
Using Precise Taint Tracking for Auto-sanitization
Tejas Saoji

Computer Science
San José State University
tejaspankaj.saoji@sjsu.edu

Thomas H. Austin
Computer Science

San José State University
thomas.austin@sjsu.edu

Cormac Flanagan
Computer Science

University of California, Santa Cruz
cormac@ucsc.edu

ABSTRACT
Taint analysis has been used in numerous scripting languages such
as Perl and Ruby to defend against various form of code injection at-
tacks, such as cross-site scripting (XSS) and SQL-injection. However,
most taint analysis systems simply fail when tainted information is
used in a possibly unsafe manner.

In this paper, we explore how precise taint tracking can be used
in order to secure web content. Rather than simply crashing, we
propose that a library-writer defined sanitization function can in-
stead be used on the tainted portions of a string. With this approach,
library writers or framework developers can design their tools to
be resilient, even if inexperienced developers misuse these libraries
in unsafe ways. In other words, developer mistakes do not have to
result in system crashes to guarantee security.

We implement both coarse-grained and precise taint tracking
in JavaScript, and show how our precise taint tracking API can be
used to defend against SQL injection and XSS attacks. We further
evaluate the performance of this approach, showing that precise
taint tracking involves an overhead of approximately 22%.

CCS CONCEPTS
• Security and privacy → Web application security; Browser
security; Information flow control;

KEYWORDS
taint analysis, JavaScript, web application security

1 INTRODUCTION
Code injection attacks are a constant threat to web applications.
These attacks occur because input from an untrusted source is used
in situations where it might be able to create code. SQL injection is
one well known variant of code injection. Consider the following
code that executes a query against a database:

execQuery (" SELECT ∗ FROM STUDENTS " +
"WHERE NAME = ' " + studentName + " ' ") ;

While this code will work in most cases, an attacker could exploit
it by entering a carefully formatted name, such as

Bobby'; DROP TABLE STUDENTS;--

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PLAS’17, October 30, 2017, Dallas, TX, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5099-0/17/10. . . $15.00
https://doi.org/10.1145/3139337.3139341

With name set to the above text, the query executed against the
database would be

SELECT * FROM STUDENTS
WHERE NAME = 'Bobby';
DROP TABLE STUDENTS;--'

Library writers and framework designers are aware of these vul-
nerabilities, and provide their users tools to safely include user in-
put. For instance, a SQL library might include an execQueryParams
function that would take an array of arguments for user input. The
library would properly escape the input before using it to build
the SQL query. Since the library writers are domain experts, the
possibility of a code injection attack is much reduced. Refactoring
the previous example would then give us the following, safe code:

execQueryParams (" SELECT ∗ FROM STUDENTS "
+ " WHERE NAME = ? " , [studentName]) ;

However, there is nothing that forces the programmer to use the
library correctly. Inexperienced developers might use the function
in the same manner as they did before and produce vulnerable code,
even thought the library was designed to prevent these vulnerabili-
ties.

execQueryParams (" SELECT ∗ FROM STUDENTS "
+ " WHERE NAME = ' "
+ studentName + " ' " , []) ;

Taint analysis helps to catch cases of programmer error by iden-
tifying places where input from an untrusted source has been used
unsafely. This technique can be done either using static analysis or
dynamic runtimemonitoring, often called taint tracking. Leveraging
this tool, a SQL library writer might write the following function
to catch developer error:

f u n c t i o n execQueryParams (query , params) {
i f (i s T a i n t e d (query))

throw new Er ro r (" Ta in t ed query ") ;
/ / SQL hand l i n g c od e be l ow
. . .

}

Despite having been a part of mainstream languages such as Perl
and Ruby, taint analysis does not appear to be that widely used. One
issue seems to be that taint analysis has too many false positives.

Nguyen-Tuong et al. [29] add an interesting addition to this de-
sign space with precise tainting. With this approach, tainted strings
are tracked at the level of individual characters. This design reduces
false positives and allows developers to more precisely identify
tainted information.

https://doi.org/10.1145/3139337.3139341

More importantly, this strategy can offer the possibility of more
sophisticated strategies than simply accepting or rejecting an oper-
ation on a tainted string. The original authors take advantage of
this finer granularity to identify bad characters in HTML output,
but do not sanitize input to stop other common web attacks.

We extend precise taint tracking to give authors the ability to
auto-sanitize user input when their libraries are misused by in-
experienced developers. With this approach, the SQL library of
our motivating example could instead warn the developers that
they were not using the library correctly and then escape just the
tainted portions of the SQL query string. Our taint tracking API
uses a novel taintedRegions function that library writers can use
to sanitize calls to their library. We implement precise taint tracking
for JavaScript, and compare its performance to both an uninstru-
mented JavaScript interpreter and to a JavaScript interpreter with
coarse-grained taint-tracking. Our results show that our precise
taint tracking interpreter has an overhead of roughly 22% when no
tainted data is involved.

2 RELATEDWORK
Our principal inspiration is Nguyen-Tuong et al.’s design for precise
taint tracking [29]. By tracking information for tainted data at the
character level, the authors are able to reduce the false positives
compared to coarse-grained taint tracking approaches. They also
show how their approach can sanitize data to prevent against output
attacks, but do not extend this idea to sanitize SQL queries.

Our work extends their ideas to the language rather than the
framework level, and therefore permits library and framework
designers to apply these techniques to other forms of code injection
attacks. By choosing JavaScript, we also offer the ability to defend
against both client and server attacks.

Other research has leveraged precise taint tracking to either
avoid false positives or to take more sophisticated strategies. Su
and Wassermann [39] use precise taint tracking to detect SQL injec-
tion attacks in their SqlCheck tool. Stock et al [38] integrate precise
taint tracking into Chromium with a goal of detecting XSS vulner-
abilities. DexterJS by Parameshwaran et al. [30] follows a similar
goal, but uses a JavaScript transpiler to introduce dynamic taint
tracking, thereby avoiding any modifications to the browser imple-
mentation. Closest to our work, Pietraszek and Vanden Berghe [31]
use precise tainting in their context-sensitive string evaluation
(CSSE) implementation for PHP; as with our approach, they enable
automatic correction of many injection errors. Their work includes
a rich discussion of different types of injection vulnerabilities, but
does not offer much discussion on their API.

