Functional Abstraction (Chap 4)

* Structured Programming
— The flow of control should be as simple as
possible (Chapter 3).
— The construction of a program should embody
top-down design (Chapter 4).
» Top-down design (aka stepwise refinement)
consists of repeatedly decomposing the
problem into smaller problems.

/'l Message.java: Sinple nmethod use
cl ass Message {
public static void main(String[] args) {
System out . println("HELLO DEBRA! ") ;
print Message(); //method call
System out . println("Goodbye.");
}
//definition of method printMessage
static void printMssage() {
Systemout.println("A nmessage for you: ");
Systemout.println("Have a nice day!\n");

The system calls main(). M ethOd Ca”'return
main() calls System.out.printin().
"HELLO DEBRA" is printed
System.out.printIn() returns.
Main() calls printMessage().
printMessage() calls System.out.printin().
"A message for you: " is printed.
System.out.printin() returns.
printMessage() calls System.out.printin().
"Have anice day!\n" is printed.
System.out.printin() returns.
printMessage() returns.
Main() calls System.out.printin().
"Goodbye." is printed.
System.out.printIn() returns.
Main() returns to the system.
The program ends.

Defining Simple Methods

public static ReturnType Identifier (ParameterList) {
Body

¢ ReturnType is the type of value returned from the
method/function.

« Identifier is the name of the method/function.

* ParameterList is a list of variables that will be used to pass
information into the method. These are calledftineal
parameters.

* Body is a list of statements and declarations describing the acti
performed by this method.

DN

Il Message2.java: nethod paraneter use
class Message2 {
public static void main(String[] args) {
System out . println("HELLO DEBRA! ") ;
print Message(5); //actual argunment is 5
System out . println("Goodbye.");
}
static void printMessage(int howvanyTi mes) {
//formal paranmeter is howManyTi nes
Systemout.println("A nmessage for you: ");
for (int i = 0; i < howManyTines; i++)
System out . printl n(
"Have a nice day!\n");

Don't forget st ati c

Until chapter 6, all of the methods you write
should have the qualifier st at i c. If you
leave it off you will get a message like:

Can't nake static reference to nmethod
returnType methodName(...) in class YourClass.

/1 Mn2. java: return expression in a nethod

class Mn2 {
public static void main(String[] args) {
int j =78 k =3*30, m
System out. printl n(
"M ni mum of two integers Test:");
m=nin(j, k);
System out. println("The m ninumof : "

+jp +" "+ k+"is " +m;
}
static int min(int a int b) {
if (a<b)
return a;
el se
return b;
}

More about return

Control returns immediately from a method
when areturn is executed.

static int min(int a, int b) {
if (a<b)
return a;
elseif (b < a)
return b;
Systemout.println("they are equal!!!");
return a;

}

Watch for repeating lines.

If you find you have typed the same sequence
of 3 or more lines, more than once, then you
should consider creating a method to
accomplish the task of those repeated lines.

Occasionally, even aone or two line method
can add to program readability.

/1 M n2Bad.java - doesn’t work because of scope

class M n2Bad {
public static void main(String[] args) {
int j =78 k=3%*30 m
System out . print! n(
"M ni mum of two integers Test:");
m=mn();
Systemout. println("The m ni mumof : "
+j+", " +k+"is " +m;
}
static int mn() {
if (j <k)
return j;
el se
return k;

public class SquareRoots2 {// contains scope errors

public static void main(String[] args) {
int i = 99;
doubl e squareRoot = Math.sqrt(i);

Systemout.printIn("the square root of " + i +
" is " + squareRoot);

for (int i =1; i <=10; i++) {
doubl e squareRoot = Math.sqrt(i);
doubl e square = squareRoot * squareRoot;
Systemout.println("the square root of " + i +
" is " + squareRoot);
Systemout. println("squaring that yields " +

square);
}
Systemout.printin("The final value of square”
+ " is " + square);
}

Top-down Design with methods

Problem: Analyze some company data

represented by a series of integers. Asyou

read each integer, you want to

e print the sum of integers read so far,

« print the count of integers read,

¢ print the minimum integer read up to this
point,

¢ and print the maximum up to this point.

