
1

1

Data Abstraction (Chap 6)

• In Java there are three types of data values:
– primitive data values (int, double, boolean, etc.)

– arrays (actually a special type of object)

– objects

• Objects in a program are used to represent
"real" (and sometimes not so real) objects
from the world around us.

2

Objects

• An object might represent a string of characters, a
planet, a type of food, a student, an employee, a
piece of email, ... anything that can't be (easily)
represented by a primitive value or an array.

• Just as 3 is a primitive value of type int, every
object must also have a type. These types are
called classes.

3

Classes

A class describes a set of objects.
– It specifies what information will be used to represent an

object from the set (e.g. name and salary for an
employee).

– It also specifies what operations can be performed on such
an object (get the name of the student, send an email
message).

2

4

The class String

• String is a standard Java class. Values
from the class String are called objects, so
"hello" is an object from the class
String .

• We can also say "hello" is an instance of
the class String.

• The class String has instance methods
that operate on an instance of class String.
For example: length() and charAt().

5

An example using String

Write a program that determines if a String is a
palindrome.

Pseudocode
compare the first character with the last character

if they are not equal then return false

compare the second character with the next to last

if they are not equal then return false

continue until middle two characters are compared

6

Refined Palindrome Pseudocode

set left to index the leftmost or first character

set right to index the rightmost or last character

while left is less than right

 compare the left charcter with the right character

 if they are not equal then return false

 increment left

 decrement right

end of the while loop

return true

3

7

public class Palindrome {

 public static void main(String[] args) {

 String str1 = "eye", str2 = "bye";

 System.out.println("Palindrome detection");

 System.out.println(str1 + " "

 + isPalindrome(str1));

 System.out.println(str2 + " "

 + isPalindrome(str2));

 }

8

 static boolean isPalindrome(String s) {

 int left = 0;

 int right = s.length() - 1;

 while (left < right) {

 if (s.charAt(left) != s.charAt(right))

 return false;

 left++;

 right--;

 }

 return true;

 }

}

9

String is a bit special
Because strings are so common, Java has
special two pieces of special syntax for the
class String.

– There is syntactic support for string
concatenation.

– There is syntactic support for creating string
literals.

4

10

String concatenation

The operator + is overloaded to implement
concatenation of strings.

 "hello, " + "world"

is equivalent to

"hello, ".concat("world")

11

String literals
String literals are supported.

String s = "hello"

is equivalent to

char[] temp={’h’,’e’,’l’,’l’,’o’};

String s = new String(temp);

12

Strings are immutable
• Instances of the class String are

immutable. This means once created, a
String object cannot be changed.

• One implication of this is that in the
following code fragment:

String s = "some string";

...someFunction(s)...
we know for certain that when the function
returns, s will still be "some string".

5

13

A mutable class - StringBuffer

StringBuffer is another standard Java class for
representing strings. Unlike String, instances
of the class StringBuffer are mutable. The
class StringBuffer has mutator methods -
operations (instance methods) that actually
change the object.

14

class StringBufferInsert {

 public static void main(String[] args) {

 StringBuffer sbuf = new StringBuffer("some string");

 sbuf.insert(sbuf.length() / 2, "mutable ");

 System.out.println(sbuf);

 }

}

Prints:
 some mutable string

15

class StringBufferInsert {

 public static void main(String[] args) {

 StringBuffer sbuf = new StringBuffer("some string");

 insertInTheMiddle(sbuf, "mutable ");

 System.out.println(sbuf);

 }

 static void insertInTheMiddle(StringBuffer buffer,

 String insertThis)

 {

 buffer.insert(buffer.length() / 2, insertThis);

 }

}

Passing Objects to methods

6

16

sbuf

variables in main()

"some string"

The Heap

17

sbuf

variables in main()

buffer

variables in insertInMiddle()

The Heap

"some string"

18

sbuf

variables in main()

buffer

variables in insertInMiddle()

The Heap

"some mutable string"

7

19

An Example: Playing Cards
• For the video poker assignment you will

need to use the package cards. This is not a
standard Java package. It contains 5 classes,
Card, Deck, Hand, Pips, and Suit. All
except Hand are very close to the classes
described in section 6.13 of JBD.