Schoepe et al. [34] offer an alternative design for taint tracking
in the realm of Android apps. They use special facelifted values,
related to secure multi-execution [16] and faceted evaluation [3, 8],
in order to track both trusted and untrusted views of sensitive fields.
This approach gives them greater precision, and similarly allows
code to self-repair. Guha et al. [18] use a similar approach with
their work on Fission to run JavaScript programs on both the client
and server.

Tsankov et al. [43] use a similar fine-grained approach in their
Functionality-Aware Security Environment (FASE), though they
use this technique to anonymize data for Android apps. Their work

considers confidentiality as well as integrity, which brings some
additional challenges as highlighted in the information flow analysis
discussion later in this section.

Taint analysis has previously been explored for JavaScript. AC-
TARUS by Guarnieri et al. [17] is a static taint analysis tool that
the authors use to defend against XSS attacks, code injection, and
unvalidated redirects. Their analysis is sound, with the exception of
reflective calls, and they test their tool on an impressive 9,726 web
pages. Wei and Ryder [45] use a mix of static analysis and dynamic
taint tracking, which they call blended taint analysis. They argue
that static taint analysis alone is a difficult fit for JavaScript, due
to the language’s many dynamic features. Wei et al. [46] analyze
features within JavaScript that make static analysis difficult, which
they dub root-cause functions. Tripp et al. [41] develop JSA, which
uses code rewriting and partial evaluation; their approach greatly
reduces false positives compared to purely static analysis, while
still capturing all true warnings.

Other branches of research have focused on creating general
purpose analysis frameworks for JavaScript, such as Sen et al’s
Jalangi [35] and Christophe et al’s Linvail [11]. Similarly, Kannan
et al. [25] show how virtual values [1], related to JavaScript prox-
ies [15], can be used to integrate both taint tracking and information
flow monitoring into applications without native support in the
language for those security features. Guha et al. [19] provide a static
analysis tool for Ajax programs; their focus is on intrusion detec-
tion, but they note that there are several other possible applications
of their tool.

Information flow analysis is a closely related technique to taint
analysis. The central difference is that information flow analysis
focuses more on confidentiality rather than integrity, and as a result
must consider implicit flows carefully, where secret values may be
deduced by reasoning about public outputs. Bielova and Rezk [9]
provide an excellent overview of the different types of informa-
tion flow monitors. JavaScript in particular has been a popular
domain for dynamic information flow analysis research, begin-
ning with Vogt et al. [44] using information flow analysis to detect
cross-site scripting attacks. Jang et al. [24] use information flow
analysis to survey real-world examples of websites attempting to
circumvent privacy protections. Chudnov and Naumann [12] inte-
grate a dynamic information flow monitor by rewriting JavaScript.
Bauer et al. [4] show how a dynamic information flow monitor
can prevent many common attacks in the Chromium web browser.
Kerschbaumer et al. [26] show how to create an efficient informa-
tion flow monitor for JavaScript. Bicchawat et al [6] implement an
information flowmonitor at the bytecode level using the permissive-
upgrade strategy [2, 5]. The same author also propose WebPol [7],
an API for fine-grained information flow policies. JSFflow [20–22]
is a JavaScript interpreter designed to track information flow; it is
implemented as a Firefox extension, allowing it to be integrated
into the web browser without modifying the underlying JS engine.
Hedin et al. [23] use stateful marshalling to track information flow
through third-party libraries. Stefan et al. [37] develop COWL, an-
other system intended to prevent the exfiltration of private data in
a web browser. Chugh et al. [13] use a mix of static and dynamic
analysis in their staged information flow analysis; in their approach,
they statically analyze the JavaScript code to guarantee as much as

possible, with additional runtime residual checks for properties that
cannot be guaranteed in advance.

While research on scripting languages has focused on dynamic
taint tracking, research for statically typed languages prefers static
taint analysis. Tripp et al. [42] develop Taint Analysis for Java
(TAJ). Their approach statically analyzes flows from sources to
sinks in order to prevent common attacks against web applications.
Livshits and Lam [27] integrate a static analysis tool into Eclipse,
allowing developers to easily check for many common security
vulnerabilities. Sridharan et al [36] develop taint analysis for Java
web application frameworks, with a focus on correctly handling
reflective calls within these frameworks.

C programs are another popular language for studying with taint
tracking. Newsome and Song [28] have implemented TaintCheck,
to detect format string vulnerabilities and buffer overruns. Xu et
al [47] explore source-to-source transformations of C programs,
introducing taint analysis to enforce their security policies. Chang
et al. [10] extend this approach as more of a general tool, using taint
tracking as their use case. Their transformation tool performs static
analysis on the program to distinguish between innocuous data
flows and possible leaks. If their system finds possible violations
of the security policies, an analysis is performed to identify all the
positions in the code that demand dynamic analysis. The code is
modified accordingly to enforce those policies dynamically. Thus,
the amount of dynamic tracking needed is minimized by doing
static analysis first. Clause et al. [14] develop Dytan, a framework
for securing x86 executables. Their tool uses dynamic taint tracking,
but can also provide information flow guarantees through the use
of control flow graphs.

3 COARSE-GRAINED TAINT TRACKING
Coarse-grained taint tracking is the dominant approach used in
scripting languages today. It tracks when a value comes from an
untrusted external source or is in any way derived from untrusted
values. Since most of the real-world cases of interest in code injec-
tion involve strings, we focus our discussion on strings specifically.

We modified the Rhino implementation of JavaScript, which is
an open-source JavaScript engine written in Java and managed
by the Mozilla Foundation [32]. We selected Rhino since it is a
long-established JavaScript engine, and since its codebase is com-
paratively easy to work with. We used a string mangling strategy
for our library, where we append a special token to the end of the
internal string representations to mark them as tainted; this ap-
proach might lead to inadvertent tainting of values, but these cases
can be kept to a minimum if an unusual enough token is chosen.

Our coarse-grained taint tracking API consists of three functions:

(1) taint(input) returns a copy of the input string marked as
tainted. The original input string remains untainted.

(2) isTainted(str) allows a developer to examine a string to
determine whether the str value is in any way derived from
untrusted sources.

