n a′ 36 atomicity a can be simplified to a′ if the locks in h are held and

the locks in n are not held

P � � →i �′ 49 semantics for thread i
P � � → �′ 49 standard program semantics

P � � �→ �′ 49 serialized program semantics

P ; E; ρ � obj 55 object obj is well-formed

P ; E � σ 55 store σ is well-formed

P � � 55 state � is well-formed

ls �cs e 57 lock set ls contains all locks held in e
�cs � 57 no two threads in state � hold the same lock

ρ. The construct in-atomic e indicates that e is being evaluated and that its
atomicity should be at most atomic.

—The grammar now includes class instantiations, which are simply instantia-
tions of a parameterized class.

Objects are kept in an object store σ that maps addresses to objects. An object
{|db |}o

c has three components: the class c of the object, a field map db mapping
field names to values, and a lock state o. A field map db is typically written as
a list fd1 = v1, . . . , fdn = vn, where fdi maps to the value vi. The lock state o is

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

20:4 • Flanagan et al.

Fig. 16. The semantics for AtomicJava.

either in the unlocked or locked, which are denoted by ⊥ and the thread id of
the thread holding the lock, respectively.

We use σ [ρ �→ d] to denote the store that agrees with σ at all addresses
except ρ, which is mapped to d . The store σ [ρ.fd �→ v] denotes the store that
agrees with σ at all addresses except ρ, which is mapped to the record σ (ρ)
updated so that field fd contains value v.

Program evaluation begins in a state with an empty store ∅ and a single
thread. Evaluation proceeds according to the standard transition relation →,
which arbitrarily interleaves steps of the various threads. This relation lever-
ages the transition relation →i for individual thread steps from Figure 17.
The rules in that figure define the semantics of thread i in terms of evalua-
tion contexts. An evaluation context E , as shown in Figure 16, is an expression
containing a hole [] in place of the next subexpression to be evaluated. Figure 17
contains a rule for each possible expression appearing in the hole of the eval-
uation context for thread i. A program terminates when all threads have been
reduced to values.

We also define a second serial transition relation �→, in which atomic blocks
are executed without interleaved steps from other threads. We show below that
these two semantics are equivalent for well-typed programs.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

Types for Atomicity: Static Checking and Inference for Java • 20:5

Fig. 17. Transition rules for AtomicJava (where i = |T | + 1).

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

20:6 • Flanagan et al.

The reduction rules for →i are mostly straightforward. The rule [RED NEW]

allocates a new object record and stores the provided initial values into the ob-
ject’s fields. This rule refers to the auxiliary judgment P �inst ci, which indicates
that ci is a valid instantiation of a class definition:

[CLASS INST]

class cn〈ghost x i∈1..n
i 〉 body ∈ P

P �inst class cn〈l1..n〉 body[xi := l i∈1..n
i]

The rule [RED SYNC] reduces the expression sync ρ in e to in-sync ρ e by
acquiring the lock of ρ. After e evaluates to some value v, the rule [RED IN-SYNC]

releases the lock of ρ and returns the value v. The rule [RED RE-SYNC] permits
re-entrant locks. In essence, if a lock is already held by the current thread,
attempting to reacquire it is a “no-op.”

The rule [RED FORK] for ρ.fork creates a new thread to evaluate ρ.run(), and
returns 0 as the (dummy) result of the fork expression. This rule allocates a
fresh object x for use as the thread-local lock for the new thread. The lock for
x is acquired before invoking the run method. We assume that every program
contains an empty class declaration for Object.

The rule [RED ATOMIC] reduces the expression assert-atomic e to in-atomic e
to mark that e is being evaluated, at which stage the serialized semantics avoids
scheduling concurrent threads. Once e reduces to some value v, in-atomic v
reduces to v via the rule [RED IN-ATOMIC].

If a thread dereferences null, it goes to the special expression wrong via
the rule [RED WRONG], but other threads may still continue to execute.

We define race conditions (or conflicting accesses) in terms of the semantics
as follows. An expression e accesses a field ρ.fd if e = E[ρ.fd] or e = E[ρ.fd = v]
for some E and v. A state has conflicting accesses on ρ.fd if its thread sequence
contains two or more expressions that access ρ.fd and at least one of the ac-
cesses is a write access. Also, an expression e is in a critical section on ρ if
e = E[in-sync ρ e′] for some evaluation context E and expression e′.

B. TYPE SYSTEM

B.1 Dependent Types and Evaluation

Lock expressions appearing in dependent types complicate the soundness proof,
because they require reasoning about semantic equivalence of lock expressions.
For example, consider the following class definitions:

class A {
final B f;

}

class B {
final C〈this〉 g;

}
ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

Types for Atomicity: Static Checking and Inference for Java • 20:7

If the address ρ has type A (i.e., σ (ρ) = {|f = ρ ′ |}o
A), then the expression ρ.f.g

has type C〈ρ.f〉. However, ρ.f.g evaluates to ρ ′.g, which has type C〈ρ ′〉. Thus,
proving type soundness requires proving that ρ.f and ρ ′ are semantically equiv-
alent with respect to the program’s store σ , perhaps via a rule such as the
following:

[EQUIV EXP]

P � 〈σ, ei〉 →∗ 〈σ, v〉 ∀i ∈ 1..2

P �σ e1 ↔ e2

We could then extend the notion of semantic equivalence ↔ from expressions
to types and atomicities.

These issues regarding dependent types are fairly well understood (e.g.,
see Cardelli [1988]), but they substantially increase the length and complex-
ity of the type soundness proof. So that we may focus on the novel aspects of
our type system, we restrict the type system as follows to avoid this additional
complexity in the soundness proof.

RESTRICTION 13. The only valid lock expressions are ghost variables and val-
ues, as explicated by the following restricted version of the rule [LOCK EXP]:

[LOCK EXP]

P ; E � v : c · const
P ; E �lock v

In effect, this restriction ensures that the only expressions appearing inside
types are variables (and addresses). Thus, we do not need to consider situations
in which evaluation changes an expression’s type.

B.2 Left Movers

The in-sync ρ e construct includes an implicit lock release, which is a left mover.
To accommodate this construct in our type system, we introduce an additional
basic atomicity left. (We could also introduce the symmetric the notion of a
right mover to model lock acquires as in Flanagan and Qadeer [2003b], but
this is not necessary for our formal development due to the block structure of
synchronized statements.) We extend the sequential composition and iterative
closure operations to include this new basic atomicity:

b b∗

const const
mover mover
left left

atomic cmpd
cmpd cmpd
error error

; const mover left atomic cmpd error

const const mover left atomic cmpd error
mover mover mover left atomic cmpd error
left left left left cmpd cmpd error

atomic atomic atomic atomic cmpd cmpd error
cmpd cmpd cmpd cmpd cmpd cmpd error
error error error error error error error

Our partial order on basic atomicities is extended to include left as well.

const � mover � left � atomic � cmpd � error

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

20:8 • Flanagan et al.

Fig. 18. AtomicJava type rules for runtime terms.

We also define S for left:

S(l , left) = l ? left : atomic

B.3 Well-Typed Run-Time States

We now extend the ATOMICJAVA type system to run-time states via the rules
presented in Figure 18. Environments may now also contain addresses:

E ::= ε | E, t x | E, ghost x | E, c ρ

The rules [OBJECT] and [STORE] ensure that an object store is well-typed, taking
care to properly handle references to self in field types. The rule [STATE] for a
program state 〈σ, T 〉 ensures that σ is well-typed and that all threads in T are
well-typed and have a non-error atomicity. We also introduce rule [EXP ADDR] to
assign types to addresses appearing in the environment and the rule [EXP WRONG]

to assign any type to the value wrong.
The most interesting expression type rule is the rule [EXP IN-SYN] for

in-sync l e. This rule uses the following function IS to characterize the atom-
icity of executing both e and the implicit lock release at the end of the synchro-
nized block. It is defined as follows:

IS(l , const) = left
IS(l , mover) = left
IS(l , left) = left

IS(l , atomic) = atomic

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

Types for Atomicity: Static Checking and Inference for Java • 20:9

IS(l , cmpd) = cmpd
IS(l , error) = error

IS(l , (l ? a1 : a2)) = IS(l , a1)
IS(l , (l ′ ? a1 : a2)) = l ′ ? IS(l , a1) : IS(l , a2) if l �= l ′

Similarly, the rule [EXP IN-ATOMIC] for an expression in-atomic e ensures that
expression e has atomicity no greater than atomic, using the same technique
as the rule [EXP ASSERT].

C. CORRECTNESS OF TYPE SYSTEM

C.1 Preliminary Lemmas

Our type system guarantees that in any well-typed program, all atomic blocks
are serializable. We will prove this property, using the following two subject
reduction lemmas. The first lemma states the standard property of preservation,
that is, that evaluation preserves typing:

LEMMA 14 (TYPE SUBJECT REDUCTION). If P � � and P � � → �′ then P �
�′.