• Hand is a helper class that contains static
methods for determing if a poker hand is
one of the standard poker hands such as
straight, fullhouse, etc..

20

// Using Card, Deck, and Hand

import cards.*;

class CardExample {

 public static void main(String[] args) {

 Deck deck = new Deck();

 Card[] hand = new Card[5];

 System.out.println("Before the shuffle.\n\n" + deck);

 deck.shuffle();

 System.out.println("\n\nAfter the shuffle.\n\n" +
 deck + "\n\n");

 for(int i = 0; i < hand.length; i++) {

 Card card = deck.draw();

 System.out.println("You drew " + card);

 hand[i] = card;

 }

21

 if (Hand.isPair(hand)) {

 System.out.println("You have a pair.");

 }

 else {

 System.out.println("Sorry, no pair.");

 }

 }

}

8

22

os-prompt>java CardExample

Before the shuffle.

Ace:clubs 2:clubs 3:clubs 4:clubs

5:clubs 6:clubs 7:clubs 8:clubs 9:clubs

10:clubs Jack:clubs Queen:clubs King:clubs Ace:diamonds

2:diamonds 3:diamonds 4:diamonds 5:diamonds 6:diamonds

7:diamonds 8:diamonds 9:diamonds 10:diamonds Jack:diamonds

Queen:diamonds King:diamonds Ace:hearts 2:hearts 3:hearts

4:hearts 5:hearts 6:hearts 7:hearts 8:hearts

9:hearts 10:hearts Jack:hearts Queen:hearts King:hearts

Ace:spades 2:spades 3:spades 4:spades 5:spades

6:spades 7:spades 8:spades 9:spades 10:spades

Jack:spades Queen:spades King:spades

23

After the shuffle.

7:spades Jack:clubs 3:hearts 4:clubs

3:spades 8:diamonds Jack:hearts Ace:hearts 4:diamonds

2:hearts Jack:diamonds 7:hearts King:hearts 4:hearts

King:diamonds 9:diamonds 3:clubs 10:hearts King:clubs

Queen:hearts 6:clubs 8:hearts 8:clubs 3:diamonds

Ace:diamonds 5:hearts Jack:spades 10:spades 5:clubs

Ace:clubs 2:diamonds 4:spades 6:spades 9:hearts

Ace:spades 10:clubs 7:clubs Queen:spades 5:spades

2:spades Queen:diamonds 8:spades 2:clubs 6:diamonds

5:diamonds King:spades 7:diamonds 6:hearts 10:diamonds

9:clubs 9:spades Queen:clubs

24

You drew 7:spades

You drew Jack:clubs

You drew 3:hearts

You drew 4:clubs

You drew 3:spades

You have a pair.

os-prompt>

9

25

Call by Value vs Call by Ref

• Although you can modify an object that is
passed to a method, you still cannot modify
a variable that is a reference type variable (a
class or array).

• There is a difference between modifying an
object, and modifying a variable, when the
variable is a reference (anything other than
a primitive type in Java).

26

// ModifyParameters.java - you can’t modify the actual

// arg even when it is a reference

class ModifyParameters {

 public static void main(String[] args) {

 StringBuffer sbuf = new StringBuffer("testing");

 System.out.println("sbuf is now " + sbuf);

 modify(sbuf);

 System.out.println("sbuf is now " + sbuf);

 }

 static void modify(StringBuffer sb) {

 sb = new StringBuffer("doesn’t work");

 }

}

Prints:
 sbuf is now testing
 sbuf is now testing

27

sbuf

variables in main()

sb

variables in modify()

The Heap

"testing"

10

28

sbuf

variables in main()

sb

variables in modify()

The Heap

"testing"

"doesn’t work"

29

Elements of a Simple Class

• A class describes the data values used to
represent an object and any operations that
can be performed on that object.

• The data values are stored in instance
variables, also known as fields, or data
members.

• The operations are described by instance
methods, sometimes called procedure
members.