(3) untaint(tainted) takes the tainted string and returns a
copy of the string without the taint mark. After a developer
has carefully validated and modified the input string, this
function permits untainted data to be endorsed.

va r a = "O ' R e i l l y " ;
var b = t a i n t (a) ;
i s T a i n t e d (b) ; / / r e t u r n s t r u e
/ / c s e t t o "O ' ' R e i l l y "
var c = un t a i n t (b . r e p l a c e (/ ' / g , " ' ' ")) ;
i s T a i n t e d (c) ; / / r e t u r n s f a l s e

Figure 1: String tainting

var name = t a i n t ("O ' R e i l l y ") ;
var s t r = " Hi , my name i s " + name ;
var s u b s t r = s t r . s u b s t r i n g (0 , 2) ;
i s T a i n t e d (s u b s t r) ; / / r e t u r n s t r u e

Figure 2: Coarse-grained Taint Tracking False Positive

Figure 1 shows how coarse-grained taint analysis taints and
endorses a string variable. In Figure 1 taint(a) returns a tainted
string “O’Reilly” and assigns it to variable b. isTainted(b) re-
turns true as the string b is referring to is marked as tainted.
b.replace(/’/g, "’’") sanitizes the tainted string in variable b
by replacing a single quote with two single quotes, and untaint
marks the sanitized string as untainted and returns it, which is
assigned to variable c. Hence, isTainted(c) returns false.

All operations on strings are modified to taint the resulting value
if any of the inputs are tainted. In some cases, the result might be
tainted even if the original untrusted information is no longer part
of the result. Figure 2 shows an example. Even though substr
contains no tainted information from the name variable, the result
is marked as tainted because it was derived from the tainted variable
str.

Since coarse-grained taint analysis only tracks whether a string
is tainted, and not which portions of the string are tainted, it is
difficult to sanitize the tainted string, even if only a small portion
of the string is derived from tainted data. Hence, in the case of
coarse-grained taint analysis the best way to prevent an attack
is to raise an exception whenever a tainted string is passed to a
security critical operation. Once developers are made aware of their
misuse of the library, they can update their code to use the library
properly1.

4 PRECISE TAINT TRACKING API
While coarse-grained taint tracking is useful for preventing unsafe
operations, it suffers from false positives and inflexibility. Instead,
we can track the flow of tainted data at a finer granularity. Precise
taint tracking [29] tracks taint at the level of characters. With this
approach, library writers may more gracefully recover when their
library is misused.

Our precise taint tracking API extends the coarse-grained taint
tracking API with two new functions:

1 Of course, there is nothing that forces the developer to fix their code in the correct
manner. It is entirely possible that willful developers might just endorse the inputs to
the library with no attempt at validation in order to quickly get their code working.

var a = " Hi " + t a i n t (" J ane ") ;
i s T a i n t e d (a) ; / / t r u e
i s T a i n t e d (a . s u b s t r i n g (0 , 3)) ; / / f a l s e
i s T a i n t e d (a . s u b s t r i n g (3 , 7)) ; / / t r u e
t a i n t e dR e g i o n s (a) ; / / [[3 , 7]]
var b = s a n i t i z e (a , f u n c t i o n (s) {

return s . r e p l a c e (/ ' / g , " ' ' ") ;
})
i s T a i n t e d (b) ; / / f a l s e

Figure 3: String tainting

• The taintedRegions(taintedStr) function returns an ar-
ray of pairs2 specifying the left and right boundaries of
tainted regions in taintedStr.

• The sanitize(taintedStr, f) function allows a tainted
string to be repaired by applying the function f to each
tainted region of the string.

The other functions of the API remain, with some slight modi-
fications. The isTainted function returns true if any portion of
the string is tainted. The untaint function removes taints from
any portion of the tainted string. As with our coarse-grained taint
tracking implementation, we use a string mangling approach to
track tainted data. However, in the case of precise taint tracking,
we also append a comma separated list of the ranges of the tainted
regions within the String.

Figure 3 shows an example using precise taint analysis. The vari-
able a contains both tainted and untainted data, and so isTainted(a)
returns true. However, in contrast to coarse-grained taint tracking,
precise taint tracking recognizes that the substring "Hi " is not
tainted.

Our precise taint tracking API allows us to sanitize strings that
contain amix of tainted and untainted characters. The taintedRegions
function returns [[3,7]], indicating the start and end positions of
the tainted substring in a. Using this function, the library writer
could carefully sanitize the portions of the string that came from
untrusted sources with this information. However, in most cases we
expect that the data could be sanitized by applying a sanitization
function to each tainted substring and joining it with the untainted
sections of the string. In this case, the sanitize function can be
used instead. In the case of Figure 3, we escape single quotes with
pairs of single quotes, such as we might do for a SQL query.

5 APPLICATIONS OF PRECISE TAINT
TRACKING

In this section, we show how precise taint tracking can be used to
auto-sanitize input when a library is misused. Initially we focus on
the taintedRegions function before showing how sanitize can
simplify the code for most use cases.

5.1 Preventing SQL Injection Attack
In our introduction, we discussed how coarse taint tracking could
be used to prevent an inexperienced developer from misusing a

2 In our implementation, a pair is represented by an array of size 2.

SQL library in a way that might cause a SQL injection vulnerability.
We now consider the same example using precise taint analysis.

Figure 4 shows how we could use the taintedRegions func-
tion to identify tainted regions of the query string and sanitize
those portions of the string. For simplicity, we elide the behavior of
runQuery, which executes the query after sanitizing the arguments
in params and building the final SQL query. We assume that the
params argument is either missing or empty if query is tainted,
which seems the likely case if the library is misused. If that is not
the case, we raise an error; we note that it is still possible to sanitize
the query, but at the expense of increased complexity.

The untaintQuery function sanitizes a tainted portion of the
query string by replacing single quotes with two single quotes, and
returns the untainted substring. While this sanitization function is
simple, it illustrates the concept of how the query string could be
sanitized.

At the end of the for loop in the execQueryParams function, the
variable untaintedQuery contains an untainted, sanitized query.
Using our example from the introduction, the final query would be

SELECT * FROM STUDENTS
WHERE NAME = 'Bobby'';
DROP TABLE STUDENTS:--'

Critically, the quote after “Bobby” is escaped, and so the un-
tainted query can be safely executed. Thus, precise taint tracking
prevents the system from a SQL injection attack without having to
crash the program execution.