PROOF. See Appendix D.

The second subject reduction lemma shows that evaluation preserves the
invariant that two threads are never in critical sections on the same lock. We
introduce a new judgment ls �cs e to indicate that the lock set ls contains
all locks for which e is in a critical section. That is, for all ρ such that e =
E[in-sync ρ e′], the lock ρ is in the set ls.

ls �cs e
[CS EXP]

e does not contain in-sync

∅ �cs e

[CS IN-SYNC]

ls �cs e ρ �∈ ls
ls ∪ {ρ} �cs in-sync ρ e

[CS NOT IN-SYNC]

ls �cs e E does not contain in-sync

ls �cs E[e]

We extend the notion of well-formed critical sections to states with the judgment
�cs �. This judgment ensures that a thread is in a critical section in-sync ρ . . .

only if it holds the lock ρ in the heap.

�cs �

[CS STATE]

lsi �cs Ti ∀i ∈ 1..|T |
lsi = {ρ | σ (ρ) = {| . . . |}i

cρ
} ∀i ∈ 1..|T |

�cs 〈σ, T 〉
ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

20:10 • Flanagan et al.

This notion of well-formed critical sections is then preserved under evaluation:

LEMMA 15 (MUTUAL EXCLUSION SUBJECT REDUCTION). If �cs � and P � � →
�′ then �cs �′.

PROOF. See Appendix E.

The following lemma leverages these two properties to characterize when a
field access is guaranteed to be conflict-free; such conflict-free accesses commute
with steps from other threads.

LEMMA 16 (CONFLICTING ACCESSES). Suppose P � 〈σ, T 〉 and �cs 〈σ, T 〉 and
P �inst class c { . . . t fd g . . . } and P ; E � ρ : c and P ; E � σ . If Tk accesses
ρ.fd then:

(1) g is final and ∀i �= k, Ti does not write ρ.fd; or
(2) g is guarded by l and ∀i �= k, Ti does not access ρ.fd; or
(3) g is write guarded by l and if Tk is in a critical section on l [this := ρ], then

∀i �= k, Ti does not write ρ.fd; or
(4) g is no guard.

PROOF. See Appendix E.

C.2 Reduction

Our proof that atomic blocks are serializable depends on the following reduction
theorem, which is inspired by the work of Cohen and Lamport [1998]. For clarity,
we express our reduction theorem in terms of an arbitrary transition system.
We then demonstrate that the ATOMICJAVA transition relation exhibits the prop-
erties necessary to guarantee serializability. Structuring the theorem in this
way has allowed us to apply it in other settings as well [Flanagan et al. 2005].

The statement of this reduction theorem requires some additional notation.
For any state predicate X ⊆ State and transition relation Y ⊆ State × State,
the transition relation X /Y is obtained by restricting Y to pairs whose first
component is in X . Similarly, the transition relation Y \X is the restriction
of Y to pairs whose second component is in X . The composition Y ◦ Z of two
transition relations Y and Z is the set of all transitions (p, r) such that there is
a state q and transitions (p, q) ∈ Y and (q, r) ∈ Z . A transition relation Y right-
commutes with a transition relation Z if Y ◦ Z ⊆ Z ◦ Y , and Y left-commutes
with Z if Z ◦ Y ⊆ Y ◦ Z .

Recall that each atomic block should consist of a sequence of right movers
followed by an atomic action followed by a sequence of left movers. For each
thread i, we partition the set of states into four categories:

—Ni: states where thread i is not currently executing an atomic block;

—Ri: states where thread i is executing the “right-mover” part of some atomic
block (before the atomic action);

—Li: states where thread i is executing the “left-mover” part of some atomic
block (after the atomic action); or

—Wi: states where thread i has gone wrong.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

Types for Atomicity: Static Checking and Inference for Java • 20:11

We also introduce three transition relations over states:

— ↪→i: the transition relation describing the behavior of each thread i.
— ↪→: the transition relation describing the behavior of interleaving the behav-

iors of each thread in a program.

— ↪→c: the transition relation describing the serialized behavior of a program,
in which at most one thread may be in an atomic block at any given moment.

The following reduction theorem then shows that if the ↪→i transition rela-
tion satisfies certain constraints, then each atomic block is serializable, that is,
that the standard semantics (↪→) and the serial semantics (↪→c) are essentially
equivalent.

We first describe the necessary conditions and the intuition behind their
formulation informally, and we then state the Reduction Theorem formally. In
essence, the following must be true of the transition relation ↪→i and sets R j ,
L j , W j , and N j to ensure serializability:

(1) Each thread i can be in only one of Ri, Li, Wi. Thus, it cannot, for example,
be simultaneously in the left-mover and right-mover part of an atomic block.

(2) A step by thread i cannot cause a transition from Li to Ri. This ensures
that no thread ever changes from being in the left-mover part of an atomic
block to being in the right-mover part.

(3) No steps are possible for thread i once it goes wrong and enters Wi.

(4) Steps by distinct threads i and j are disjoint. In other words, steps by
different thread cannot have the same overall effect on program state.

(5) A step taken by thread i while in Ri (ie., in the right-mover part of an atomic
block) right-commutes with steps taken by any other thread j .

(6) A step taken by thread i while in Li (ie., in the left-mover part of an atomic
block) left-commutes with steps taken by other thread j .

(7) A step taken by thread i cannot change whether any another thread j is
in R j , L j , W j , or N j . Thus, a thread cannot affect which part of an atomic
block another thread is currently executing.

If these seven conditions hold then all execution sequences induced by ↪→
are serializable. Specifically, if a program in state p in which no threads are
in atomic blocks evaluates to a similar state q, then q can also be reached
by a serialized execution, and if a program in state p goes wrong under the
normal semantics, it will go wrong under the serialized semantics (provided
that any threads in left-mover parts of atomic blocks eventually exit that
block).

THEOREM 17 (REDUCTION). For all i, let Ri , Li , and Wi be sets of states, and
↪→i be a transition relation. Suppose for all i,

(1) Ri , Li , and Wi are pairwise disjoint,
(2) (Li/↪→i\Ri) is false,
(3) Wi/↪→i is false,

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

20:12 • Flanagan et al.

and for all j �= i,

(4) ↪→i and ↪→ j are disjoint,
(5) (↪→i\Ri) right-commutes with ↪→ j ,
(6) (Li/↪→i) left-commutes with ↪→ j ,
(7) if p ↪→i q, then R j (p) ⇔ R j (q), L j (p) ⇔ L j (q), and W j (p) ⇔ W j (q).

Let Ni = ¬(Ri ∨ Li), N = ∀i. Ni , W = ∃i. Wi , ↪→= ∃i. ↪→i , and ↪→c=
∃i. ((∀ j �= i. N j)/↪→i). Suppose p ∈ N and p ↪→∗ q. Then the following state-
ments are true.

(1) If q ∈ N , then p ↪→∗
c q.

(2) If q ∈ W and ∀i. q �∈ Li , then p ↪→∗
c q′ and q′ ∈ W.

PROOF. See Flanagan and Qadeer [2003c].

C.3 ATOMICJAVA Correctness

We now focus on applying the previous reduction theorem to ATOMICJAVA pro-
grams. For simplicity, we consider a fixed program P in the remainder of the
proof. We use �1 → �2 to abbreviate P � �1 → �2, and similarly for the other
relations on states. We define the atomicity α(E, e) of an expression e to be a if
P ; E � e : t · a. An examination of the type rules shows that α is a well-defined
partial function.