Also, print anice heading for the data.

// RunSuns. java: top level, main(), calls nethods
11/ to handl e subprobl ens
inport tio.*;
class RunSuns {
public static void main(String[] args) {
print Banner();
print Headi ngs();
readAndPri nt Dat a();
}
/1 printBanner, printHeadi ngs and
/1 readAndPrintData definitions will go here

static void printBanner() {
Systemout.println("\n" +

B L AW L

" RUNNI NG SUMS, M NI MUVS, AND MAXIMMS ~ *\n" +

PARE R KA AR RH AKX AR KA AR R R KA XX R KA AR IR AR\ ") ¢

static void printHeadings() {
System out. printl n(
"Count\tltem tSum tM ni num t Maxi nunt') ;

static void readAndPrintData() {
int cnt =0, sum= 0, item snmallest, biggest;

item= Console.in.readlnt();

smal | est = biggest = item
while (item!= -99999) {
cnt ++;

sum = sum + item
smal lest = min(item snallest);
bi ggest = nmax(item biggest);
Systemout.println(cnt + "\t" + item+ "\t"

+ sum+ "\t" + smallest + "\t" + biggest);
item = Console.in.readlnt();

static int min(int a, int b) {
if (a<b)
return a;
el se
return b;
}
static int max(int a, int b) {
if (a>b)
return a;
el se
return b;

os-pronpt >j ava RunSuns < data

Kok kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk ok ok ok kk k

* RUNNI NG SUMS, M NI MUMS, AND MAXIMUMB ~ *

L R A AR T T R Y

Count ltem Sum M ni mum Maxi num
1 19 19 19 19
2 23 42 19 23
3 -7 35 -7 23
4 29 64 -7 29
5 -11 53 -11 29
6 17 70 -11 29

Simulating a Coin Toss

Problem: What is the probability that you can toss
some number, n, headsin arow?

Pseudocode:

I nput the nunber of heads in a rowfor a trial.
I nput the nunber of trials.

Performthe specified nunmber of trials.

Print the result.

Pseudocode for performing the n triads:

initialize the nunber of successes to 0
while there are nore trials to run
run one trial
if the trial was a success
increnent the nunber of successes
end while I oop
return the nunber of successful trials

Pseudocode for performing one trid:

| et nunifosses be the number of tosses for
a successful trial

initialize the nunber of heads tossed to zero
whil e nunber of heads tossed is | ess than nuniosses

toss the coin

if the coin cones up tails

return failure

increnent the number of heads tossed
end while | oop
return success

class Coi nToss {
public static void main(String[] args) {
//1nput the nunber of tosses in arowto try for.
int nunfTosses = 4; //Just use 4 for testing

//1nput the nunmber of trials to run.
int nunifrials = 10000; //Use 10000 for testing

/Il Performthe specified nunber of trials
int nunBuccesses =
perforniri al s(nuniTosses, nunilri al s);

//Print the results
doubl e probability =
nunBuccesses / (doubl e)nunilri al s;
Systemout. println("Probability found in "
+ nunfrials + " is + probability);

/1 performnunirials simulated coin tosses
/1 and return the nunber of successes
static int perfornilrial s(int nunfosses,
int nunifrials) {
Systemout.println("Mnte Carlo " + nunifosses +
" in a row heads");
int nunBuccesses = 0;
for (int trials=0; trials < nunifrials; trials++)
/1 performone trial
if (isAll Heads(nuniTosses))
nunBuccesses++; /1 trial was a success
return nunBuccesses;

/1 Performone trial.

/1 return true if nunTosses heads are tossed

/1 before a tail

static bool ean i sAl | Heads(int nunfTosses) {
doubl e out cone;

for (int numHeads = 0; nunHeads < nunifosses;
nunHeads++) {

out cone = Mat h. randon(); /1 toss the coin
if (outcone < 0.5)
return fal se; /] tossed a tail
}
return true; /1 tossed all heads

}

[/ Fail edSwap. j ava - Call-By-Val ue test
class Fail edSwap {
public static void main(String[] args) {
int nunne = 1, nunifwo = 2;

swap(nunOne, numiwo) ;
Systemout.println("nunOne = " + nunOne);

