
1

1

Threads - Chapter 13

• Threads allow a program to "do more than
one thing at a time."

• If the hardware has multiple processing
units, then this can result in faster execution
of a program.

• In distributed programming, the distinct
tasks to be performed may happen on
different physical computers (often called a
client and a server).

2

Concurrent Programming Needs

• Concurrency - It must be possible to create
multiple execution threads (or processes or
tasks or whatever they are called).

• Synchronization - It must be possible for
two threads to synchronize so that they do
not interfere with each other.

• Communication - The threads must be able
to share information.

3

The Implicit AWT Thread

• Every GUI program built using Swing and
AWT has two threads.

• The main thread is the one executing main().
It often terminates after the GUI is built.

• The event thread detects GUI events and
invokes the appropriate listener methods,
and methods such as paint().

2

4

//AwtThread.java - doing two things at once

import java.awt.*;

import javax.swing.*;

import tio.*;

class AwtThread {

 public static void main(String[] args)

 throws InterruptedException

 {

 createGUI();

 int count = 0;

 while (true) {

 count++;

 // go to sleep for 1 second = 1000 milliseconds

 Thread.currentThread().sleep(1000);

 System.out.println("count is now " + count);

 System.out.flush(); // force output to print now

 }

 }

5

 static void createGUI() {

 JFrame frame = new JFrame("AwtThread");

 Container pane = frame.getContentPane();

 JButton quit = new JButton("Quit");

 quit.addActionListener(new GoodBye());

 pane.add(quit, BorderLayout.NORTH);

 JButton counter = new JButton("Click to count");

 counter.addActionListener(new ClickCounter());

 pane.add(counter, BorderLayout.SOUTH);

 frame.pack();

 frame.show();

 }

}

6

//ClickCounter.java - count button clicks

import java.awt.event.*;

class ClickCounter implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 count++;

 System.out.println("Total clicks is " + count);

 }

 int count = 0;

}

3

7

Creating Your Own Threads

//TwoThreads.java - create two simple threads

class TwoThreads{

 public static void main(String[] args) {

 SimpleThread t1 = new SimpleThread(1, 1000);

 SimpleThread t2 = new SimpleThread(2, 1300);

 t1.start();

 t2.start();

 }

}

8

//SimpleThread.java - periodically print a message

class SimpleThread extends Thread {

 private int id;

 private int delay;

 SimpleThread(int threadId, int threadDelay) {

 id = threadId;

 delay = threadDelay; // in milliseconds

 }

9

 public void run() {

 System.out.println("Thread" + id + " started.");

 System.out.flush(); //needed to see the effect

 for (int i = 0; i < 10; i++) {

 try {

 sleep(delay); // sleep delay milliseconds

 }

 catch (InterruptedException e) {

 System.out.println("sleep interrupted: "+e);

 }

 System.out.println("Thread" + id + ": i = " +i);

 }

 System.out.println("Thread" + id + " finished.");

 }

}

4

10

Communication Between Threads

• Threads within the same JVM can
communicate by each having a reference to
a shared object.

• If one changes a field in the object, the
other can view the updated field.

11

//TwoThreads2.java - two threads sharing a counter

class TwoThreads2 {

 public static void main(String[] args) {

 Counter counter = new Counter(0, 1000000);

 Racer t1 = new Racer(1, counter);

 Racer t2 = new Racer(2, counter);

 t1.start();

 t2.start();

 }

}

12

//Racer.java - click the counter 100000 times

class Racer extends Thread {

 Racer(int id, Counter counter) {

 this.id = id;

 this.counter = counter;

 }

 public void run() {

 System.out.println("Thread" + id + " started.");

 for (int i = 0; i < 1000000; i++) {

 counter.click();

 }

 System.out.println("Thread" + id +

 " finished counter is " + counter.get());

 }

 private int id;

 private Counter counter;

}

5

13

Synchronizing

• If you run TwoThreads2, you will probably
not get the "expected" final result of
2,000,000.

• Why not?

14

A Critical Section
• The statement
value = (value + 1) % modulus

is compiled into a sequence of bytecodes
similar to:

load value
load 1
add
load modulus
mod
store value

• That sequence is a critical section, it must
be completed without interference.

15

Context Switches and Races
• Consider this sequence of events:

Thread 1 Thread 2 value
Load value 0

Load value
Store value 1
Load value
Store value 2
Load value

Store value 1

6

16

synchronized

• A synchronized method is a critical section.
• //in class Counter

public synchronized void click() {
 value = (value + 1) % modulus;
}

17

synchronized methods
• Two threads cannot both be executing a

synchronized method for a particular object,
at the same time.