Let WT denote the set of well-typed states {〈σ, T 〉 | P � 〈σ, T 〉}. For each
thread i, we partition this set of well-typed states into four categories (corre-
sponding to the sets Ni, Ri, Li and Wi above):

Ni = WT ∩ {〈σ, T〉 | |T | < i ∨ Ti �≡ E[in-atomic e]}
Wi = WT ∩ {〈σ, T〉 | Ti ≡ wrong}
Ri = WT ∩ {〈σ, T〉 | P ; E � σ ∧ Ti ≡ E[in-atomic e] ∧ Y (E , α(E, e)) �� left}
Li = WT ∩ {〈σ, T〉 | P ; E � σ ∧ Ti ≡ E[in-atomic e] ∧ Y (E , α(E, e)) � left}

The function Y (E , α(E, e)) is the atomicity of e simplified with respect to the
locks held in the evaluation context E . If e has basic atomicity b, that atomicity
cannot be simplified further. However, if e has atomicity l ? a1 : a2 and is being
evaluated in a context in which l is held, we can simplify the atomicity of e to
Y (E , a1), defined as follows:

Y (E , b) = b

Y (E , l ? a1 : a2) =
{

Y (E , a1) if E ≡ E ′[in-sync l E ′′]
l ? Y (E , a1) : Y (E , a2) otherwise

This function enables us to determine whether we are in the left-mover or right-
mover part of an atomic block. For example if α(E, e) = l ? mover : atomic, and
E ≡ in-sync l [], then we can consider e to have atomicity

Y (E , l ? mover : atomic) = Y (E , mover). = mover

in the current context, making it be in the left-mover part of the atomic block.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

Types for Atomicity: Static Checking and Inference for Java • 20:13

In contrast, if E ≡ in-sync m [], then e is considered to have atomicity

Y (E , l ? mover : atomic) = l ? Y (E , mover) : Y (E , atomic) = l ? mover : atomic

and is therefore in the right-mover part of the atomic block.
We now have the necessary machinery to prove the fundamental correctness

property of our type system. If program execution starts from a well-typed
initial state �1 and reaches a subsequent state �2, where no thread in �1 or
�2 is inside an in-atomic block, then �2 can also be reached from �1 according
to the coarser serial transition relation �→, where each atomic block is executed
“atomically” and is not interleaved with steps from other threads. Also, if �2

goes wrong, then provided no thread in �2 is in the left-mover part of an atomic
block, we can reach some state �′

2 that also goes wrong from �1 via the serial
transition relation �→.

THEOREM 18 (CORRECTNESS). Let �1 be a state such that P � �1 and �cs �1.
Suppose ∀i. Ni(�1) and �1 →∗ �2. Then the following statements are true.

(1) If ∀i. Ni(�2), then �1 �→∗ �2.
(2) If ∃i. Wi(�2) and ∀i. ¬Li(�2), then �1 �→∗ �′

2 and ∃i. Wi(�
′
2).

PROOF. We show that for all thread indices i, the antecedents of the Reduc-
tion Theorem (Theorem 17) are satisfied:

1. Ri, Li, and Wi are pairwise disjoint,

2. (Li/→i\Ri) is false,

3. Wi/→i is false,

and for all thread indices j �= i,

4. →i and → j are disjoint,

5. (→i\Ri) right-commutes with → j ,

6. (Li/→i) left-commutes with → j ,

7. if �1 →i �2, then R j (�1) ⇔ R j (�2), L j (�1) ⇔ L j (�2), and W j (�1) ⇔
W j (�2).

Then, we obtain the desired result from the Reduction Theorem by substituting

—the set Wi for Wi,

—the set Ri for Ri,

—the set Li for Li,

—the relation →i for ↪→i,

—the relation �→i for ↪→c,

—the state �1 for p, and

—the state �2 for q.

These seven statements are shown as follows. Their proofs refer to several
small helper lemmas listed after the proof. The most important of these ad-
ditional lemmas is the Sequentiality Lemma (Lemma 20), which shows that

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

20:14 • Flanagan et al.

the atomicity of evaluating expression E[e] is greater than the atomicity of
evaluating e and then evaluating E[v], where e has been replaced by the const
value v. Thus, evaluation never causes the atomicity of an expression to become
larger.

(1) By the definition of Li, Ri, and Wi.

(2) Suppose �1 →i �2 where �1 ∈ Li and �2 ∈ Ri. The proof proceeds by a
case analysis on the transition rules for �1 →i �2.

(3) By definition of Wi and inspection of the transition rules for →i.

(4) The transition relation →i changes the expression representing thread i
but leaves the expressions of all other threads unchanged. Therefore, →i
and → j are disjoint for all i �= j .

(5) We show that (→i\Ri) right-commutes with → j as follows. Suppose �1 →i
�2 → j �3 where i �= j and �2 ∈ Ri. We proceed by case analysis on the
transition rule for �1 →i �2:

—[RED NEW]: Suppose the newly created object is ρ. The step from thread j
cannot access ρ, because thread j must be well-typed in an environment
that does not contain ρ. Thus the two steps access disjoint sets of objects
and commute.

—[RED READ]: In this case,

�1 = 〈σ, T 〉
�2 = 〈σ, T ′〉

Ti ≡ E[in-atomic E ′[ρ.fd]]
T ′

i ≡ E[in-atomic E ′[v]]

where σ (ρ.fd) = v. We proceed by case analysis on the guard annotation
g on the field declaration for fd:

— g = final: Lemma 16 indicates that no threads may write to ρ.fd, so
the two steps commute.

— g = guarded by l : Since P � �2 and �cs �2 by Lemmas 14 and 15,
no other thread may access ρ.fd by Lemma 16. Thus the two steps
commute since they operate on disjoint sets of shared data.

— g = no guard: For simplicity, we assume that type of field fd is int,
although the same reasoning applies for any type. This implies that
α(E, ρ.fd) = atomic. If E is the environment used to show P ; E � σ ,
then

Y (E , α(E, E ′[v])) �� left since �2 ∈ Ri (†)
Also,

atomic

� Y (E , α(E, E ′[ρ.fd])) by Lemma 21

� Y (E , Y (E ′, α(E, ρ.fd)); α(E, E ′[v])) by Lemma 20

� Y (E , Y (E ′, atomic); α(E, E ′[v])) by assumption

� Y (E , atomic; α(E, E ′[v])) by definition of Y
� atomic; Y (E , α(E, E ′[v])) by Lemma 19(3) and def. of Y
� atomic by Lemma 19(1) and (†)

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

Types for Atomicity: Static Checking and Inference for Java • 20:15

However, this is a contradiction.
— g = write guarded by l : If thread i is in a critical section on l , then

Lemma 16 indicates that no other threads are writing to ρ.fd, so the
two steps commute.
If thread i is not in a critical section on l , then inspection of the type
rules indicates that Y (E , α(E, ρ.fd)) = atomic, and we proceed as in
the case for no guard to reach a contradiction.

—[RED SYNC]: Let

�1 = 〈σ, T 〉
�2 = 〈σ, T ′〉

Ti ≡ E[in-atomic E ′[sync ρ e]]
T ′

i ≡ E[in-atomic E ′[in-sync ρ e]]

If thread i acquires the lock on object ρ, then the step by j cannot be a
step taken by [RED SYNC], [RED IN-SYNC], or [RED RE-SYNC] where the object being
manipulated is ρ. These are the only three steps which could interfere
with acquiring lock ρ in thread i. Thus, the two steps commute.

—[RED IN-SYNC]: Let

�1 = 〈σ, T 〉
�2 = 〈σ, T ′〉

Ti ≡ E[in-atomic E ′[in-sync ρ v]]
T ′

i ≡ E[in-atomic E ′[v]]

If E is the environment used to show P ; E � σ , then

Y (E , α(E, E ′[v])) �� left since �2 ∈ Ri (†)

Also,

atomic

� Y (E , α(E, E ′[in-sync ρ v])) by Lemma 21

� Y (E , Y (E ′, α(E, in-sync ρ v)); α(E, E ′[v])) by Lemma 20

� Y (E , Y (E ′, left); α(E, E ′[v])) by rule [EXP IN-SYNC]

� Y (E , left; α(E, E ′[v])) by definition of Y
� left; Y (E , α(E, E ′[v])) by Lemma 19(3) and def. of Y
� atomic by Lemma 19(2) and (†)

However, the last line is a contradiction, so this case cannot happen.

—[RED FORK]: Let

�1 = 〈σ, T 〉
�2 = 〈σ, T ′〉

Ti ≡ E[in-atomic E ′[ρ.fork]]
T ′

i ≡ E[in-atomic E ′[0]]

Assume that E is the environment used to show P ; E � σ . We have

Y (E , α(E, E ′[0])) �� left since �2 ∈ Ri (†)

Also,

atomic

� Y (E , α(E, E ′[ρ.fork])) by Lemma 21

� Y (E , Y (E ′, α(E, ρ.fork)); α(E, E ′[0])) by Lemma 20

� Y (E , Y (E ′, atomic); α(E, E ′[0])) by [EXP FORK]

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

20:16 • Flanagan et al.

� Y (E , atomic; α(E, E ′[0])) by definition of Y
� atomic; Y (E , α(E, E ′[0])) by Lemma 19(3) and def. of Y
� atomic by Lemma 19(1) and (†)

However, the last line is a contradiction.

—[RED INVOKE], [RED LET], [RED IF-TRUE], [RED IF-FALSE], [RED WHILE], [RED RE-SYNC],
[RED ATOMIC],
[RED IN-ATOMIC], [RED WRONG]: Trivial, since the store σ does not change.