System out . println("nunmfwo = + nuniwo) ;

static void swap(int x, int y) {

int tenp;

Systemout.println("x =" + x);
Systemout.printin("y =" +vy)
tenp = x;

X =Y,

y = tenp

Systemout.println("x =" + x)
Systemout.println("y =" +vy);

The Software Life Cycle

1. Requirements analysis and definition.
2.Design.

3. Implementation.

4. Testing.

5.Maintenance

A computer game: Requirements

Twenty-one pickup is atwo-player game that
starts with a pile of 21 stones. Each player
takes turns removing 1, 2, or 3 stones from the
pile. The player that removes the last stone
wins.

Refining the requirements

* What is the role of the computer?
— The computer will be one of the players. The
human will always go first.
* What will be the interface between the
human and the computer?
— A simple text interface at the console.

» Does the program play a sequence of games

or just one?
— Just play a single game.

Twenty-one pickup: Design
Top-level Pseudocode:

print instructions
create the initial pile with 21 stones
while the gane is not over

have the user nove

if the game is not over

have the conputer nove

end while I oop
print the outcone

Pseudocode for "Have the user move":

get the user nove fromthe console
renpve the stones fromthe pile
print the user’s nove on the console

Pseudocode for "Have the computer move':

conput e the nunber of stones for the conputer
to renove

renove the stones fromthe pile

print the conputer’s nove on the console

Pseudocode for "Get user move from console":

pronpt the user for the user’s next nove
fromthe console, read the nunber of stones
to renove

whil e the nunber read is not a |l egal nove

pronpt the user again

read the nunber of stones to renove
end while | oop
return the nunber of stones to renove

Jxx
* pl ayer Move conpl etes one nove by the player.
* @ar am nunber Of St ones

* The nunber of stones reanmning in the pile.
* @eturn

* The nunber of stones remmining after the

* user’s nove.

*/

static int playerMve(int nunberCf St ones)

I xx
* conput er Move conpl etes one nove by the conputer.
* @ar am nunber O St ones

* The nunber of stones reanmining in the pile.
* @eturn

* The nunber O Stones remaining after the

* conputer’s nove.

*/

static int conputerMve(int nunberCf Stones)

[xx

* getUserMve reads in the user’s nove, only

* accepting legal inputs.

* @ar am nunber Of St ones

* The nunber of stones reamining in the pile.
* @eturn

* The nunber of stones selected for renmoval by
* the user.

*/

static int getUserMve(int nunber O Stones)

/1 TwentyOnePi ckup.java - conpare with pseudocode

public static void main(String[] args) {
printlnstructions();
Il create the initial pile with 21 stones
int nunber Of Stones = 21;
/1 keep track of who noved | ast
bool ean pl ayer MovedLast = fal se;
while (nunmber O Stones > 0) {
nunber Of St ones = pl ayer Move(nunber O St ones) ;
pl ayer MovedLast = true;
if (nunberOf Stones > 0){
nunmber O St ones = conput er Move(nunber Of St ones) ;
pl ayer MovedLast = fal se;
}
}
/1 print the outconme
if (playerMvedLast)
Systemout . println("Congratul ations, you won.");
el se
Systemout.println("Better luck next time.");

/**
* printlnstructions prints the initial instructions
*/
static void printlnstructions() {
System out. println(
"The object of this gane is to renove the |ast"

+ " stone.\n"

+ "There are 21 stones in the pile to start”
+ " with.\n"

+ "You may renove from1l to 3 stones on each"
+ " pove.\n"

+ "Good Luck!");

/**
* pl ayer Move conpl etes one nove by the player.
* @aram nunber Of St ones

* The nunber of stones reamining in the pile.
* @eturn

* The nunber of stones renamining after the

* user’s nove.

*/

static int playerMve(int nunberCf Stones) {
int nmove = get User Move(nunber Cf St ones) ;

number Of St ones = number Of Stones - nove;
Systemout.println("There are " + nunber O St ones

+ " stones remaining.");
return nunber Of St ones;

}

// Note we cannot change nunber O Stones in nain directly.