• Synchronization is on a per object basis.
• If a class has two synchronized methods.

You cannot have one thread in one method
and a different thread in the other method.

• If you have two objects, one thread can be
in a method for one object, and another
thread in the same (or different method) for
the other object.

18

Locks

• Every object (not class) can be thought of as
having a lock.

• When a thread invokes a synchronized
method, it must first lock the lock for the
object, having found the lock unlocked.

• If another thread trys to lock the locked lock,
it is blocked until the lock is unlocked.

• We usually refer to "locking the lock" as
obtaining the lock, and "unlocking the lock"
as releasing the lock.

7

19

Signal-Wait Synchronization

• Mutual exclusion synchronization (critical
sections) allows us to keep two threads from
interfering with each other. But what about
making one thread wait for something to get
finished?

• For this we use signal-wait synchronization,
or in Java wait-notify.

• For example, one thread is filling a buffer,
and another thread is reading values out of
the buffer. This is called the producer-
consumer problem.

20

Producer-Consumer

• How do we make sure that the consumer
doesn't try and consume items from an
empty buffer, and that the producer doesn't
try to produce items and place them in an
already full buffer (that has yet to be
consumed).

21

//ProducerConsumer.java - signal/wait synchronization

class ProducerConsumer {

 public static void main(String[] args) {

 Buffer buffer = new Buffer();

 Producer prod = new Producer(buffer);

 Consumer cons = new Consumer(buffer);

 prod.start();

 cons.start();

 }

}

Notice the shared Buffer object in this example.

8

22

//Producer.java - "produce" the integers 0-9

class Producer extends Thread {

 Producer(Buffer buf) {

 buffer = buf;

 }

 public void run() {

 System.out.println("Producer started.");

 for (int i = 0; i < 10; i++) {

 // code to produce a value here

 System.out.println("Producer produced " + i);

 buffer.put(i); // let i be the produced value

 }

 System.out.println("Producer is finished.");

 }

 private Buffer buffer;

}

23

//Consumer.java - consume first 10 integers from buffer

class Consumer extends Thread {

 Consumer(Buffer buf) {

 buffer = buf;

 }

 public void run() {

 System.out.println("Consumer started.");

 for (int i = 0; i < 10; i++) {

 int value = buffer.get();

 System.out.println("Consumer received "+value);

 // code to "consume" the value here

 }

 System.out.println("Consumer is finished.");

 }

 private Buffer buffer;

}

24

//Buffer.java - a synchronized shared buffer

class Buffer {

 synchronized void put(int newValue) {

 while (!empty)

 try {

 //wait for previous value to be consumed

 wait();

 }

 catch(InterruptedException e) {

 System.out.println("wait interrupted: " + e);

 }

 value = newValue;

 empty = false;

 notify();

 }

9

25

 synchronized int get() {

 while (empty)

 try {

 wait(); // wait for buffer to fill

 }

 catch(InterruptedException e) {

 System.out.println("wait interrupted: "+e);

 }

 empty = true;

 notify();

 return value;

 }

 private boolean empty = true;

 private int value;

}

26

Monitors for Synchronizing

• Synchronization in Java is based on a
technique called monitor synchronization.

• An object with synchronized methods
monitors the execution of those methods,
allowing only one thread at a time to
execute.

• Some monitor variations allow threads to
synchronize on condition variables. That is
a thread waits until a condition is true.

27

Condition Variables

• Java doesn't have condition variables. In
order to follow the monitor-with-condition-
variables style of synchronization, the
programmer must explicitly check for "the
condition" after a thread returns from a
wait().

• That is why we used
while (!empty) ...

instead of
if (!empty) ...

10

28

Semaphores

• Another important synchronization method
uses semaphores.

• Semaphores look a lot like Java's locks with
wait() and notify().

• They are very different. Semaphores can
count.

29

Semaphore’s signal and wait
• A semaphore has an internal counter.

• A wait decrements the internal counter and
waits if the counter is less than 0.

• A signal increments the internal counter and
wakes up a waiting thread if the counter is
less than or equal to 0.

• Java's wait() and notify() have no counter.
A wait() always waits, and a notify() goes
unnoticed if no thread is waiting.