(6) We show that (Li/→i) left-commutes with → j as follows. Suppose �1 → j
�2 →i �3 where i �= j and �2 ∈ Li. We proceed by case analysis on the
transition rule for �2 →i �3:
—[RED NEW]: As above.
—[RED READ]: In this case,

�2 = 〈σ, T 〉
�3 = 〈σ, T ′〉

Ti ≡ E[in-atomic E ′[ρ.fd]]
T ′

i ≡ E[in-atomic E ′[v]]

where σ (ρ.fd) = v. We proceed by case analysis on the guard annotation
g on the field declaration for fd:

— g = final: Lemma 16 indicates that no threads may write to ρ.fd, so
the two steps commute.

— g = guarded by l : Since P � �2 and �cs �2 by Lemmas 14 and 15,
no other thread may access ρ.fd by Lemma 16. Thus the two steps
commute since they operate on disjoint sets of shared data.

— g = no guard: For simplicity, we assume that type of field fd is int,
although the same reasoning applies for any type. This implies that
α(E, ρ.fd) = atomic. If E is the environment used to show P ; E � σ ,
then

left

� Y (E , α(E, E ′[ρ.fd])) since �2 ∈ Li

� Y (E , Y (E ′, α(E, ρ.fd)); α(E, E ′[v])) by Lemma 20, for some v
� Y (E , atomic; α(E, E ′[v])) by assumption and def. of Y
� Y (E , atomic); Y (E , α(E, E ′[v])) by Lemma 19(3)

� atomic; Y (E , α(E, E ′[v])) by definition of Y
� atomic by Theorem 3

However, this last line is a contradiction, because left �� atomic.
— g = write guarded by l : If thread i is in a critical section on l , then

Lemma 16 indicates that no other threads are writing to ρ.fd, so the
two steps commute.
If thread i is not in a critical section on l , then inspection of the type
rules indicates that Y (E , α(E, ρ.fd)) = atomic, and we proceed as in
the case for no guard to reach a contradiction.

—[RED SYNC]:

�2 = 〈σ, T 〉
�3 = 〈σ, T ′〉

Ti ≡ E[in-atomic E ′[sync ρ e]]
T ′

i ≡ E[in-atomic E ′[in-sync ρ e]]

Also, thread i is not in a critical section on ρ. Assume that E is the
environment used to show P ; E � σ .

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

Types for Atomicity: Static Checking and Inference for Java • 20:17

left

� Y (E , α(E, E ′[sync ρ e])) since �2 ∈ Li

� Y (E , Y (E ′, α(E, sync ρ e)); α(E, E ′[v])) by Lemma 20, for some v
� Y (E , Y (E ′, α(E, sync ρ e))) by Theorem 3 and Lemma 19(4)

� Y (E , Y (E ′, S(ρ , a))) by rule [EXP SYNC], for some a
� Y (E , Y (E ′, ρ ? const : atomic)) by def. of S and Lemma 19(4)

= ρ ? const : atomic since ρ not held in E ′ or E

However, left �� ρ ? const : atomic, and a contradiction exists, so this
case cannot happen.

—[RED IN-SYNC]: Let

�2 = 〈σ, T 〉
�3 = 〈σ, T ′〉

Ti ≡ E[in-atomic E ′[in-sync ρ v]]
T ′

i ≡ E[in-atomic E ′[v]]

If thread i releases the lock on object ρ, then the step by j cannot be a
step taken by [RED SYNC], [RED IN-SYNC], or [RED RE-SYNC] where the object being
manipulated is ρ. These are the only three steps which could interfere
with acquiring lock ρ in thread i. Thus, the two steps commute.

—[RED FORK]: Let

�2 = 〈σ, T 〉
�3 = 〈σ, T ′〉

Ti ≡ E[in-atomic E ′[ρ.fork]]
T ′

i ≡ E[in-atomic E ′[0]]

Assume that E is the environment used to show P ; E � σ . We have

left

� Y (E , α(E, in-atomic E ′[ρ.fork])) since �2 ∈ Li

� Y (E , Y (E ′, α(E, ρ.fork)); α(E, E ′[0])) by Lemma 20, for some v
� Y (E , atomic; α(E, E ′[0])) by [EXP FORK] and def. of Y
� Y (E , atomic); Y (E , α(E, E ′[0])) by Lemma 19(3)

� atomic; Y (E , α(E, E ′[0])) by definition of Y
� atomic by Theorem 3

However, this last line is a contradiction because left �� atomic.
—[RED INVOKE], [RED LET], [RED IF-TRUE], [RED IF-FALSE], [RED WHILE], [RED RE-SYNC],

[RED ATOMIC],
[RED IN-ATOMIC], [RED WRONG]: As before.

—Suppose �1 →i �2. If this step is not a fork step, then threads other than
i do not change in going from �1 to �2. Therefore, R j (�1) ⇔ R j (�2),
L j (�1) ⇔ L j (�2), and W j (�1) ⇔ W j (�2).
If this step forks a new thread k, then that new thread’s expression does
not contain in-atomic (see rule [RED FORK]). Thus Nk(�1) and Nk(�2).
Furthermore, since no threads other than i and k change when going
from �1 to �2, we have that R j (�1) ⇔ R j (�2), L j (�1) ⇔ L j (�2), and
W j (�1) ⇔ W j (�2) for all j �= i.

The following supporting lemmas are used in the previous proof. We first
state a number of properties regarding atomicities and the function Y . They
all follow from definitions or from routine induction over the structure of an
atomicity.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

20:18 • Flanagan et al.

LEMMA 19 (ATOMICITY PROPERTIES)

(1) If a �� left then atomic; a � atomic.

(2) If a �� left then left; a � atomic.

(3) Y (E , a1; a2) � Y (E , a1); Y (E , a2).

(4) If a � a′ then Y (E , a) � Y (E , a′).
(5) Y (in-sync ρ E , a) = IS(ρ , Y (E , a)).

(6) If Y (E , R(a)) � cmpd then Y (E , a) � atomic.

(7) For all P , E, a, a′, if P ; E � a ↑ a′ then a � a′.

We next show that the atomicity of an expression E[e] is the atomicity of e
composed with the atomicity of E[v], for any v. This lemma relates evaluation
order with how atomicities are computed in the type system and shows that
evaluation never causes the atomicity of an expression to become larger. (For
simplicity, we only show containment in one direction, since that is all that is
needed in our proofs.)

LEMMA 20 (SEQUENTIALITY). For all contexts E , well-formed environments E,
and values v, if α(E, E[e]) is defined and α(E, E[v]) is defined and e is not a
value, then Y (E , α(E, e)); α(E, E[v]) � α(E, E[e]).

PROOF. We proceed by induction over E , showing a few representative cases:

—E ≡ []:

α(E, E[e]) = α(E, ([])[e])
= Y ([], α(E, e))
= Y ([], α(E, e)); const
= Y ([], α(E, e)); α(E, v)
= Y (E , α(E, e)); α(E, E[v])

—E ≡ E ′.fd: Assume that fd is guarded by some lock l . (The other three cases
for different guards are similar.) From rule [EXP REF], we know that

P ; E � E ′[e] : cn〈l1..n〉 · a
P ; E � (l ? mover : error)[this := e, x j := l j

j∈1..n] ↑ a′

Using Lemma 23, we may also conclude that

P ; E � (l ? mover : error)[this := v, x j := l j
j∈1..n] ↑ a′′

a′′ � a′

Then

α(E, E[e]) = α(E, E ′[e].fd)
= α(E, E ′[e]); a′ from [EXP REF]

� Y (E ′, α(E, e)); α(E, E ′[v]); a′ by IH
� Y (E ′, α(E, e)); α(E, E ′[v]); a′′ from above
= Y (E ′, α(E, e)); α(E, E[v]) by [EXP REF]

= Y (E , α(E, e)); α(E, E[v])

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

Types for Atomicity: Static Checking and Inference for Java • 20:19

The last line uses the fact the E and E ′ contain the same in-sync operations.

Thus, Y (E , a) = Y (E ′, a) for all atomicities a.

—E ≡ let x = E ′ in e′:

α(E, E[e])
= α(E, let x = E ′[e] in e′)
= α(E, E ′[e]); a where E ′[e] has type t and

P ; E � α((E, t x), e′)[x := E ′[e]] ↑ a
by rule [EXP LET]

� (Y (E ′, α(E, e)); α(E, E ′[v])); a by IH
� (Y (E ′, α(E, e)); α(E, E ′[v])); a′ where P ; E � α((E, t x), e′)[x := E ′[v]] ↑

a′ by Lemma 23
= Y (E ′, α(E, e)); α(E, E[v]) by rule [EXP LET]

= Y (E , α(E, e)); α(E, E[v]) as in the previous case

—E ≡ sync E ′ e′: Cannot happen, since E ′[e] must be a constant value and e is
not a value.