I *x
* conput er Move conpl etes one nove by the conputer.
*/
static int conputerMve(int nunberf Stones) {

int nove;

if (nunberCf Stones <= 3) {
move = nunmber Of Stones; /* renove the rest */

}
el se {
move = nunber Of St ones%t;
if (move == 0) nove = 1;
}
nunber Of St ones = nunber Of Stones - nove;
Systemout. println("The conputer renoves " + nove
+ " stones leaving " + nunberCf Stones + ".");

return nunber O St ones;

Twenty-one pickup: Testing

 Statement coverage - execute every
statement at least once.

« Branch coverage - make sure every possiblg
branch has been taken at least once.

Twenty-one pickup: Test Strategy

main(): one case wherein the user wins and one whergin
the computer wins.

computerMove(): computer wins, computer removes 1]
stone because computed move was 0, and computer
removes >1.

playerMove(): no branches.

getUserMove(): one erroneous value when > 3 stoneg
remain, one erroneous value when < 3 stones remain| a
value that is too big, and a value that is too small, end
condition when < 3 stones remain but user enters 3.

static int getUserMve(int number Of Stones) {
Systemout. println("Your nove - how nany stones"
+ " do you wi sh to renmove?");
int move = Console.in.readlnt();

while (nove > nunberCf Stones || nove < 1 || nove > 3) {
if (nunber Of Stones >= 3)
Systemout. println("Sorry," +
" you can only renove 1 to 3 stones.");
el se
Systemout. println("Sorry, you can only "
+ "renove 1 to " + nunber Of St ones
+ " stones.");
Systemout . println("How many stones"
+ " do you wish to renmove?");
nove = Console.in.readlnt();

291 urn nove;
}
Testing example
Correct:
while (nove > nunberOf Stones || nove < 1 || nove > 3)
Incorrect:
while (nmove > nunberfStones || nove < 0 || nove > 3)

Statement coverage does not guarantee that this error is detected. We must have a
test case with move equal to 0.

Recursion

/1 Recur.java - recursive goodbye
public class Recur {
public static void main(String[] args) {
sayGoodBye(5);
}
static void sayGoodBye(int n) {
if (n < 1) //base case
System out. pri nt | n(" ########") ;
el se {
Systemout.println("Say goodbye Gracie.");
sayGoodBye(n - 1); //recursion
}

General Form of recursion

Factorial: A classic recursion

static long factorial (int n) {
if (n<=1)
return 1;
el se
return (n * factorial (n - 1));

| f (stopping condition) Il base case
/* do whatever at the end */;
el se {
// execute recursive step
RecursiveMethod(ar gunent s) ;
}
Factorial:

x = factorial (4);

main() calls factorial (4).
factorial (4) calls factorial (3).
factorial (3) calls factorial (2).

factorial (2) calls factorial (1).

factorial (1) returns 1.
factorial (2) returns 2.
factorial (3) returns 6.
factorial (4) returns 24.
mai n() continues assigning 24 to x.

Method Overloading

static int min(int a, int b) {
if (a<bh)

return a; N
el se Method signatures

return b;
}
static doubl e m n(double a, double b) {
if (a<bh
return a;
el se
return b;

An ambiguous overload.

/1 Ambi guousOver | oad. j ava: won't conpile
cl ass Anbi guousOver | oad {
public static void main(String[] args) {
int i =1, j =2;

Systemout. println(anbig(i,j));

}

static bool ean anbig(float x, int y){
return x <vy;

}

static bool ean anbig(int x, float y){
return x <vy;

}

}

An ambiguous overload - corrected.

/1 The nmethod definitions were ok, it was the call
/1 that was bad.
cl ass Anbi guousOverl oad {
public static void main(String[] args) {
int i =1, j =2;

Systemout. println(anbig(i,(float)j));

}

static bool ean anbi g(float x, int y){
return x <y,

}

static bool ean anbig(int x, float y){
return x <vy;

}

}

ja\/ajOC I ——
Eaae—

] ** -'=E:u.ﬂ‘.'ﬂ:=| i
* pl ayer Move conpl etes one nove by the player. = -
* @ar am nunber Of St ones i T st g
* The nunber of stones reamining in the pile. . -
* @eturn —
* The nunber of stones renaining after the
*

user’s nove.
. .