30

class Counter {

 int value; // instance variable

 void reset() { value = 0; } // mutator method

 int get() { return value;} // accessor method

 void click() { value = (value + 1) % 100;}

}

11

31

// CounterTest.java - demonstration of class Counter

class CounterTest {

 public static void main(String[] args) {

 Counter c1 = new Counter(); //create a Counter

 Counter c2 = new Counter(); //create another

 c1.click(); // increment Counter c1

 c2.click(); // increment Counter c2

 c2.click(); // increment Counter c2 again

 System.out.println("Counter1 value is " +

 c1.get());

 System.out.println("Counter2 value is " +

 c2.get());

 c1.reset();

 System.out.println("Counter1 value is " +

 c1.get());

 }

}

32

Objects in memory

reset()
c1

c2

variables in main()

The Heap

get()

click()

class Counter

value

value 1

2

33

Instance variables and methods

• As seen in the CounterTest example
(and many previous examples using
Strings), you invoke an instance method by
expressions such as

c1.click()

• You can use the same notation to access an
instance variable. So in main() of
CounterTest we could use

c1.value

12

34

Data Hiding

• It is desirable to hide the inner details of a
class (abstract data type) from the users of
the class.

• We want to be able to determine the
correctness of a class without examing the
entire program of which it is a part.

• With our current class Counter we wish to
assert that the value is always between 0
and 99.

35

class CounterTest2 {

 public static void main(String[] args) {

 Counter c1 = new Counter(); //create a Counter

 c1.value = 100; // breaks assumption about Counter

 System.out.println("Counter1 value is " +

 c1.get());

 }

}

Accessing instance variables from outside the
class breaks data hiding.

36

public class Counter {

 private int value; // instance variable

 public void reset() { value = 0; } // mutator method

 public int get() { return value;} // accessor method

 public void click() { value = (value + 1) % 100;}

}

A better Counter.

13

37

public/private/default
• private methods/fields cannot be

accessed from outside of the class
• public methods/fields can be accessed

from anywhere

• default (no modifier) methods/fields have
package access. They can be accessed from
other classes in the same package.
– If you don't specify a package (see section

12.11), all classes in the same directory are part
of the same, default - unnamed package.

38

Constructing objects
• Objects are created with

new ClassName()

• This allocates space for the object in the
heap (memory), and initializes the object by
invoking the constructor for the class if
there is one.

• If there is no constructor, by default all
fields are initialized (boolean fields are
false, all other primitives are 0, and
everything else is intialized to null).

39

Adding constructors to Counter
public class Counter {

 public Counter() { }

 public Counter(int v) { value = v % 100; }

 private int value; // instance variable

 public void reset() { value = 0; } // mutator method

 public int get() { return value;} // accessor method

 public void click() { value = (value + 1) % 100;}

}

14

40

class CounterTest3 {

 public static void main(String[] args) {

 Counter c1 = new Counter(); //a Counter starting at 0

 Counter c2 = new Counter(50); //one starting at 50

 c1.click();

 c2.click();

 System.out.println("Counter1 value is " +

 c1.get());

 System.out.println("Counter2 value is " +

 c2.get());

 }

}

Using constructors.

41

The default, no-arg constructor is only provided
when there are no user specified constructors.

If we had added only the constructor

public Counter(int v) { value = v % 100; }

then creating a Counter with

Counter myCounter = new Counter();

would be a syntax error. There no longer is a
constructor that takes zero arguments.

42

import java.util.Random;

class Dice {

 Dice(int seed) {

 roller = new Random(seed);

 }

 void roll() {

 die1 = roller.nextInt(6) + 1;

 die2 = roller.nextInt(6) + 1;

 }

 int getTotal() { return die1 + die2;}

 public String toString() {

 return die1 + ", " + die2;

 }

 private int die1, die2;

 private Random roller;

}

15

43

import tio.*;

class DiceTest {

 public static void main(String[] args) {

 System.out.println("Enter the seed.");

 Dice dice = new Dice(Console.in.readInt());

 System.out.println("How many times should I roll?");

 int count = Console.in.readInt();

 while(count > 0) {

 dice.roll();