—E ≡ in-sync ρ E ′:

α(E, E[e])
= α(E, in-sync ρ E ′[e])
= IS(ρ , α(E, E ′[e])) by rule [EXP IN-SYNC]

� IS(ρ , Y (E ′, α(E, e)); α(E, E ′[v])) by IH
= IS(ρ , Y (E ′, α(E, e))); IS(ρ , α(E, E ′[v])) by dist. of IS over ;
= Y (in-sync ρ E ′, α(E, e)); IS(ρ , α(E, E ′[v])) by Lemma 19(5)
= Y (E , α(E, e)); IS(ρ , α(E, E ′[v])) by def. of E
= Y (E , α(E, e)); α(E, E[v]) by rule [EXP IN-SYNC]

Finally, we show that an expression in-atomic e is only evaluated when
the locks held by the current thread allow e’s atomicity to be simplified to
atomic.

LEMMA 21 (IN-ATOMIC BLOCKS ARE ATOMIC). If α(E, E[in-atomic e]) � cmpd
then Y (E , α(E, e)) � atomic.

PROOF. We begin by first applying the Sequentiality Lemma to focus in
on the atomicity of the expression in-atomic e embedded inside the evalua-
tion context E . Once we have expressed the overall atomicity in terms of this
atomicity, we can proceed to show that the atomicity must be no larger than
atomic.

cmpd � α(E, E[in-atomic e])
� Y (E , α(E, in-atomic e)); α(E, E[v]) by Lemma 20, where v is 0 or null
� Y (E , R(α(E, e))); α(E, E[v]) by [EXP IN-ATOMIC]

� Y (E , R(α(E, e))) by Theorem 3

Lemma 19(6) then indicates that Y (E , α(E, e)) � atomic.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

20:20 • Flanagan et al.

D. TYPE SUBJECT REDUCTION

In this section, we prove that types and atomicities are preserved under eval-
uation. The preliminary lemmas are routine, and much of their structure is
derived directly from previous work on similar systems [Flatt et al. 1998; Abadi
et al. 2006]. Therefore, we primarily focus on the novel aspects of the language,
including how atomicities and dependent types are handled.

We start by showing that all operations on atomicities are monotonic.

LEMMA 22 (ATOMICITY MONOTONICITY)

(1) If a1 � a2, then for all a:

a1; a � a2; a
a; a1 � a; a2

a1 � a � a2 � a

a � a1 � a � a2

a∗
1 � a∗

2

θ (a1) � θ (a2)

S(l , a1) � S(l , a2)
R(a1) � R(a2)

IS(l , a1) � IS(l , a2)

(2) If P ; E � a1 ↑ a′
1 and P ; E � a2 ↑ a′

2 then a′
1 � a′

2.

PROOF. Follows from the definitions of these operations.

The following technical lemma shows a subtle, but important property of
lifting used in subsequent proofs.

LEMMA 23 (LIFTING AFTER SUBSTITUTION). If P ; E � a[x := e′] ↑ a′ and
P ; E � a[x := e′′] ↑ a′′ and e′ is not a value, then a′′ � a′.

PROOF. Proof is by induction on a:

—a = b: In this case, a′′ = (b[x := e′′]) = b = (b[x := e′]) = a′.
—a = l ? a1 : a2: By induction, the atomicities of the subterms a1 and a2 are

related as follows, for i ∈ 1..2:

P ; E � ai[x := e′] ↑ a′
i

P ; E � ai[x := e′′] ↑ a′′
i

a′′
i � a′

i

We consider two cases:
—x is free in l : Thus, l [x := e′] is not a value and P ; E ��lock l [x := e′].

Therefore, a′ = a′
1 � a′

2.
If l [x := e′′] is a value, then a′′ = (l [x := e′′] ? a′′

1 : a′′
2) � a′.

If l [x := e′′] is not a value, then a′′ = (a′′
1 � a′′

2) � a′.
—x is not free in l : In this case, l [x := e′] = l = l [x := e′′].

If P ; E �lock l then a′′ = (l ? a′′
1 : a′′

2) � (l ? a′
1 : a′

2) = a′.
If P ; E ��lock l then a′′ = (a′′

1 � a′′
2) � (a′

1 � a′
2) = a′

The following context lemma states that if an expression E[e] is well-typed,
then so is e.

LEMMA 24 (CONTEXT SUBEXPRESSION). Suppose there is a deduction that con-
cludes P ; E � E[e] : t ·a. Then that deduction contains, at a position correspond-
ing to the hole in E , a subdeduction that concludes P ; E � e : t ′ · a′.

PROOF. By induction over the derivation of P ; E � E[e] : t · a.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

Types for Atomicity: Static Checking and Inference for Java • 20:21

The next lemma shows that a subexpression e1 may be replaced by a different
subexpression with the same type. Moreover, if the subexpression’s atomicity
(nonstrictly) decreases, then so does the atomicity of the whole expression. The
lemma requires that e1 is not a value, in which case e1 will not appear in the
inferred types or atomicities.

LEMMA 25 (CONTEXT REPLACEMENT). Suppose a deduction concluding P ; E �
E[e1] : t · a contains a deduction concluding P ; E � e1 : t ′ · a1 at a position corre-
sponding to the hole in E . If e1 is not a value and P ; E � e2 : t ′ · a2 and a2 � a1

then P ; E � E[e2] : t · a′ where a′ � a.

PROOF. Proof is by induction on the structure of E . We consider two repre-
sentative cases:

—E ≡ if E ′ f2 f3: Since P ; E � E[e1] : t · a is derivable only by rule [EXP IF], it
must be that:

P ; E � E ′[e1] : int · â1

P ; E � fi : t · âi i ∈ 2..3
a = â1; (â2 � â3)

By the inductive hypothesis, P ; E � E ′[e2] : int · â′
1 where â′

1 � â1. Lemma 22
indicates that

a′ = â′
1; (â2 � â3) � â1; (â2 � â3) = a

Rule [EXP IF] thus allows us to conclude P ; E � E[e2] : t · a′ where a′ � a.

—E ≡ E ′.fd: We consider only the case where the accessed field is guarded by a
lock l . The three other cases are similar. Since P ; E � E[e1] : t · a is derivable
only by rule [EXP REF], it must be that:

P ; E � E ′[e1] : cn〈l1..n〉 · â1

class cn〈ghost x1..n〉 { . . . t̂ fd guarded by l . . . } ∈ P
θ = [this := E ′[e1], x j := l j

j∈1..n]
P ; E � θ (t̂)
P ; E � θ (l) ? mover : error ↑ â f
t = θ (t̂)
a = â1; â f

By the inductive hypothesis, P ; E � E ′[e2] : cn〈l1..n〉 · â2 where â2 � â1. Since
e1 is not a value, E ′[e1] is not a value. Let θ ′ = [this := E ′[e2], x j := l j

j∈1..n].
Since well-formed types can only contain values, it must be that this is not
free in t. Thus, θ (t̂) = θ ′(t̂) and P ; E � θ ′(t̂). Similarly, we can show

P ; E � θ ′(l) ? mover : error ↑ â′
f

where â′
f � â f with Lemma 23. Using rule [EXP REF], we can conclude that

P ; E � E[e2] : t · a′, where a′ = â2; â′
f . Lemma 22 permits us to conclude that

a′ = (â2; â′
f) � (â1; â f) = a.

Environments can be strengthened with additional variable declarations, as
follows.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

20:22 • Flanagan et al.

LEMMA 26 (ENVIRONMENT STRENGTHENING). Suppose E = E ′, t x, E ′′ or E =
E ′, ghost x, E ′′. If P � E then:

(1) If P ; (E ′, E ′′) � meth then P ; E � meth.
(2) If P ; (E ′, E ′′) � field then P ; E � field.
(3) If P ; (E ′, E ′′) � a then P ; E � a.
(4) If P ; (E ′, E ′′) � t then P ; E � t.
(5) If P ; (E ′, E ′′) �lock l then P ; E �lock l .
(6) If P ; (E ′, E ′′) � e : t · a then P ; E � e : t · a.
(7) If P ; (E ′, E ′′) � a ↑ a′ then P ; E � a ↑ a′.
(8) If P ; (E ′, E ′′); ρ � {|db |}o

c then P ; E; ρ � {|db |}o
c .

PROOF. By simultaneous induction on all parts of the lemma.

Judgments from the formal system are preserved under capture-free variable
substitution.