5.2 Preventing Cross-Site Scripting
We now show how this approach can be used to defend against
cross-site scripting (XSS) attacks. Consider the web-page in Figure 5,
which uses JavaScript to greet the user by name. The function
window.location.search returns the contents of the page URL
after the question mark. The dynamically generated content is then
written to the document using document.write(). The URL used
to access the page is:

http://www.example.com/greet.html?John

The user is greeted as “Hello John”. However, an attacker can inject
a script after the question mark which can lead to an unexpected
behavior. For example, when the URL is invoked with this (%3C is
code for < & %3E is code for >):

http://www.example.com/greet.html?%3Cscript%3E
alert(‘!’)%3C/script%3E

In the case of precise taint analysis, all the characters in the string
in the variable name are marked as tainted. The taintedRegions
function is used to sanitize the tainted string. Figure 6 shows how
precise taint tracking handles the tainted string. We note that while
this strategy escapes special characters with their equivalent HTML
entities, other options are possible; for instance, a library writer
might wish to support some markup formatting, but not allow
script tags. One advantage of our approach is that library writers
can tailor their handling of tainted data to their needs.

f u n c t i o n execQueryParams (query , params) {
i f (i s T a i n t e d (query)) {

i f (params && params . l e ng t h !== 0) {
throw new Er ro r (" Ta in t ed query and non−empty params ") ;

}
l e t un ta in t edQuery = " " ;
l e t idx InQuery = 0 ;
l e t t a i n t e d r e g i o n s = t a i n t e dR e g i o n s (query) ;
for (i = 0 ; i < t a i n t e d r e g i o n s . l e ng t h ; i ++) {

l e t t a in tLBound = t a i n t e d r e g i o n s [i] [0] ;
l e t t a in tRBound = t a i n t e d r e g i o n s [i] [1] ;

un ta in t edQuery += un ta in tQuery (query , idxInQuery , ta in tLBound , t a in tRBound) ;
i dx InQuery = ta in tRBound + 1 ;

}
i f (i dx InQuery != queryLen) {

un ta in t edQuery += query . s u b s t r i n g (idxInQuery , queryLen) ;
}

runQuery (un ta in t edQuery) ;
} e l se {

runQuery (query , params) ;
}

}

f u n c t i o n un ta in tQuery (query , idxInQuery , ta in tLBound , t a in tRBound) {
l e t u n t a i n t e d S t r = query . s u b s t r i n g (indexInQuery , t a in tLBound) ;

l e t t a i n t e d S u b S t r = query . s u b s t r i n g (ta in tLBound , t a in tRBound +1) ;
l e t s a n i t i z e d S t r = t a i n t e d S u b S t r . r e p l a c e (/ ' / g , " ' ' ") ;

r e t u r n u n t a i n t e d S t r + s a n i t i z e d S t r ;
}

Figure 4: Untainting a query string

< s c r i p t >
var name = decodeURIComponent (window .

l o c a t i o n . s e a r ch . s u b s t r i n g (1)) | | " " ;
document . w r i t e (" He l l o " + name) ;
</ s c r i p t >

Figure 5: Sample web-page

5.3 Sanitize Function
Contrasting Figure 4 with Figure 6, we see that the code to sanitize
a string to prevent a cross-site scripting attack is very similar to
the code to sanitize the query string in our SQL library. The ma-
jor difference is the actual method of sanitization. In case of SQL
injection it is done as

replace(/'/g, "''")

while in the case of cross-site scripting it is done as
replace(/</g, "\<").replace(/>/g, "\>")

We can avoid this redundancy by using the sanitize function
in lieu of taintedRegions. The sanitize function takes 2 argu-
ments — a tainted string and a callback function to sanitize the
tainted portions of this string. Figure 7 shows the sanitize func-
tion.

Figure 8 shows how the sanitize function can be used to san-
itize a tainted query in the case of a SQL injection attack, and a
tainted string in the case of a cross-site scripting attack. In the
case of a SQL injection attack, the callback function replaces all
the single quotes with two single quotes. The sanitize function
returns a sanitized and untainted query string, which is safe to use.
The untainted query string in the variable untaintedQuery could
then be executed safely.

In the case of a cross-site scripting attack, the callback function
replaces the angular brackets in the tainted string in the variable
name with their corresponding HTML entities. This helps to escape
and deactivate any HTML tags in the tainted string. The sanitized
and untainted string in the variable sanitizedName could then be
used safely in document.write().

f u n c t i o n wr i t e (name) {
i f (i s T a i n t e d (name)) {

l e t i d x I n S t r = 0 ;
l e t t a i n t e d r e g i o n s = t a i n t e dR e g i o n s (name) ;
for (i = 0 ; i < t a i n t e d r e g i o n s . l e ng t h ; i ++) {

l e t t a in tLBound = t a i n t e d r e g i o n s [i] [0] ;
l e t t a in tRBound = t a i n t e d r e g i o n s [i] [1] ;

unta intedName += u n t a i n t S t r i n g (name , i d x I n S t r , t a in tLBound , t a in tRBound) ;
i d x I n S t r = ta in tRBound + 1 ;

}
i f (i d x I n S t r != nameLen)

unta intedName += name . s u b s t r i n g (i d x I n S t r , nameLen) ;

document . w r i t e (" He l l o " + untaintedName) ;
} e l se { document . w r i t e (" He l l o " + name) ; }

}

f u n c t i o n u n t a i n t S t r i n g (name , i d x I n S t r , t a in tLBound , t a in tRBound) {
l e t u n t a i n t e d S t r = name . s u b s t r i n g (i d x I n S t r , t a in tLBound) ;

l e t t a i n t e d S u b S t r = name . s u b s t r i n g (ta in tLBound , t a in tRBound +1) ;
l e t s a n i t i z e d S t r = t a i n t e d S u b S t r . r e p l a c e (/ < / g , "& l t ; ") . r e p l a c e (/ > / g , "&g t ; ") ;

return u n t a i n t e d S t r + s a n i t i z e d S t r ;
}

Figure 6: Untainting a user input string

f u n c t i o n s a n i t i z e (s t r , c a l l b a c k) {
l e t i d x I n S t r = 0 ;
l e t t a i n t e d r e g i o n s = t a i n t e dR e g i o n s (s t r) ;
for (i = 0 ; i < t a i n t e d r e g i o n s . l e ng t h ; i ++) {

l e t t a in tLBound = t a i n t e d r e g i o n s [i] [0] ;
l e t t a in tRBound = t a i n t e d r e g i o n s [i] [1] ;

l e t u n t a i n t e d S t r = s t r . s u b s t r i n g (i d x I n S t r , t a in tLBound) ;

l e t t a i n t e d S t r = s t r . s u b s t r i n g (ta in tLBound , t a in tRBound +1) ;
l e t s a n i t i z e d S t r = c a l l b a c k . c a l l (this , t a i n t e d S t r) ;
u n t a i n t e d S t r = u n t a i n t e d S t r + s a n i t i z e d S t r ;
i d x I n S t r = ta in tRBound + 1 ;

