
1

The Readers/Writers Problem
• The producer/consumer problem is one

classic distributed computing problem.

• Another is the readers/writers problem.

• The problem is to allow concurrent access
to some data.

• You want to allow multiple readers, but you
do not want a reader and a writer to overlap.
This could result in the reader reading
inconsistent data.

Readers/Writers
Equal Prioritypublic class ReadWriteNoPref

{
 public synchronized void startRead()
 {
 while(writers > 0)
 wait();
 readers++;
 }
 public synchronized void endRead()
 {
 readers--;
 notify();
 }
 //continued

 public synchronized void startWrite()
 {
 while(readers > 0 || writers > 0)
 wait();
 writers++;
 }
 public synchronized void endWrite()
 {
 writers--;
 notify();
 }
 private int readers, writers, writersWaiting;
}

2

notify() vs notifyAll()
• notify() awakens at most one thread.

• notifyAll() awakens all threads blocked on
the lock for the specified object.

• Use notifyAll() when
– there are many threads to wake up

simultaneously, or

– only one thread should continue but the
determination of which one is up to the threads
themselves.

Give Writers
Prioritypublic class ReadWritePriority

{
 public synchronized void startRead()
 {
 while(writers > 0 || writersWaiting > 0)
 wait();
 readers++;
 }
 public synchronized void endRead()
 {
 readers--;
 notifyAll();
 }
 // continued

 public synchronized void startWrite()
 {
 writersWaiting++;
 while(readers > 0 || writers > 0)
 wait();
 writersWaiting--;
 writers++;
 }
 public synchronized void endWrite()
 {
 writers--;
 notifyAll();
 }
 private int readers, writers, writersWaiting;
}

3

Protecting
read/writepublic class ReadWritePriority2

{
 public synchronized void startRead()
 {
 while(writers > 0 || writersWaiting > 0)
 wait();
 readers++;
 readList.add(Thread.currentThread());
 }
 public synchronized void endRead()
 {
 readers--;
 readList.remove(Thread.currentThread());
 notifyAll();
 }

 public synchronized void startWrite()
 {
 writersWaiting++;
 while(readers > 0 || writers > 0)
 wait();
 writersWaiting--;
 writers++;
 theWriter = Thread.currentThread();
 }
 public synchronized void endWrite()
 {
 writers--;
 theWriter = null;
 notifyAll();
 }

 public Object read(ObjectInput in)
 {
 if(!readList.contains(Thread.currentThread()))
 throw new IllegalReadException();
 return in.readObject();
 }
 public void write(ObjectOutput out)
 {
 if(theWriter != Thread.currentThread())
 throw new IllegalWriteException();
 out.writeObject();
 }
 private int readers, writers, writersWaiting;
 private Vector readList = new Vector();
 private Thread theWriter;
}

4

More about java.lang.Thread

• yield()

• sleep(milliseconds)

• join(), join(milliseconds)

• suspend(), resume()

• setPriority()

• Thread.currentThread()

Remote Method Invocation

• RMI allows a program running on one
computer, to contain a reference to an
object on another computer.

• After the initial setup, this makes
communicating with another program, as
easy as calling a method.

A Brief Look at RMI

• First let's assume that someone else has
created a remote object and registered it
with some lookup service.

• In addition, we will assume that the client
will not be passing objects to the remote
objects methods, that are instances of
classes the server doesn't know about.

5

Get the remote interface

import java.rmi.*;

public interface MessageServer extends Remote
{
 public String getMessage() throws RemoteException;
}

 Write the Client
import java.rmi.*;

public class Client
{
 public static void main(String[] args)
 throws java.rmi.RemoteException
 {
 MessageServer server = null;

 // Using rmi requires a security manager.
 if(System.getSecurityManager() == null)
 System.setSecurityManager(new RMISecurityManager());

 // Lookup the remote object.
 try {
 String name = "//" + args[0] + "/MessageServer";
 server = (MessageServer) Naming.lookup(name);
 }
 catch (Exception e) {
 System.err.println("client failed " + e);
 e.printStackTrace();
 }

 // We can now use the object referenced by server
 // just like any other object. It may throw a RemoteException
 // hence the throws clause above.
 System.out.println("Message Received: " + server.getMessage());
 System.out.println("Message Received: " + server.getMessage());
 }
}

6

Run the Client
You must provide a security policy file.
The one shown is sufficient for opening sockets between
the client/server and web servers, serving up the required classes.

java -Djava.security.policy=java.policy Client sundance

Where java.policy contains:

grant {
permission java.net.SocketPermission "*:1024-65535",
"connect,accept";
permission java.net.SocketPermission "*:80",
"connect";

};

Server Client

remoteVar

localVar

heap heap

local
obj

remote
obj

Server Client

remoteVar

localVar

heap heap

stubskeleton

local
obj

remote
obj

7

Client

Server

remote
objects

rmiregistry

web server

web server

rmi

rmi

rmi

http
http

http

Creating the Remote Object
1 Create the interface that will be used by both the

client and the server.

2 Create the remote class that implements the
remote interface from step 1.

3 Create stub and skeleton files and put them
where the rmiserver can find them via http.

4 Create the server that instantiates the remote
object and registers it with the lookup service.

5 Start the lookup service (rmiregistry).

6 Run the server created in step 4.