LEMMA 27 (SUBSTITUTION). If P ; E � v : s · const then:

(1) If P � (E, s x, E ′) then P � (E, E ′[x := v]).
(2) If P ; (E, s x, E ′) � meth then P ; (E, E ′[x := v]) � meth[x := v].
(3) If P ; (E, s x, E ′) � field then P ; (E, E ′[x := v]) � field[x := v].
(4) If P ; (E, s x, E ′) � a then P ; (E, E ′[x := v]) � a[x := v].
(5) If P ; (E, s x, E ′) � t then P ; (E, E ′[x := v]) � t[x := v].
(6) If P ; (E, s x, E ′) �lock l then P ; (E, E ′[x := v]) �lock l [x := v].
(7) If P ; (E, s x, E ′) � e : t · a then P ; (E, E ′[x := v]) � e[x := v] : t[x := v]·

a[x := v].
(8) If P ; (E, s x, E ′) � a ↑ a′ then P ; (E, E ′[x := v]) � (a[x := v]) ↑ (a′[x := v]).

PROOF. The proof is by a simultaneous induction on all parts of the lemma.
We present details for representative cases in the expression type judgment.
In particular, we show that if P ; E � v : s · const and P ; (E, s x, E ′) � e : t · a
then P ; (E, E ′[x := v]) � e[x := v] : t[x := v] · a[x := v] by induction over
the derivation of P ; (E, s x, E ′) � e : t · a. We consider several representative
cases:

—[EXP REF]: Let e be the expression e′.fd. We consider only the case where the
accessed field is guarded by a lock l . The three other cases are similar. From
rule [EXP REF],

P ; (E, s x, E ′) � e′ : cn〈l1..n〉 · ae
class cn〈ghost x1..n〉 { . . . t ′ fd guarded by l . . . } ∈ P
θ = [this := e′, x j := l j

j∈1..n]
P ; (E, s x, E ′) � θ (t ′)
P ; (E, s x, E ′) � (θ (l) ? mover : error) ↑ a f
a = (a1; a f)
t = θ (t ′)

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

Types for Atomicity: Static Checking and Inference for Java • 20:23

By the induction hypothesis:

P ; (E, E ′[x := v]) � e′[x := v] : cn〈l1..n〉[x := v] · ae[x := v]
P ; (E, E ′[x := v]) � (θ (t ′))[x := v]
P ; (E, E ′[x := v]) � (θ (l) ? mover : error)[x := v] ↑ a f [x := v]

Let θ ′ = [this := e′[x := v], x j := l j [x := v] j∈1..n]. We next show that
(θ (t ′))[x := v] = θ ′(t ′). There are two cases:

—x = this or x = xi for some i: Since occurrences of x in t ′ will already
have been replaced by θ , we know that

(θ (t ′))[x := v] = t ′[this := e′[x := v], x j := l j [x := v] j∈1..n] = θ ′(t ′)
—x �= this and x �= xi: The only variables in scope where t ′ appears are

this and x1..n. Therefore,

(θ (t ′))[x := v] = t ′[this := e′[x := v], x j := l j [x := v] j∈1..n, x := v]

= t ′[this := e′[x := v], x j := l j [x := v] j∈1..n]
= θ ′(t ′)

Similarly, (θ (l) ? mover : error)[x := v] = (θ ′(l) ? mover : error). From these, it
follows that

P ; (E, E ′[x := v]) � (θ ′(t ′))
P ; (E, E ′[x := v]) � (θ ′(l) ? mover : error) ↑ a f [x := v]

Therefore, P ; (E, E ′[x := v]) � (e′.fd)[x := v] : t[x := v] · (ae; a f)[x := v] by
rule [EXP REF].

—[EXP LET]: Let e be the expression let y = e1 in e2. It must be that:

P ; (E, s x, E ′) � e1 : t1 · a1

P ; (E, s x, E ′, t1 y) � e2 : t2 · a2

P ; (E, s x, E ′) � t2[y := e1]
P ; (E, s x, E ′) � a2[y := e1] ↑ a′

2

t = t2[y := e1]
a = a1; a′

2

We know that the variable x is different from y because E, s x, E ′, t1 y is a
well-formed environment. By the induction hypothesis:

P ; (E, E ′[x := v]) � e1[x := v] : t1[x := v] · a1[x := v]
P ; (E, E ′[x := v], t1[x := v] y) � e2[x := v] : t2[x := v] · a2[x := v]
P ; (E, E ′[x := v]) � (t2[y := e1])[x := v]
P ; (E, E ′[x := v]) � (a2[y := e1])[x := v] ↑ a′

2[x := v]

Since x and y are distinct and y is not free in v,

t[x := v] = (t2[y := e1])[x := v] = (t2[x := v])[y := (e1[x := v])]

Similarly, a2[x := v] = (a2[x := v])[y := (e1[x := v])]. Therefore,

P ; (E, E ′[x := v]) � (t2[x := v])[y := (e1[x := v])]
P ; (E, E ′[x := v]) � (a2[x := v])[y := (e1[x := v])] ↑ a′

2[x := v]

We may thus conclude P ; (E, E ′[x := v]) � e[x := v] : t[x := v] · a[x := v]
using rule [EXP LET].

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

20:24 • Flanagan et al.

—[EXP NEW]: Let e be the expression new y cn〈l1..n〉(e1..k). It must be that:

θ = [x j := l j
j∈1..n, this := y]

P ; (E, s x, E ′, ghost y) � ei : θ (ti) · ai ∀i ∈ 1..k
class cn〈ghost x1..n〉 { field1..k meth1..m } ∈ P
field i = ti fdi gi ∀i ∈ 1..k
P ; (E, s x, E ′) � cn〈l1..n〉
t = cn〈l1..n〉
a = a1; · · · ; ak

By the induction hypothesis:

P ; (E, E ′[x := v], ghost y) � ei[x := v] : (θ (ti))[x := v] · ai[x := v] ∀i ∈ 1..k
P ; E � cn〈l1..n[x := v]〉

We know that the variable x is different from y because E, s x, E ′, ghost y
is a well-formed environment, and we can assume x is different from x1..n,
α-renaming the ghost variables as necessary. This implies that x is not free
in ti, since the only names in scope at the field declarations are this and the
ghost variables. Letting θ ′ = [x j := (l j [x := v]) j∈1..n, this := y], we have

(θ (ti))[x := v] = (ti[x := v])[x j := (l j [x := v]) j∈1..n, this := y] = θ ′(ti).

This permits us to conclude that

P ; (E, E ′[x := v], ghost y) � ei[x := v] : θ ′(ti) · ai[x := v] ∀i ∈ 1..k

We may then use the rule [EXP NEW] to conclude that

P ; (E, E ′[x := v] � new y cn〈l1..n[x := v]〉(e1..k[x := v]) : cn〈l1..n[x := v]〉 · a′

where a′ = ((a1; · · · ; ak)[x := v]).

A similar lemma is used to substitute values for ghost variables.

LEMMA 28 (GHOST SUBSTITUTION). If P ; E �lock v, then:

(1) If P � (E, ghost x, E ′) then P � (E, E ′[x := v]).
(2) If P ; (E, ghost x, E ′) � meth then P ; (E, E ′[x := v]) � meth[x := v].
(3) If P ; (E, ghost x, E ′) � field then P ; (E, E ′[x := v]) � field [x := v].
(4) If P ; (E, ghost x, E ′) � a then P ; (E, E ′[x := v]) � a[x := v].
(5) If P ; (E, ghost x, E ′) � t then P ; (E, E ′[x := v]) � t[x := v].
(6) If P ; (E, ghost x, E ′) �lock l then P ; (E, E ′[x := v]) �lock l [x := v].
(7) If P ; (E, ghost x, E ′) � e : t · a then P ; (E, E ′[x := v]) � e[x := v] : t[x :=

v] · a[x := v].
(8) If P ; (E, ghost x, E ′) � a ↑ a′ then P ; (E, E ′[x := v]) � (a[x := v]) ↑ (a′[x :=

v]).

PROOF. Proof is by simultaneous induction on all parts, as in the previous
lemma.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

Types for Atomicity: Static Checking and Inference for Java • 20:25

When now show that typing is preserved under the evaluation relation →i.

RESTATEMENT OF LEMMA 14 (TYPE SUBJECT REDUCTION). If P � � and P � � →
�′ then P � �′

PROOF. Suppose that P � � →i �′ and let

� = 〈σ, T 〉
�′ = 〈σ ′, T ′〉

Since P � �, rule [STATE] indicates that:

P ; E � σ

P ; E � Ti : ti · ai ∀i ∈ 1..|T |
ai � cmpd ∀i ∈ 1..|T |

We must show the following:

P ; E ′ � σ ′

P ; E ′ � T ′
i : ti · a′

i ∀i ∈ 1..|T ′|
a′

i � cmpd ∀i ∈ 1..|T ′|
We proceed by case analysis on the reduction rule used to take a step, showing
several representative cases:

—[RED LET]: In this case,

Tk ≡ E[let x = v in e]
T ′

k ≡ E[e[x := v]]

We show below that P ; E � T ′
k : tk · a′

k where a′
k � ak � cmpd. Since all

other threads and store σ (and hence E) do not change, rule [STATE] yields the
desired result.
By Lemma 24, it must be that P ; E � let x = v in e : s · alet. This can only
be concluded by rule [EXP LET], which means that

P ; E � v : tv · av
P ; E, tv x � e : te · ae
P ; E � te[x := v]
P ; E � ae[x := v] ↑ a′

e
alet = (av; a′

e)
s = (te[x := v])

By Lemma 27, we know that P ; E � e[x := v] : s · alet[x := v]. Note that
alet[x := v] = alet since x does not appear free in alet. Thus, P ; E � e[x :=
v] : s · alet, and by Lemma 25 we have that P ; E � T ′

k : tk · a′
k where a′

k � ak �
cmpd.