}
u n t a i n t e d S t r += s t r . s u b s t r i n g (i d x I n S t r) ;
return u n t a i n t e d S t r ;

}

Figure 7: Sanitize function

5.4 Context-sensitive Auto-sanitization
Our previous defense against SQL injection assumes that tainted
data will only appear in a SQL string, but other forms of SQL
injection may occur. Consider the following code:

execQueryParams (" SELECT ∗ FROM STUDENTS "
+ " WHERE ID = " + s tuden t ID , []) ;

/ / Example − SQL i n j e c t i o n
f u n c t i o n execQueryParams (query , params) {

l e t un ta in t edQuery = " " ;
i f (i s T a i n t e d (query)) {

i f (params && params . l e ng t h !== 0) {
throw new Er ro r (" Ta in t ed query ") ;

}
un ta in t edQuery = s a n i t i z e (query ,

f u n c t i o n (s) {
return s . r e p l a c e (/ ' / g , " ' ' ") ;

}) ;
runQuery (un ta in t edQuery) ;

} e l s e {
runQuery (query) ;

}
}

/ / Example − Cross− s i t e s c r i p t i n g
i f (i s T a i n t e d (name)) {

s an i t i z edName = s a n i t i z e (name ,
f u n c t i o n (s) {

r e t u r n s . r e p l a c e (/ < / g , " \& l t ; ") .
r e p l a c e (/ > / g , " \& g t ; ") ;

}) ;
document . w r i t e (" He l l o " + san i t i z edName) ;

} e l s e {
document . w r i t e (" He l l o " + name) ;

}

Figure 8: Sanitize function call

If the attacker is able to change studentID to "666 OR 1=1",
then the query would instead return all student records. This code
highlights how the appropriate sanitization operationmight depend
on the context of the tainted data. In this case, the library writer
might wish to auto-sanitize tainted strings, but to disallow tainted
data outside of a string context.

The sanitize function in our API does not support context-
sensitive sanitization, but we can achieve this result by using the
taintedRegions function. A simple approach might count the
total number of quotes, and throw an exception if attempting to
evaluate a tainted region of the stringwhere there is an even number
of quotes preceding it in untainted regions. More sophisticated
approaches might involve a SQL tokenizer, similar to the approach
used by Stock et al. [38].

5.5 When Auto-sanitization Fails: Eval
Injection

Precise taint tracking enables auto-sanitization for many cases,
but there are some domains where it does not appear to be useful.
Defending against eval injection is one such case.

Many scripting languages support dynamic code evaluation, and
it is an especially widely used feature in JavaScript, often in cases
where using eval has no obvious benefit [33]. Unfortunately, this

l e t o l dEv a l = e v a l ;
e v a l = f u n c t i o n (s) {

i f (i s T a i n t e d (s))
throw new Er ro r (" Try ing to e v a l a

t a i n t e d s t r i n g ") ;
return o l dEva l (s) ;

}

Figure 9: “Safe” eval

feature can allow an attacker to inject code into a system. Consider
the following code, which uses eval to parse JSON formatted strings:

f u n c t i o n parseJSON (s) {
e v a l (" var o = " + s) ;
return o ;

}

Assume that withdrawalAmount and accountNum are two strings
coming from an untrusted source. If the strings contain numerical
data, the following code will return a well-formed JavaScript object:

var o = parseJSON (" { " +
" withdraw : " + withdrawalAmount + " , " +
" acc : " + accountNum +
" } ") ;

However, if the string assigned to one of these fields is instead

" (f u n c t i o n () { c on so l e . l og (' I hak you ! ') }) () "

then this arbitrary function will be invoked on the system.
Taint tracking can be used to stop these attacks. Figure 9 shows a

version of eval that raises an error rather than evaluating a tainted
string.

Unfortunately, there is no obvious way to sanitize the input.
Auto-sanitization seeks to prevent strings from being evaluated as
code, but that is precisely the function of eval. While our precise
taint tracking API can prevent these attacks, it offers no benefit
over coarse-grained taint tracking in this case.

6 PERFORMANCE TESTS
In order to understand the performance overhead of precise taint
tracking, we evaluated both our coarse-grained and precise taint
tracking implementations against the SunSpider benchmark suite [40]
and compared our results against the baseline, unmodified version
of Rhino. SunSpider contains tests that are balanced between differ-
ent areas of the language and different types of code. These tests
were performed on a MacBook Pro with a 2.7 GHz dual-core Intel
Core i5 processor, 8 GB 1867 MHz DDR3 RAM, and an Intel Iris
Graphics 6100 graphics processor with 1536 MB of memory. Our
code base used Rhino version 1.7.8, and we ran all three versions
in interpreted mode. Five tests from the test suite were removed
due to unresolved errors in the modified variants of Rhino.

In our first experiment, we ran all three variants of Rhino against
SunSpider with no tainted data. This test gives us a comparison of
the performance overhead caused by the implementation of taint

/ / T e s t 0 −− no v a l u e s t a i n t e d
r e t = f a s t a R e p e a t (2 ∗ count ∗ 1 0 0 0 0 0 , ALU) ;
r e t = f a s t a R e p e a t (2 ∗ count ∗ 1 0 0 0 0 0 , ALU) ;
r e t = f a s t a R e p e a t (2 ∗ count ∗ 1 0 0 0 0 0 , ALU) ;
r e t = f a s t a R e p e a t (2 ∗ count ∗ 1 0 0 0 0 0 , ALU) ;
r e t = f a s t a R e p e a t (2 ∗ count ∗ 1 0 0 0 0 0 , ALU) ;
r e t = f a s t a R e p e a t (2 ∗ count ∗ 1 0 0 0 0 0 , ALU) ;
r e t = f a s t a R e p e a t (2 ∗ count ∗ 1 0 0 0 0 0 , ALU) ;
r e t = f a s t a R e p e a t (2 ∗ count ∗ 1 0 0 0 0 0 , ALU) ;
r e t = f a s t a R e p e a t (2 ∗ count ∗ 1 0 0 0 0 0 , ALU) ;
r e t = f a s t a R e p e a t (2 ∗ count ∗ 1 0 0 0 0 0 , ALU) ;