 System.out.println("You rolled " + dice);

 System.out.println("The total is " +

 dice.getTotal());

 count--;

 }

 }

}

44

class Person {

 int age;

 String name;

 char gender;

}

45

class PersonTest {

 public static void main(String[] args) {

 Person john = new Person();

 Person jane = new Person();

 john.age = 19;

 john.name = "John Doe";

 john.gender = ’M’;

 jane.age = 20;

 jane.name = "Jane Doe";

 jane.gender = ’F’;

 printPerson(jane);

 printPerson(john);

 }

16

46

 static void printPerson(Person p) {

 System.out.println("Name: " + p.name);

 System.out.println("Age: " + p.age);

 System.out.println("Gender: " + p.gender);

 }

}

47

toString()

• toString() must be public. A full explanation
must wait until Chapter 7. Every class has a
default toString() that is public. When you
give your class a toString() you can't undo
the already public status of the method.

• By providing every class with a toString()
method, we can use System.out.println() to
print ANY object value.

48

class Person {

 int age;

 String name;

 char gender;

 public String toString() {

 return "Name: " + name + "\nAge: " + age +

 "\nGender: " + gender;

 }

}

class PersonTest {

 public static void main(String[] args) {

 ...

 System.out.println(jane);

 System.out.println(john);

 }

}

17

53

Static fields and methods

• Static methods don't operate (implicitly) on
an instance of the class containing the
method.

• Likewise, static fields are not part of an
object, they are instead part of the class,
hence also called class variables.

54

public class Counter {

 private int value;

 private static int howMany = 0;

 public Counter(){ howMany++; }

 public void reset() { value = 0; }

 public int get() { return value; }

 public void click() { value = (value + 1) % 100; }

 public static int howMany() { return howMany; }

}

Adding a static method and a static field to Counter.

55

// CounterTest2.java - demonstration of a static field

class CounterTest2 {

 public static void main(String[] args) {

 System.out.println(Counter.howMany());

 Counter c1 = new Counter();

 Counter c2 = new Counter();

 c1.click();

 c2.click();

 c2.click();

 System.out.println("Counter1 value is " +

 c1.get()); //prints Counter1 value is 1

 System.out.println("Counter2 value is " +

 c2.get()); //prints Counter2 value is 2

 System.out.println(Counter.howMany()); // prints 2

 }

}

18

56

Objects in memory

reset()
c1

c2

variables in main()

The Heap

get()

click()

class Counter

value

value 1

2

howMany 2

57

System.out.println()

Class System PrintStream object Class PrintStream

println()

print()

out

58

Calling Methods

• methods in the same class
– just use the name

– works for
• instance method to instance method

• instance method to static method

• but NOT static method to instance method

• instance methods
– objectReference.methodName()

• class methods
– ClassName.methodName()

19

59

instance to instance

• We could implement click() in Counter
with

void click() { value = (get() + 1) % 100; }

• This call to get() is operating on the same
Counter object as the one used to invoke
click().

60

Why not static to instance?

• When calling one instance method in the
same class from another in the same class,
they both operate on the same, implicit
object.

• When executing a static method there is NO
implicit object being operated on, hence
calling an instance method in the same class
using only the method names, doesn't
specify what object to operate on.

61

// CounterTest2.java - demonstration of a static field

class CounterTest2 {

 public static void main(String[] args) {

 ...

 System.out.println(Counter.howMany()); // prints 2

 }

}

When executing the call to howMany() below, what
Counter object is being manipulated?

Answer: There isn’t one. So trying to call get() from within
howMany() like we did from within click() won’t work.