static int playerMve(int nunberOf Stones) {

javadoc -package TwentyOnePickup.java

produces a number of html files.] =

i P -

&"‘;‘;"_‘q
— =
aas
o i e P I . gl 1 3 i i -
i bam
AT ——
e ey l i
Comst e Dusl L
fr— .
Ty md R _ -
P T ""-_: = =2 = " =
Slanbad sl A i
e E E
i 13 i o R ae 13 i o= R

1 A Final Example

[
T m——— * The following code is a solution to Chap 4
— FERFEEER. Exercise 17. | presented this example after

starting the lectures on arrays and after

_- students had submitted their solutions to the
T problem.

"_'-.?-—?d-r!lhl-ri

| .

*

Author: Charlie MDowel |l (charlie@se)

*

This program al |l ows the user to play the ganme of
Craps. The rules of craps are as follows:

if the first roll is a 7 or a 11, you win i medi ately
if the first roll is a 2 or a 12, you |l ose

imedi ately otherwise, you go into "point node" and
the first roll becones the * point. Now, you keep
rolling the dice until you get the point again or a
* 7. If you got the point, you win, if you get a 7,

you | ose.

*

*

*

*

*

*

*

*

The user bets sone anpunt on each round of craps.

* |f she wins, she gets additional noney equal to the
* bet. If she | oses, she |oses the noney she bet.

*/

inport tio.*;
inport java.util.*;

class Craps {
public static void main(String[] args) {
int noney = 100;

Systemout.println("Enter the seed.");
int seed = Console.in.readlnt();

Random random = new Randon(seed);

int bet = getBet(noney); // Get initial bet

while (bet > 0 & noney > 0) {
bool ean won = rol | Di ceUnti| W nOr Lose(randon);
if (won) {
noney = noney + bet;
System out. println("You won, you now have " +
noney) ;
} else {
noney = noney - bet;
Systemout.println("You | ost, you now have " +
noney) ;
}
if (nmoney > 0) {
bet = getBet(noney); // If user can bet, let her

/*

* This nmethod plays one round of craps and tells us
* whet her the user won or |ost.

* input: random nunber generator (needed by rollDice)
* output: won or |ost

*/

static bool ean rol | Di ceUntil WnOr Lose(Random random) {
int point = rollDice(randonj;
if (point ==7 || point == 11)
return true;
else if (point == 2 || point == 12)
return fal se;
bool ean wi nLose = rol | Until PointOr7(point, random;
return winLose;

* This nmethod continues the gane in "point node".

* Here, the user already has a "point" and is |ooking
* to match it by repeatedly rolling the dice. If she
* can find the match before she rolls a 7, she wins,
* otherw se, she |oses.

* input: point - the point we are |ooking for

* random - random nunber generat or
* output: won or lost in point node
*/

static boolean rol |l UntilPointOr7(int point,
Random r andom)

static boolean roll Until PointOr7(int point,
Random r andon)

{
int nextRoll = rollDice(randon;
while (nextRoll != point & nextRoll !'=7) {
nextRol | = rol | D ce(random;
}
if (nextRoll ==7)
return fal se;
el se
return true;
}

10

*

*

st

Sinul ates rolling of dice by generating random
nunbers froma random nunber generator.
input: random nunmber generator to use.
W need this because we want
to use the *sanme* random nunber generator
t hroughout and duplicate our results.
output: total after rolling the dice.
/

atic int rollD ce(Random random) {

int diel = randomnextInt(6) + 1;

int die2 = randomnextInt(6) + 1;
Systemout.printIn("roll is " + diel + ", " + die2);
return diel + die2;

/* Returns the anmount bet by the user. Perforns input

* checking to ensure that the user does not bet nore

* than she has and she does not bet a negative val ue.

* input: amount user currently has. This is checked

* agai nst the amount she wants to bet to make
* sure the bet is valid.

* output: a valid bet

*/

static int getBet(int total) {

Systemout.println("Enter bet.");

int bet = Console.in.readlnt();

while (bet <0 || bet >total) {
Systemout.println("Not an ok bet.");
Systemout.println("Enter bet.");
bet = Console.in.readlnt();

}

return bet;

11