(a) Test 0
/ / T e s t 1 −− 1 o f 10 v a l u e s t a i n t e d
r e t = f a s t a R e p e a t (2 ∗ count ∗ 1 0 0 0 0 0 ,

t a i n t (ALU)) ;
r e t = f a s t a R e p e a t (2 ∗ count ∗ 1 0 0 0 0 0 , ALU) ;
r e t = f a s t a R e p e a t (2 ∗ count ∗ 1 0 0 0 0 0 , ALU) ;
r e t = f a s t a R e p e a t (2 ∗ count ∗ 1 0 0 0 0 0 , ALU) ;
r e t = f a s t a R e p e a t (2 ∗ count ∗ 1 0 0 0 0 0 , ALU) ;
r e t = f a s t a R e p e a t (2 ∗ count ∗ 1 0 0 0 0 0 , ALU) ;
r e t = f a s t a R e p e a t (2 ∗ count ∗ 1 0 0 0 0 0 , ALU) ;
r e t = f a s t a R e p e a t (2 ∗ count ∗ 1 0 0 0 0 0 , ALU) ;
r e t = f a s t a R e p e a t (2 ∗ count ∗ 1 0 0 0 0 0 , ALU) ;
r e t = f a s t a R e p e a t (2 ∗ count ∗ 1 0 0 0 0 0 , ALU) ;

(b) Test 1

Figure 10: Incremental taint introduction

analysis in the two modified variants of Rhino against the unmod-
ified version of Rhino. As shown in Table 1, coarse-grained taint
analysis adds an overhead of approximately 4% over the unmodified
version of Rhino, while the fine-grained taint analysis version adds
an overhead of 22%.

For our second experiment, we wished to see the overhead of
precise taint tracking when significant amounts of tainted data were
involved. We modified the fasta test to introduce tainted variables
in an incremental fashion. Each case performs 10 hashes of strings.
In Test0 (Figure 10a) none of the inputs are marked as tainted, in
Test1 (Figure 10b) the first input is tainted, in Test2, the first two
inputs are marked as tainted, and so on until Test10 with all inputs
marked as tainted.

Table 2 shows the execution time of the tests on both versions
of our JavaScript interpreter with support for tainting. Our results
show that there is some modest slowdown as the amount of tainted
data increases. Further, we see that there is some slight overhead for
the precise taint tracking approach, ranging from 1-20% overhead.

7 CONCLUSION
Taint tracking provides a powerful mechanism to prevent code
injection attacks. While coarse-grained taint tracking is useful for
identifying library misuse, we believe that precise taint tracking
offers a useful alternative in the design space. By giving library

writers the ability to auto-sanitize corrupted inputs, precise taint
tracking offers an alternative to crashing code at runtime.

We have shown how precise taint tracking can be implemented
in JavaScript through the use of a taintedRegions and a sanitize
function. It is our hope that this approach will allow library and
framework developers the ability to createmore robust, fault-tolerant
code.

One limitation for our API is that it does not consider cases where
“double sanitization” is required. For instance, a tainted string might
need to be sanitized to be used in a SQL query, and sanitized again if
that entry would be used in a webpage. For future work, we intend
to explore how our API could be adapted to these cases. We also
plan to explore ways that precise tainting could be optimized to
reduce its overhead.

REFERENCES
[1] Thomas H. Austin, Tim Disney, and Cormac Flanagan. 2011. Virtual values

for language extension. In Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). ACM, 921–938.

[2] Thomas H. Austin and Cormac Flanagan. 2010. Permissive dynamic information
flow analysis. In Programming Languages and Analysis for Security. ACM, 1–12.

[3] Thomas H. Austin and Cormac Flanagan. 2012. Multiple facets for dynamic
information flow. In Symposium on Principles of Programming Languages (POPL).
ACM, 165–178.

[4] Lujo Bauer, Shaoying Cai, Limin Jia, Timothy Passaro, Michael Stroucken, and
Yuan Tian. 2015. Run-time Monitoring and Formal Analysis of Information Flows
in Chromium. In Network and Distributed System Security Symposium (NDSS).
The Internet Society.

[5] Abhishek Bichhawat, Vineet Rajani, Deepak Garg, and Christian Hammer. 2014.
Generalizing Permissive-Upgrade in Dynamic Information Flow Analysis. In
Programming Languages and Analysis for Security. ACM.

[6] Abhishek Bichhawat, Vineet Rajani, Deepak Garg, and Christian Hammer. 2014.
Information Flow Control in WebKit’s JavaScript Bytecode. In Principles of Secu-
rity and Trust (POST). Springer, 159–178.

[7] Abhishek Bichhawat, Vineet Rajani, Jinank Jain, Deepak Garg, and Christian
Hammer. 2017. WebPol: Fine-grained Information Flow Policies forWeb Browsers.
(2017).

[8] Nataliia Bielova and Tamara Rezk. 2016. Spot the Difference: Secure Multi-
execution and Multiple Facets. In European Symposium on Research (ESORICS).
Springer, 501–519. https://doi.org/10.1007/978-3-319-45744-4_25

[9] Nataliia Bielova and Tamara Rezk. 2016. A Taxonomy of Information Flow
Monitors. In Principles of Security and Trust (POST). Springer.

[10] Walter Chang, Brandon Streiff, and Calvin Lin. 2008. Efficient and extensible se-
curity enforcement using dynamic data flow analysis. In Conference on Computer
and Communications Security (CCS). ACM, 39–50.

[11] Laurent Christophe, Elisa Gonzalez Boix, Wolfgang De Meuter, and Coen De
Roover. 2016. Linvail: A General-Purpose Platform for Shadow Execution of
JavaScript. In International Conference on Software Analysis, Evolution, and Reengi-
neering (SANER). IEEE Computer Society, 260–270.

[12] Andrey Chudnov and David A. Naumann. 2015. Inlined Information Flow Moni-
toring for JavaScript. In Conference on Computer and Communications Security
(CCS). ACM, 629–643. http://doi.acm.org/10.1145/2810103.2813684

[13] Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. 2009. Staged
information flow for JavaScript. In Conference on Programming Language Design
and Implementation (PLDI). ACM.

[14] James A. Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: a generic
dynamic taint analysis framework. In International Symposium on Software Testing
and Analysis, ISSTA. ACM, 196–206.

[15] Tom Van Cutsem and Mark S. Miller. 2010. Proxies: Design Principles for Robust
Object-oriented Intercession APIs. In Dynamic Languages Symposium (DLS).
ACM.

[16] Dominique Devriese and Frank Piessens. 2010. Noninterference through Secure
Multi-execution. In Symposium on Security and Privacy. IEEE, Los Alamitos, CA,
USA, 109–124.