20

62

class Change {

 private int dollars, quarters, dimes, pennies;

 private double total;

 Change(int dlrs, int qtr, int dm, int pen) {

 dollars = dlrs;

 quarters = qtr;

 dimes = dm;

 pennies = pen;

 total = dlrs + 0.25 * qtr + 0.1 * dm + 0.01 * pen;

 }

 public String toString() {

 return ("$" + total + "\n"

 + dollars + " dollars\n"

 + quarters + " quarters\n"

 + dimes + " dimes\n"

 + pennies + " pennies\n");

 }

63

 static Change makeChange(double paid, double owed) {

 double diff = paid - owed;

 int dollars, quarters, dimes, pennies;

 dollars = (int)diff;

 pennies = (int)((diff - dollars) * 100);

 quarters = pennies / 25;

 pennies -= 25 * quarters;

 dimes = pennies / 10;

 pennies -= 10 * dimes;

 return

 new Change(dollars, quarters, dimes, pennies);

 }

}

64

public class ChangeTest {

 public static void main(String[] args) {

 double owed = 12.37;

 double paid = 15.0;

 System.out.println("You owe " + owed);

 System.out.println("You gave me " + paid);

 System.out.println("Your change is " +

 Change.makeChange(15.0, 12.37));

 }

}

21

65

class Change {

 ...

 public Change add(Change addend) {

 Change result = new Change(dollars + addend.dollars,

 quarters + addend.quarters,

 dimes + addend.dimes,

 pennies + addend.pennies);

 return result;

 }

}

Change objects are immutable. You don’t want someone
modifying a change value, although you might create new
values. How about an operation that actually operates on a
Change value (other than converting it to a string)? Let’s add
two Change values.

66

public class ChangeTest2 {

 public static void main(String[] args) {

 Change c1 = new Change(10, 3, 4, 3);

 Change c2 = new Change(7, 2, 2, 1);

 Change sum = c1.add(c2);

 // looks almost like sum = c1 + c2;

 System.out.println(sum);

 }

}

67

An alternative method for adding together two Change values.
This is NOT an OOP approach. It would require us to add
the name of the class when calling the method,

 Change sum = Change.add(c1, c2);

and does not support dynamic method dispatch, a topic covered
in Chapter 7. Calling an instance method can be thought of as
sending a message to an object. Calling a static method is just
a function call.

Class method vs Instance method

22

68

class Change {

 ...

 public static Change add(Change augend, Change addend){

 Change result =

 new Change(augend.dollars + addend.dollars,

 augend.quarters + addend.quarters,

 augend.dimes + addend.dimes,

 augend.pennies + addend.pennies);

 return result;

 }

}

The NON-OOP way to do it.

69

Scope

• The scope of class and instance variables is
the entire class, regardless of where the
declaration appears.

• Local variables can hide class/instance
variables (have the same name). The local
variable takes precedence. You can still
access the class/instance variables with the
keyword this.

70

class Counter {

 void reset() { value = 0; }

 int get() { return value; } //current value

 void click() { value = (value + 1) % 100; }

 int value; //0 to 99

}

Notice that in the following, if you read from top
to bottom, we use value before encountering the
definition.

23

71

//Scope2.java: class versus local scope

class Scope2 {

 public static void main(String[] args) {

 int x = 2;

 System.out.println("local x = " + x);

 System.out.println("class variable x = "

 + Scope2.x);

 }

 static int x = 1;

}

The scope of the class variable x, overlaps the
scope of the local variable x.

72

class Change {

 private int dollars, quarters, dimes, pennies;

 ...

 Change(int dollars, int quarters, int dimes,

 int pennies)

 {

 this.dollars = dollars;

 this.quarters = quarters;

 this.dimes = dimes;

 this.pennies = pennies;

 total = dollars + 0.25 * quarters + 0.1 * dimes +

 pennies;

 }

 ...

}

73

Problem: Simulate a poker game

• To simulate a poker game we will need a
Deck of cards.

• A Deck of cards is made up of individual
Cards.

• Each Card is represented by a Suit and a
rank number of Pips.

• The classes in the following slides are
similar to, but not exactly the same as those
in section 6.13 of JBD.

24

74

public class Card {

 private Suit suit;

 private Pips pip;

 public Card(Suit s, Pips p) { suit = s; pip =p; }

 public Card(Card c) { suit = c.suit; pip = c.pip; }

 public String toString() {

 return pip.toString() +":" + suit.toString()+ " ";

 }

 public Pips getPip() { return pip; }

 public Suit getSuit() { return suit; }

 public int getPipAsInt() { return pip.toInt(); }

}

Let’s start with the Card.