30

Synchronization States

Try to enter

wanting

running

waiting

locked

unlocked

notify()

wait()

Exit: issue unlock

unlock

11

Sockets

• Sockets are the basic mechanism used by
two computers to communicate over the
Internet.

• They are the fundamental building block for
other distributed computing models.

• They are easy to use.

32

Socket Overview

• A server begins listening on a port.

• A client attempts to connect to a given port
on a given computer (Internet host or IP
address).

• If successful both the server and the client
will have an InputStream and an
OutputStream.

33

A Connected Server and Client

S
o
c
k
e
t

InputStream

OutputStream

S
o
c
k
e
t

InputStream

OutputStream

Server
Socket

Server Client

12

 ServerSocket sock=null;

 try {

 sock = new ServerSocket(portnum);

 } catch (IOException e) { }

 System.out.println("Now listening at port " + portnum);

 Socket clientSocket = null;

 try {

 clientSocket = sock.accept();

 } catch (IOException e) { }

 InputStream in = clientSocket.getInputStream();

 OutputStream out = clientSocket.getOutputStream();

 System.out.println("Connection established.");

Creating the server
socket

Socket sock = new Socket(hostname,portnum);

InputStream input = sock.getInputStream();

OutputStream output = new sock.getOutputStream();

Creating the client socket

36

//MiniServer.java - server that echos what it receives

import java.io.*;

import java.net.*;

class MiniServer{

 public static void main (String args[])

 throws java.io.IOException

 {

 if (args.length != 1) {

 System.out.println("Usage: " +

 "java MiniServer portnumber");

 System.exit(1);

 }

 int portnum = Integer.parseInt(args[0]);

13

37

 ServerSocket sock = null;

 try {

 sock = new ServerSocket(portnum);

 }

 catch (IOException e) {

 System.out.println("Could not listen on port: "

 + portnum + ", " + e);

 System.exit(1);

 }

 System.out.println("Now listening at port " +

 portnum);

38

 Socket clientSocket = null;

 try {

 clientSocket = sock.accept();

 }

 catch (IOException e) {

 System.out.println("Accept failed: " +

 portnum + ", " + e);

 System.exit(1);

 }

 // A client has tried to connect

39

 BufferedReader input = new BufferedReader(

 new InputStreamReader(

 clientSocket.getInputStream()));

 PrintWriter output =

 new PrintWriter(clientSocket.getOutputStream());

 System.out.println("Connection established.");

 int i = 0;

 String line = input.readLine();

 while (line!=null) {

 System.out.println(line);

 i++;

 output.println("line " + i + ":" + line);

 output.flush();

 line = input.readLine();

 }

 }

}

14

40

//MiniClient.java - simple client for MiniServer

import java.io.*;

import java.net.*;

import tio.*;

class MiniClient{

 public static void main (String args[])

 throws java.io.IOException

 {

 if (args.length != 2) {

 System.out.println("Usage: " +

 "java MiniClient hostname portnumber");

 System.exit(0);

 }

 int portnum = Integer.valueOf(args[1]).intValue();

 Socket sock = new Socket(args[0], portnum);

41

 BufferedReader input = new BufferedReader(

 new InputStreamReader(sock.getInputStream()));

 PrintWriter output =

 new PrintWriter(sock.getOutputStream());

 System.out.println("Connection established.");

 System.out.println("type some characters then" +

 " return:");

 String line = Console.in.readLine();

 while (line != null) {

 output.println(line);

 output.flush();

 line = input.readLine();

 System.out.println("got back:" + line);

 System.out.println("type some characters: ");

 line = Console.in.readLine();

 }

 }

}

42

A Multithreaded Server

• The ServerSocket is only used to create the
Socket.

• The call sock.accept() returns a Socket that
is uesd to connect to the client.

• The server can accept more connections by
issuing another sock.accept() call.

• We need a thread to manage each
connection.