—[RED READ]: In this case,

Tk ≡ E[ρ.fd]
T ′

k ≡ E[v]
σ (ρ) = {| . . . , fd = v, . . . |}o

c

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

20:26 • Flanagan et al.

As above, it suffices to show that P ; E � T ′
k : tk · a′

k where a′
k � ak � cmpd.

By Lemma 24, it must be that P ; E � ρ.fd : s ·aacc. This can only be concluded
by rule [EXP REF], which means that

P ; E � ρ : cn〈l1..n〉 · a′

class cn〈ghost x1..n〉 { . . . t fd guarded by l . . . } ∈ P
θ = [this := ρ , x j := l j

j∈1..n]
P ; E � θ (t)
P ; E � (θ (l) ? mover : error) ↑ a′′

s = θ (t)
aacc = (a′; a′′)

(We assume the field fd is guarded by l ; the other cases are similar.) Given
that P ; E � σ , it must be that c = cn〈l1..n〉. Moreover,

P ; E; ρ � {| . . . , fd = v, . . . |}o
c

which requires that

P �inst class c { . . . t[x j := l j
j∈1..n] fdi guarded by l [x j := l j

j∈1..n] . . . }
P ; E � v : t[x j := l j

j∈1..n][this := ρ] · const
Since this is not free in any l j and is distinct from all x j (renaming as nec-
essary), s = θ (t) = t[x j := l j

j∈1..n][this := ρ]. Since const � aacc, Lemma 25
indicates that P ; E � T ′

k : tk · a′
k where a′

k � ak � cmpd.

—[RED NEW]: In this case,

Tk ≡ E[new y c(v1..n)]
T ′

k ≡ E[ρ]
ρ �∈ dom(σ)

σ ′ = σ [ρ �→ {| fdi = vi
i∈1..n |}⊥c]

E ′ = (E, c p)

By Lemma 26, we have that

P ; E ′ � T ′
i : ti · a′

i and a′
i � cmpd ∀i �= k

P ; E ′; ρ ′ � σ ′(ρ ′) ∀ρ ′ ∈ dom(σ)
P ; E ′ � ρ : c · const

The last statement enables us to use Lemma 25 to conclude that P ; E �
T ′

k : tk · a′
k where a′

k � ak � cmpd. Once we have shown that P ; E ′; ρ �
{| fdi = vi

i∈1..n |}⊥c , we may use rule [STATE] to show that the lemma holds in
this case. By rule [EXP NEW]:

P ; (E, ghost y) � vi : (ti[x j := l j
j∈1..r , this := y]) · const ∀i ∈ 1..n

class cn〈ghost x1..r〉 { field1..m . . . } ∈ P
fieldi = ti fdi gi ∀i ∈ 1..k
P ; E � cn〈l1..r〉

Also,

P �inst class cn〈l1..r〉 { field′
1..m . . . }

field′
i = ti[x j := l j∈1..r

j] fdi gi[x j := l j∈1..r
j] ∀i ∈ 1..m

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

Types for Atomicity: Static Checking and Inference for Java • 20:27

Lemma 27 permits us to conclude that

P ; E � vi[y := ρ] : (ti[x j := l j
j∈1..r , this := y])[y := ρ] · const ∀i ∈ 1..n

Note that y does not appear free in any l j and is distinct from this and x1..r ,
and also that values cannot contain ghost variables. Thus, we have

P ; E � vi : ti[x j := l j
j∈1..r , this := ρ] · const ∀i ∈ 1..n

which then allows to conclude that P ; E ′; ρ � {| fdi = vi
i∈1..n |}⊥c by rule [OBJECT].

—[RED FORK]: In this case,

Tk ≡ E[ρ.fork]
T ′

k ≡ E[0]
T ′

n ≡ (let x = new Object() in sync x (ρ.run〈x〉()))

where n = |T |+1. Since P ; E � ρ.fork : int·atomic and P ; E � 0 : int·const,
Lemma 25 concludes that P ; E � T ′

k : tk · a′
k where a′

k � ak � cmpd.
All other threads in T and store σ (and hence E) do not change, so once we
have shown that P ; E � T ′

n : tn · a′
n and a′

n � cmpd we may use rule [STATE] to
conclude that the lemma holds in this case.
According to rule [EXP FORK], it must be that

P ; E � ρ : cn〈l1..n〉 · const
class cn〈ghost x1..n〉 { . . . a′ int run〈ghost tll〉() { e′ } . . . } ∈ P
a′ � (tll ? cmpd : error)

Using the type rules, we can conclude that

P ; E � T ′
n : int · a′

n

where P ; E � S(x, a′[tll := x, this := ρ]) ↑ a′
n. We can compute an upper

bound for a′
n by using the monotonicity of the lifting judgment and the fact

that a′ � (tll ? cmpd : error). Specifically, replacing a′ with its upper bound
gives us

P ; E � S(x, (tll ? cmpd : error)[tll := x, this := ρ]) ↑ â′
n

a′
n � â′

n

Since S(x, (tll?cmpd : error)[tll := x, this := ρ]) = S(x, (x?cmpd : error)) =
cmpd, we know that a′

n � â′
n = cmpd.

E. MUTUAL EXCLUSION

We now turn our attention to mutual exclusion and show that the notion of
well-formed critical sections from Appendix C.1 is preserved by reduction steps
on well-typed states:

RESTATEMENT OF LEMMA 15 (MUTUAL EXCLUSION SUBJECT REDUCTION). If �cs �

and P � � → �′ then �cs �′.

PROOF. The proof is by case analysis on the evaluation rule for P � � → �′.
All cases are straightforward except [RED SYNC] and [RED IN-SYNC]. In each case,

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

20:28 • Flanagan et al.

let � = 〈σ, T 〉 where n = |T |. Since �cs �, we know that ls i �cs Ti and lsi =
{ρ | σ (ρ) = {| . . . |}i

cρ
} for all i ∈ 1..n, We assume that thread k is reduced and

�′ = 〈σ ′, T ′〉 where T ′
i = Ti for all i �= k.

—[RED SYNC]: In this case, Tk = E[sync ρ e] and σ (ρ) = {| . . . |}⊥cρ
. Also, T ′

k =
E[in-sync ρ e] and σ ′ = σ [ρ �→ {| . . . |}k

cρ
]. Therefore, ls ′

k = lsk∪{ρ} = {ρ | σ ′(ρ) =
{| . . . |}k

cρ
} and ls ′

k �cs T ′
k . Hence, we can conclude �cs �′ by rule [CS STATE].

—[RED IN-SYNC]: In this case, Tk = E[in-sync ρ v] and σ (ρ) = {| . . . |}k
cρ

. Also, T ′
k =

E[v] and σ ′ = σ [ρ �→ {| . . . |}⊥cρ
]. Therefore, lsk \ {ρ} �cs T ′

k and ls ′
k = lsk \ {ρ} =

{ρ | σ ′(ρ) = {| . . . |}k
cρ

}. Since no other lsi changes and ρ is not held by any thread

in state �′, we may conclude �cs �′ by rule [CS STATE].

The next two lemmas show how error atomicities propagate from subexpres-
sions to enclosing expressions.

LEMMA 29 (CONDITIONAL ERROR ATOMICITY). If P ; E � E[e] : t · a and P ; E �
e : s · (ρ ? a′ : error) and E �≡ E ′[in-sync ρ e′] then (ρ ? const : error) � a.

PROOF. Proof is by induction on E . We show some representative cases:

—E ≡ []: a = ρ ? a′ : error
—E ≡ let x = E ′ in e′. According to [EXP LET], the only applicable type rule,

P ; E � E ′[e] : t1 · a1

a = (a1; a2)

for some a2. By the inductive hypothesis, a1 = (ρ ? a′
1 : error). Thus,

a = (a1; a2)
� (ρ ? a′

1 : error); a2

= (ρ ? (a′
1; a2) : (error; a2))

� (ρ ? const : error)

—E ≡ new y c(v1..k−1, E ′, ek+1..n). According to rule [EXP NEW],

P ; E � E ′[e] : t · ak
a = a1; · · · ; ak−1; ak ; ak+1; · · · ; an

for some atomicities a1..n. By the inductive hypothesis, ak = (ρ ? a′
k : error).

