The Readers/Writers Problem

* The producer/consumer problem is one
classic distributed computing problem.

¢ Another is the readers/writers problem.

* The problem is to allow concurrent access
to some data.

¢ You want to allow multiple readers, but you
do not want a reader and a writer to overlap.
This could result in the reader reading
inconsistent data.

Readers/Writers

public class ReadWriteNoPref HP
; Equal Priority
public synchronized void startRead()

while(writers > 0)
wait();
readers++;

}
public synchronized void endRead()

{
readers--;
notify();

}

//continued

public synchronized void startWrite()

{
while(readers > 0 || writers > 0)
wait();
writerst+;

}
public synchronized void endWrite()
{

writers--;
notify();
}

private int readers, writers, writerswWaiting;

notify() vs notifyAll()

* notify() awakens at most one thread.

« notifyAll() awakens all threads blocked on
the lock for the specified object.

* Use notifyAll() when

— there are many threads to wake up
simultaneously, or

— only one thread should continue but the

determination of which one is up to the threads
themselves.

Give Writers
public class ReadWritePriority Priori ty

public synchronized void startRead()
{
while(writers > 0 || writersWaiting > 0)
wait();
readers++;

public synchronized void endRead()
{

readers--;

notifyAll();

/I continued

public synchronized void startWrite()
{
writersWaiting++;
while(readers > 0 || writers > 0)
wait();
writersWaiting--;
writers++;

public synchronized void endWrite()
{

writers--;

notifyAll();

private int readers, writers, writerswWaiting;

}

Protecting

public class ReadWritePriority2 read/write
{
public synchronized void startRead()

while(writers > 0 || writersWaiting > 0)
wait();

readerst+;

readList.add(Thread.currentThread());

public synchronized void endRead()

{
readers—-;
readList.remove(Thread.currentThread());
notifyAll();

public synchronized void startWrite()
{

writersWaiting++;

while(readers > 0 || writers > 0)

wait();

writersWaiting--;

writers++;

theWriter = Thread.currentThread();

public synchronized void endWrite()
{

writers--;

theWriter = null;

notifyAll();
}

public Object read(Object!nput in)
{

if(IreadList.contains(Thread.currentThread()))
throw new I1legal ReadException();
return in.readObject();

}
public void write(ObjectOutput out)

if(theWriter != Thread.currentThread())
throw new Illegal WriteException();
out.writeObject();

private int readers, writers, writerswaiting;
private Vector readList = new Vector();
private Thread theWriter;

}

More about java.lang.Thread

yield()
sleep(milliseconds)

join(), join(milliseconds)
suspend(), resume()
setPriority()
Thread.currentThread()

Remote Method Invocation

RMI allows a program running on one
computer, to contain a reference to an
object on another computer.

After the initial setup, this makes
communicating with another program, as
easy as calling a method.

A Brief Look at RMI

First let's assume that someone else has
created a remote object and registered it
with some lookup service.

In addition, we will assume that the client
will not be passing objects to the remote
objects methods, that are instances of
classes the server doesn't know about.

Get the remote interface

import java.rmi.*;

public interface MessageServer extends Remote

{
public String getMessage() throws RemoteException;

}

Write the Client

import javarmi.*;
public class Client

public static void main(String[] args)
throws java.rmi.RemoteException

{
MessageServer server = null;

/I Using rmi requires a security manager.
if (System.getSecurityManager() == null)
System.setSecurityM anager(new RM I SecurityManager());

/I Lookup the remote object.

try {
String name ="//" + args[0] + "/MessageServer";
server = (MessageServer) Naming.lookup(name);

}

catch (Exception €) {
System.err.printin(“client failed " + €);
e.printStack Trace();

}

/I We can now use the object referenced by server

/I just like any other object. It may throw a RemoteException

/I hence the throws clause above.

System.out.printin("Message Received: " + server.getMessage());
System.out.printin("Message Received: " + server.getM essage());

Run the Client

Y ou must provide a security policy file.

The one shown is sufficient for opening sockets between

the client/server and web servers, serving up the required classes.
java -Djava.security.policy=java.policy Client sundance

Where java.policy contains:

grant {
permission java.net.SocketPermission "*:1024-65535",
"connect,accept”;
permission java.net.SocketPermission "*:80",
"connect";
b
Server Client
remoteVar
localVar

E
obj obj

Server Client

remoteVar

/

localVar

rmiregistry

Server

remote
objects http

http ™.
‘1 web server

rmi

Creating the Remote Object

1 Create the interface that will be used by both the
client and the server.

2 Create the remote class that implements the
remote interface from step 1.

3 Create stub and skeleton files and put them
where the rmiserver can find them via http.

4 Create the server that instantiates the remote
object and registers it with the lookup service.

5 Start the lookup service (rmiregistry).
6 Run the server created in step 4.