15

43

//MultiServer.java - a multithreaded server

import java.io.*;

import java.net.*;

class MultiServer {

 public static void main (String args[])

 throws java.io.IOException

 {

 int portnum = Integer.parseInt(args[0]);

 ServerSocket sock = null;

 try {

 sock = new ServerSocket(portnum);

 }

 catch (IOException e) {

 System.out.println("Could not listen on port: "

 + portnum + ", " + e);

 System.exit(1);

 }

44

 System.out.println(

 "Now listening at port " + portnum);

 Socket clientSocket = null;

 while (true) {

 try {

 clientSocket = sock.accept();

 }

 catch (IOException e) {

 System.out.println("Accept failed: "

 + portnum + ", " + e);

 System.exit(1);

 }

 WorkerThread worker =

 new WorkerThread(clientSocket);

 worker.start();

 }

 }

}

45

//WorkerThread.java - handle one connection
import java.io.*;

import java.net.*;

class WorkerThread extends Thread {
 WorkerThread(Socket socket)

 {
 clientSocket = socket;

 workerNumber++;
 number = workerNumber;

 }
 public void run()
 {

 try {
 BufferedReader input = new BufferedReader(

 new InputStreamReader(
 clientSocket.getInputStream()));

 PrintWriter output = new PrintWriter(
 clientSocket.getOutputStream());

16

46

 System.out.println("Connection " +
 number + " established.");

 String line = input.readLine();

 while (line != null) {
 System.out.println(line);

 output.println("worker " + number + ":"+line);
 output.flush();

 line = input.readLine();
 }

 }
 catch (IOException e) {
 System.out.println(e);

 }
 System.out.println("worker " + number+" exiting");

 }
 private Socket clientSocket;

 private static int workerNumber = 0;
 private int number;

}

47

A Synchronized Statement

• wait() and notify() are inherited from
Object.

• It is a runtime error to invoke wait() or
notify for an object, when the current thread
does not hold the lock for the object.

• Entering a synchronized method obtains the
lock.

• You can also obtain the lock for any object
using a synchronized statement.

48

synchronized (Expression) Block

Expression must evaluate to a reference (i.e.
anything but a primitive type).

String s = "Wait for this?";
…
synchronized (s) {
 s.wait();
}

17

49

//Racer2.java - assume click() is not synchronized
class Racer2 extends Thread {

 Racer2(int id, Counter counter) {
 this.id = id;

 this.counter = counter;
 }

 public void run() {
 System.out.println("Thread" + id + " started.");

 for (int i = 0; i < 1000000; i++) {
 synchronized(counter) {

 counter.click();
 }
 }

 System.out.println("Thread" + id +
 " finished counter is " + counter.get());

 }
 private int id;

 private Counter counter;
}

50

notifyAll()

• obj.notify() wakes up at most one thread
that is waiting on obj.

• If there are many threads waiting, one is
selected at random.

• A call to obj.notifyAll() wakes up all
threads that are waiting on obj. They all
move from "waiting" to "wanting" in the
state diagram.

51

Synchronization States

Try to enter

wanting

running

waiting

locked

unlocked

notify()

wait()

Exit: issue unlock

unlock

notifyAll()

all threads
move

18

52

Deadlock

Wait for lock for objectOne
Enter methodOne() for objectOne

Call objectTwo.methodTwo()
Wait for lock for objectTwo

Wait for lock for objectTwo
Enter methodOne() for objectTwo

Call objectOne.methodTwo()
Wait for lock for objectOne

context
switch

deadlock

Thread1 Thread2

53

Resource Ordering

• One way to avoid deadlock is to always
obtain locks in the same order for all
threads.

• In the previous example all threads should
first obtain the lock for objectOne, and then
for objectTwo. Thread2 gets them in the
wrong order.

54

• Suppose the call looked like
 objectA.methodOne(objectB);
where for thread1, objectA is objectOne.

• We could obtain the locks with

synchronized(objectA) {
 synchronized(objectB) {
 objectA.methodOne(objectB);
 }
}

• This still doesn't work for both threads
because thread2 has objectA referring to
objectTwo.

19

55

Resource resOne, resTwo;

if (objectA.getResNumber() < objectB.getResNumber) {

 resONe = objectA;

 resTwo = objectB;

}

else {

 resOne = objectB;

 resTwo = objectA;

}

synchronized (resOne) {

 synchronized (resTwo) {

 objectA.methodOne(objectB);

 }

}

Adding a resource number to each object, we can
avoid deadlock and still have common code.

56

Encapsulating Synchronization

• Recall that encapsulation means preventing
one module from knowing details of
another.

• Using synchronized methods, exposes the
synchronization of the class.

• Any method can obtain the lock for any
object it can reference.

• We can use synchronized statements to hide
the object we use for locking.

57

class SomeClass {
 synchronized void critical() {
 //method body goes here
 }

}

class SomeClass {
 void critical() {

 synchronized (lock) {
 //method body goes here
 }
 }

 private Object lock = new Object();
}