By associativity of ’;’, we have

a
� (a1; · · · ; ak−1); ak ; (ak+1; · · · ; an)
� (ρ ? ((a1; · · · ; ak−1); a′

k ; (ak+1; · · · ; an)) : ((a1; · · · ; ak−1); error; (ak+1; · · · ; an)))
� (ρ ? const : error).

—E ≡ sync E ′ e′: According to rule [EXP SYNC], P ; E �lock E ′[e] which requires that
P ; E � E ′[e] : s · const. By the inductive hypothesis, P ; E � E ′[e] : s · a′ where
(ρ ? const : error) � a′. But this is a contradiction, since a′ �= const, and this
case cannot occur.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

Types for Atomicity: Static Checking and Inference for Java • 20:29

—E ≡ in-sync ρ ′ E ′ where ρ ′ �= ρ: According to rule [EXP IN-SYNC] and the induc-
tive hypothesis,

P ; E � E ′[e′] : s · a′

a = IS(ρ ′, a′)

By the inductive hypothesis, (ρ ? const : error) � a′, and

a = IS(ρ ′, a′)
� IS(ρ ′, (ρ ? const : error))
� ρ ? IS(ρ ′, const) : IS(ρ ′, error)
� (ρ ? const : error)

LEMMA 30 (ERROR ATOMICITY). If P ; E � E[e] : t · a and P ; E � e : s · error
then error � a.

PROOF. Proof is by induction on E , as above.

We characterize in the following Lemmas 31 and 32 when a thread may read
or write to an object’s field.

LEMMA 31 (ACCESS READ). Suppose P � 〈σ, T 〉 and �cs 〈σ, T 〉 and P �inst

class c { . . . t fd g . . . } and P ; E � ρ : c and P ; E � σ . If Tk reads ρ.fd then
either:

(1) g is final, no guard, or write guarded by l ; or
(2) g is guarded by l , and Tk is in a critical section on l [this := ρ].

PROOF. If case (1) is true, there is nothing else to prove. If case (2) is true,
then we must show that Tk is in a critical section on l [this := ρ]. Since
P � 〈σ, T 〉, it must be that P ; E � Tk : t · a where a � cmpd and Tk = E[ρ.fd].
Note that P ; E � ρ.fd : s · (l [this := ρ] ? mover : error) by rule [EXP REF]. If Tk
were not in a critical section on l [this := ρ], then Lemma 29 indicates that
(l [this := ρ] ? const : error) � a and hence a �� cmpd, which yields a contradic-
tion. Thus, the thread must be in a critical section on that lock.

LEMMA 32 (ACCESS WRITE). Suppose P � 〈σ, T 〉 and �cs 〈σ, T 〉 and P �inst

class c { . . . t fd g . . . } and P ; E � ρ : c and P ; E � σ . If Tk writes ρ.fd then:

(1) g is no guard; or
(2) g is guarded by l or write guarded by l , and Tk is in a critical section on

l [this := ρ].

PROOF. Since P � 〈σ, T 〉, it must be that P ; E � Tk : t · a where a � cmpd
and Tk = E[ρ.fd = v]. We proceed as in the previous proof, noting that g cannot
be final, or else Lemma 30 would yield that error � a.

The following lemma describes when a field access is guaranteed to be
conflict-free; such conflict-free accesses commute with steps from other threads.

RESTATEMENT OF LEMMA 16 (CONFLICTING ACCESSES) Suppose P � 〈σ, T 〉 and
�cs 〈σ, T 〉 and p �inst class c{. . . t fd g . . . } and P ; E � ρ : c and P ; E � σ . If Tk
accesses ρ.fd then:

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

20:30 • Flanagan et al.

(1) g is final and ∀i �= k, Ti does not write ρ.fd; or
(2) g is guarded by l and ∀i �= k, Ti does not access ρ.fd; or
(3) g is write guarded by l and if Tk is in a critical section on l [this := ρ],

then ∀i �= k, Ti does not write ρ.fd; or
(4) g is no guard

PROOF. Since P � 〈σ, T 〉, it must be that P ; E � Ti : ti · ai where ai � cmpd
for all i ∈ 1..|T |. We handle each case of g separately:

(1) g is final: Lemma 32 ensures that no threads write to final fields.

(2) g is guarded by l : We show that no other thread can be accessing the same
field. Lemmas 31 and 32 indicate that Tk must be in a critical section on
l [this := ρ]. Since �cs 〈σ, T 〉, we know that σ (l [this := ρ]) = {| . . . |}k

c′ for
some c′. Further suppose that Ti accesses the same field, where i �= k.
Lemmas 31 and 32 again indicate that Ti is in a critical section on l [this :=
ρ] and it would follow that σ (l [this := ρ]) = {| . . . |}i

c′ . However, i �= k, so this
cannot occur.

(3) g is write guarded by l : The proof is similar to the previous case.

(4) g is no guard: There is nothing to show in this case.

F. CORRECTNESS OF TYPE INFERENCE

We now connect type inference to type checking by showing that if type inference
succeeds, it yields an explicitly typed well-typed program.

RESTATEMENT OF THEOREM 4 (TYPE INFERENCE YIELDS WELL-TYPED PROGRAMA). If
P � C̄ and A |= C̄ and A is well-formed for C̄ then A(P) � wf.

PROOF. We prove this theorem by simultaneous induction on:

(1) If P � C̄ and A |= C̄ and A is well-formed for C̄, then A(P) � wf.

(2) If P � E · C̄ and A |= C̄ and A is well-formed for C̄, then A(P) � E.

(3) If P ; E � defn · C̄ and A |= C̄ and A is well-formed for C̄, then A(P); E �
A(defn).

(4) If P ; E � meth · C̄ and A |= C̄ and A is well-formed for C̄, then A(P); E �
A(meth).

(5) If P ; E � field · C̄ and A |= C̄ and A is well-formed for C̄, then A(P); E �
A(field).

(6) If P ; E � a · C̄ and A |= C̄ and A is well-formed for C̄, then A(P); E � a.

(7) If P ; E � t · C̄ and A |= C̄ and A is well-formed for C̄, then A(P); E � t.

(8) If P ; E �lock l ·C̄ and A |= C̄ and A is well-formed for C̄, then A(P); E �lock l .

(9) If P ; E � e : t · d · C̄ and A |= C̄ and A is well-formed for C̄, then A(P); E �
e : t · [[A(d)]].

We show several interesting cases:

—[INF EXP SYNC]: If P ; E � sync l e : t · d · C̄, then

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

Types for Atomicity: Static Checking and Inference for Java • 20:31

P ; E �lock l · C̄1

P ; E � e : t · d ′ · C̄2

d = S(l , d ′)

For i ∈ 1..2, C̄i ⊆ C̄ and thus A |= C̄i and Ai is well-formed for C̄i. The
inductive hypothesis thus indicates that

A(P); E �lock l
A(P); E � e : t · [[A(d ′)]]

These allow us to conclude, by rule [EXP SYNC], that A(P); E � e : t ·
S(l , [[A(d ′)]]). Also, S(l , [[A(d ′)]]) = [[A(S(l , d ′))]] = [[A(d)]], and we are done.

—[INF METHOD]: Suppose P ; E � meth · C̄, where

meth = s t md〈ghost x1..n〉(arg1..r) { e }
E ′ = E, ghost x1..n, arg1..r
P ; E ′ � e : t · d · C̄′

P ; E ′ � s · C̄′′

C̄ = (C̄′ ∪ C̄′′ ∪ {lift(P, E ′, d) �� s})
By the inductive hypothesis,

A(P); E ′ � e : t · [[A(d)]]

Also,

A(meth) = A(s) t md〈ghost x1..n〉(arg1..r) { e }
A |= lift(P, E ′, d) �� s

The second line above implies that [[lift(A(P), E ′, A(d))]] � A(s). Note that
[[lift(A(P), E ′, A(d))]] = a such that A(P); E ′ � [[A(d)]] ↑ a for some a. Thus,
a � A(s). By Lemma 19 (7), [[A(d)]] � a, and [[A(d)]] � A(s).
Finally, we show that A(P); E ′ � A(s). There are two cases:
—s = a: Since P ; E ′ � a · C̄′′, the inductive hypothesis allows us to conclude

A(P); E ′ � A(a).
—s = α: Since A is a well-formed solution and (lift(P, E ′, d) �� α) ∈ C̄, it

must be that A(P); E ′ � A(α).
We may then use rule [METHOD] to conclude that A(P); E � A(meth).

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 20, Publication date: July 2008.