[17] Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian Dolby, Stephen Teilhet,
and Ryan Berg. 2011. Saving the world wide web from vulnerable JavaScript. In
International Symposium on Software Testing and Analysis, ISSTA. ACM, 177–187.
https://doi.org/10.1145/2001420.2001442

[18] Arjun Guha, Jean-Baptiste Jeannin, Rachit Nigam, Jane Tangen, and Rian Sham-
baugh. 2017. Fission: Secure Dynamic Code-Splitting for JavaScript. In Summit
on Advances in Programming Languages (SNAPL). Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 5:1–5:13. https://doi.org/10.4230/LIPIcs.SNAPL.2017.5

https://doi.org/10.1007/978-3-319-45744-4_25
http://doi.acm.org/10.1145/2810103.2813684
https://doi.org/10.1145/2001420.2001442
https://doi.org/10.4230/LIPIcs.SNAPL.2017.5

Table 1: Performance Test Results With No Tainted Variables

Test Rhino Base Coarse-Grained Precise
Mean 95% CI Mean 95% CI Mean 95% CI

3d 551.6ms ±88.6% 573.7ms ±122.7% 573.1ms ±83.2%
cube 189.6ms ±114.8% 172.7ms ±76.9% 159.1ms ±92.3%
morph 211.9ms ±69.9% 240.4ms ±85.2% 245.3ms ±48.1%
raytrace 150.1ms ±82.8% 160.6ms ±231.6% 168.7ms ±140.6%

access 890.1ms ±41.1% 804.7ms ±67.0% 838.7ms ±48.5%
binary-trees 69.7ms ±64.3% 71.7ms ±142.5% 81.6ms ±74.6%
fannkuch 465.1ms ±23.5% 406.3ms ±52.6% 421.4ms ±40.9%
nbody 178.6ms ±40.6% 177.0ms ±82.1% 196.6ms ±65.2%
nsieve 176.7ms ±86.7% 149.7ms ±55.5% 139.1ms ±61.4%

bitops 904.9ms ±24.1% 1015.6ms ±12.7% 1061.9ms ±62.0%
3bit-bits-in-byte 152.9ms ±93.6% 154.1ms ±50.2% 145.9ms ±35.2%
bits-in-byte 263.6ms ±14.1% 234.4ms ±28.1% 241.3ms ±130.3%
bitwise-and 244.0ms ±9.7% 405.6ms ±2.5% 432.9ms ±78.9%
nsieve-bits 244.4ms ±10.0% 221.4ms ±4.6% 241.9ms ±46.2%

controlflow 93.3ms ±119.4% 84.4ms ±13.7% 101.1ms ±58.4%
recursive 93.3ms ±119.4% 84.4ms ±13.7% 101.1ms ±58.4%

crypto 266.3ms ±35.2% 267.9ms ±58.43% 766.7ms ±50.0%
md5 172.7ms ±35.8% 174.9ms ±80.6% 594.9ms ±50.7%
sha1 93.6ms ±34.1% 93.0ms ±17.3% 171.9ms ±49.8%

date 108.7ms ±124.0% 166.3ms ±109.8% 192.1ms ±106.3%
format-tofte 108.7ms ±124.0% 166.3ms ±109.8% 192.1ms ±106.3%

math 524.4ms ±12.9% 550.0ms ±35.4% 585.7ms ±49.7%
cordic 254.9ms ±16.8% 249.3ms ±37.7% 267.6ms ±41.9%
partial-sums 173.3ms ±8.1% 206.9ms ±33.8% 223.4ms ±46.6%
spectral-norm 96.3ms ±14.5% 93.9ms ±33.3% 94.7ms ±84.0%

string 249.6ms ±73.2% 263.7ms ±66.7% 264.7ms ±85.5%
fasta 145.0ms ±55.9% 196.0ms ±60.5% 198.9ms ±61.3%
unpack-code 104.6ms ±98.0% 67.7ms ±88.1% 65.9ms ±167.0%

total 3588.9ms ±44.7% 3726.3ms ±55.4% 4384.1ms ±56.0%

Table 2: Taint Performance Test Results

Tainted Coarse-Grained Precise
variables Mean 95% CI Mean 95% CI

0 471.6ms ±62.3% 485.4ms ±97.3%
1 466.7ms ±162.9% 529.0ms ±72.8%
2 481.1ms ±66.4% 524.4ms ±119.8%
3 476.1ms ±89.6% 517.7ms ±77.4%
4 468.7ms ±104.9% 524.6ms ±88.8%
5 489.4ms ±79.0% 557.1ms ±93.2%
6 494.4ms ±95.5% 579.0ms ±78.3%
7 487.1ms ±244.6% 548.7ms ±303.9%
8 521.4ms ±67.4% 553.7ms ±85.6%
9 478.9ms ±192.2% 572.3ms ±227.2%
10 592.1ms ±48.0% 597.7ms ±78.3%

[19] Arjun Guha, Shriram Krishnamurthi, and Trevor Jim. 2009. Using static analysis
for Ajax intrusion detection. InWeb 2.0 Security & Privacy 2012. 561–570. https:
//doi.org/10.1145/1526709.1526785

[20] Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. 2014. JSFlow:
tracking information flow in JavaScript and its APIs. In Symposium on Applied
Computing (SAC). ACM, 1663–1671. https://doi.org/10.1145/2554850.2554909

[21] Daniel Hedin and Andrei Sabelfeld. 2012. Information-flow security for a core of
JavaScript. In Computer Security Foundations Symposium (CSF). IEEE.

[22] Daniel Hedin and Andrei Sabelfeld. 2015. Web Application Security Using JSFlow.
In 17th International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing, SYNASC 2015, Timisoara, Romania, September 21-24, 2015. IEEE, 16–
19.

[23] Daniel Hedin, Alexander Sjösten, Frank Piessens, and Andrei Sabelfeld. 2017. A
Principled Approach to Tracking Information Flow in the Presence of Libraries.
In Principles of Security and Trust (POST). Springer, 49–70. https://doi.org/10.
1007/978-3-662-54455-6_3

[24] Dongseok Jang, Ranjit Jhala, Sorin Lerner, and Hovav Shacham. 2010. An empiri-
cal study of privacy-violating information flows in JavaScript web applications.
In Computer & Communications Security. ACM.

[25] Prakasam Kannan, Thomas H. Austin, Mark Stamp, Tim Disney, and Cormac
Flanagan. 2016. Virtual Values for Taint and Information Flow Analysis. In
Workshop on Meta-Programming Techniques and Reflection, META. ACM.