75

public class Suit {

 public static final int CLUBS = 1;

 public static final int DIAMONDS = 2;

 public static final int HEARTS = 3;

 public static final int SPADES = 4;

 private int suitValue;

 public Suit(int i) { suitValue = i; }

Now look at Suit.

76

 public boolean equals(Suit otherSuit) {

 if (suitValue == otherSuit.suitValue)

 return true;

 else

 return false;

 }

 public String toString() {

 switch (suitValue) {

 case CLUBS: return "clubs";

 case DIAMONDS: return "diamonds";

 case HEARTS: return "hearts";

 case SPADES: return "spades";

 default: return "error";

 }

 }

}

25

77

public class Pips {

 private int p;

 public Pips(int i) { p = i; }

 public int toInt() { return p;}

 public String toString() {

 if (p > 1 && p < 11)

 return new Integer(p).toString();

 else if (p == 1)

 return "Ace";

 else if (p == 11)

 return "Jack";

 else if (p == 12)

 return "Queen";

 else if (p == 13)

 return "King";

 else return "error";

 }

}

Now look at Pips.

78

/**

 This class represents a standard deck of 52 playing

 cards. There are four suits, clubs, diamonds, hearts

 and spades, and 13 cards of each suit numbered Ace,

 2, 3,... 10, jack, queen, king.

 */

public class Deck {

 private Card[] deck;

 /**

 Construct a deck of 52 cards.

 */

 public Deck() {

 deck = new Card[52];

 for (int i = 0; i < deck.length; i++)

 deck[i] = new Card(new Suit(i / 13 + 1),

 new Pips(i % 13 + 1));

 }

79

 /**

 Randomize the order of the cards in the deck.

 Any cards that were "removed" by calls to draw()

 are returned to the deck.

 */

 public void shuffle() {

 for (int i = 0; i < deck.length; i++){

 int k = (int)(Math.random() * 52);

 Card t = new Card(deck[i]);

 deck[i] = deck[k];

 deck[k] = t;

 }

 nextCard = 0; // all cards are back in the deck

 }

 private int nextCard = 0; // next card to draw

26

80

 /**

 Convert the deck to a string.

 */

 public String toString() {

 String t = "";

 for (int i = 0; i < 52; i++)

 if ((i + 1) % 5 == 0)

 t = t + "\n" + deck[i];

 else

 t = t + deck[i];

 return t;

 }

81

 /**

 Select the next card from the deck. If this method

 is called more than 52 times without shuffling an

 exception will be thrown.

 @return the next card from the deck.

 @throws IndexOutOfBoundsException if an attempt is

 made to draw more than 52 cards without

 reshuffling.

 */

 public Card draw() {

 if(nextCard < deck.length)

 return deck[nextCard++];

 else {

 throw new IndexOutOfBoundsException(

 "No more cards in the deck.");

 }

 }

}

82

/**

 This is a utility class that contains static methods

 for determing the value of a 5 card poker hand,

 represented as an array of Card.

 */

public class Hand {

 /**

 A straight flush is ...

 */

 public static boolean isStraightFlush(Card[] hand) {

 if (!isStraight(hand))

 return false;

 if (!isFlush(hand))

 return false;

 return true;

 }

 ...

}

27

83

OOD - CRC Cards
• Class-Responsibility-Collaborator (CRC)

cards can be used during the design phase
of a project to help work out what classes
are needed, and what operations they should
support.

• A responsibility is an obligation the class
must keep (in Java - a method the class
must support).

• A collaborator is another class that
cooperates with the class to help meet its
responsibilities.

84

Using CRC Cards

• An initial set of classes are identified and
CRC cards created.

• Then various scenarios are played out using
the cards. This may result in identification
of new responsibilities, new collaborators,
or new classes.

• This process repeats until a stable design is
achieved.

85

CRC Cards for Checkers

• Here is a first cut at some classes:
– Player

– Board

– Square

– Piece

– Move

– CheckersGame

• Identify some responsibilities and
collaborations.