[26] Christoph Kerschbaumer, Eric Hennigan, Per Larsen, Stefan Brunthaler, and
Michael Franz. 2013. Towards Precise and Efficient Information Flow Control in
Web Browsers. In Trust and Trustworthy Computing Conference. Springer.

[27] V. Benjamin Livshits and Monica S. Lam. 2005. Finding Security Vulnerabilities in
Java Applications with Static Analysis. In USENIX Security Symposium. USENIX
Association.

[28] James Newsome and Dawn Xiaodong Song. 2005. Dynamic Taint Analysis
for Automatic Detection, Analysis, and Signature Generation of Exploits on
Commodity Software. In Network and Distributed System Security Symposium
(NDSS). The Internet Society.

https://doi.org/10.1145/1526709.1526785
https://doi.org/10.1145/1526709.1526785
https://doi.org/10.1145/2554850.2554909
https://doi.org/10.1007/978-3-662-54455-6_3
https://doi.org/10.1007/978-3-662-54455-6_3

[29] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans. 2005. Auto-
matically hardening web applications using precise tainting. In IFIP International
Information Security Conference. Springer, 295–307.

[30] Inian Parameshwaran, Enrico Budianto, Shweta Shinde, Hung Dang, Atul Sadhu,
and Prateek Saxena. 2015. DexterJS: robust testing platform for DOM-based
XSS vulnerabilities. In Special Interest Group on Software Engineering (SIGSOFT).
946–949. https://doi.org/10.1145/2786805.2803191

[31] Tadeusz Pietraszek and Chris Vanden Berghe. 2005. Defending Against Injection
Attacks Through Context-Sensitive String Evaluation. In Recent Advances in In-
trusion Detection Symposium (RAID). 124–145. https://doi.org/10.1007/11663812_7

[32] Rhino JavaScript homepage 2016. Rhino JavaScript homepage. (2016). Available
at https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino.

[33] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. 2011. The Eval
That Men Do: A Large-scale Study of the Use of Eval in Javascript Applications. In
European Conference on Object-oriented Programming (ECOOP). Springer-Verlag,
52–78.

[34] Daniel Schoepe, Musard Balliu, Frank Piessens, and Andrei Sabelfeld. 2016. Let’s
Face It: Faceted Values for Taint Tracking. In European Symposium on Research
(ESORICS). Springer.

[35] Koushik Sen, Swaroop Kalasapur, Tasneem G. Brutch, and Simon Gibbs. 2013.
Jalangi: a selective record-replay and dynamic analysis framework for JavaScript.
In Special Interest Group on Software Engineering (SIGSOFT). ACM, 488–498.

[36] Manu Sridharan, Shay Artzi, Marco Pistoia, Salvatore Guarnieri, Omer Tripp,
and Ryan Berg. 2011. F4F: taint analysis of framework-based web applications. In
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). ACM, 1053–1068. https://doi.org/10.1145/2048066.2048145

[37] Deian Stefan, Edward Z. Yang, Petr Marchenko, Alejandro Russo, David Herman,
Brad Karp, and David Mazières. 2014. Protecting Users by Confining JavaScript
with COWL. In Symposium on Operating Systems Design and Implementation,
OSDI ’14, Broomfield, CO, USA, October 6-8, 2014. USENIX Association, 131–146.

[38] Ben Stock, Sebastian Lekies, Tobias Mueller, Patrick Spiegel, and Martin Johns.
2014. Precise Client-side Protection against DOM-based Cross-Site Scripting. In

USENIX Security Symposium. USENIX Association, 655–670.
[39] Zhendong Su and Gary Wassermann. 2006. The essence of command injection at-

tacks in web applications. In Symposium on Principles of Programming Languages
(POPL). ACM, 372–382. https://doi.org/10.1145/1111037.1111070

[40] Sun Spider. 1.0.2 JavaScript Benchmark. https://webkit.org/perf/sunspider/
sunspider.html. (????). Accessed: April 2016.

[41] Omer Tripp, Pietro Ferrara, and Marco Pistoia. 2014. Hybrid security analysis of
web JavaScript code via dynamic partial evaluation. In International Symposium
on Software Testing and Analysis, ISSTA. ACM, 49–59. https://doi.org/10.1145/
2610384.2610385

[42] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weis-
man. 2009. TAJ: effective taint analysis of web applications. In Conference on
Programming Language Design and Implementation (PLDI). ACM, 87–97.

[43] Petar Tsankov, Marco Pistoia, Omer Tripp, Martin T. Vechev, and Pietro Ferrara.
2016. FASE: functionality-aware security enforcement. In Annual Computer
Security Applications Conference (ACSAC). IEEE, 471–483.

[44] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher
Krügel, and Giovanni Vigna. 2007. Cross-Site Scripting Prevention with Dynamic
Data Tainting and Static Analysis. In Network and Distributed System Security
Symposium (NDSS).

[45] Shiyi Wei and Barbara G. Ryder. 2013. Practical blended taint analysis for
JavaScript. In International Symposium on Software Testing and Analysis, ISSTA.
ACM, 336–346.

[46] Shiyi Wei, Omer Tripp, Barbara G. Ryder, and Julian Dolby. 2016. Revamping
JavaScript static analysis via localization and remediation of root causes of im-
precision. In Special Interest Group on Software Engineering (SIGSOFT). ACM,
487–498. https://doi.org/10.1145/2950290.2950338

[47] Wei Xu, Sandeep Bhatkar, and R. Sekar. 2006. Taint-Enhanced Policy Enforcement:
A Practical Approach to Defeat a Wide Range of Attacks. In USENIX Security
Symposium. USENIX Association.

https://doi.org/10.1145/2786805.2803191
https://doi.org/10.1007/11663812_7
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino
https://doi.org/10.1145/2048066.2048145
https://doi.org/10.1145/1111037.1111070
https://webkit.org/perf/sunspider/sunspider.html
https://webkit.org/perf/sunspider/sunspider.html
https://doi.org/10.1145/2610384.2610385
https://doi.org/10.1145/2610384.2610385
https://doi.org/10.1145/2950290.2950338

	Abstract
	1 Introduction
	2 Related Work
	3 Coarse-grained Taint Tracking
	4 Precise Taint Tracking API
	5 Applications of Precise Taint Tracking
	5.1 Preventing SQL Injection Attack
	5.2 Preventing Cross-Site Scripting
	5.3 Sanitize Function
	5.4 Context-sensitive Auto-sanitization
	5.5 When Auto-sanitization Fails: Eval Injection

	6 Performance Tests
	7 Conclusion
	References

