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Abstract 
 

 We propose a novel approach to the decomposition of large 
probabilistic models.  The goal of our method is to avoid the 
evaluation of the subnetworks obtained by decomposition for all 
values of the state description vector, as would be necessary with 
a standard aggregation and decomposition approach.  Instead, 
we propose a fixed-point iteration that requires the evaluation of 
the subnetwork for only a subset of the population levels.  
Outside the evaluated points, simple upper and lower linear 
approximations are used resulting in bounds for overall system 
performance measures.  We concentrate the evaluation of the 
subnetworks in the regions where the difference between the 
lower and upper bound is most likely to impact the accuracy of 
the result. 
 
 

1. Introduction 
 
Decomposition methods have been used in queueing models to 
overcome problems introduced by state dependencies that 
preclude analytical solution, and also as a way of approaching 
systems with a large state space.  In particular, a family of state 
aggregation (equivalence) methods divides the model into 
subsystems whose interaction is represented via conditional 
throughputs.  The latter are obtained by analyzing the 
subsystems in isolation [5, 4, 3]. An interesting feature of this 
approach is that it generates the exact solution when applied to 
a product-form queueing network [10]. 
 
Figure 1 shows an example of the application of this type of 
decomposition [2].  The system under consideration is a closed 
queueing network in which a total of N customers circulate 
alternating between a delay server and a subnetwork.  The 
subnetwork may exhibit global dependencies in that some of its 
parameters (such as service completion rates) may depend on 
the current total number of customers in the subnetwork. 
 
In the decomposition approach, the subnetwork is analyzed in 
isolation to produce the conditional throughput u(n)  for 
n=1,…,N.  u(n) represents the rate at which customers leave the 
subnetwork given that the current number of customers in the 
subnetwork is n. The values of u(n) are then used in the simpler 
equivalent (aggregated) model.  Some authors refer to the 
subnetwork in isolation as the “inner model”, and to the state 
equivalent as the “outer model”. 
 
As outlined, this approach requires that the inner model be 
solved for all values of the state vector retained in the outer 
model, i.e. all population levels in our case.   Clearly, for a 
large population, this can represent a significant computation 
effort.  Note that there exists an alternate iterative method [8, 1] 
that does not require the evaluation of the inner model for all 
population levels.  However, this method is not readily 
applicable to queueing systems with global dependencies. 

 
 

 
 
For large systems with many customers it seems reasonable to 
think that only a relatively small subset of all possible states 
would correspond to the “operating point” of the systems.  In 
other words, the state probabilities in many instances tend to be 
skewed. 
 
As an example, consider the network of exponential servers 
shown in Figure 2.  Without global dependencies, this network 
possesses a product form solution.  Let p(n) be the probability 
that there are a total of  n customers outside the delay servers.  
Figure 3 shows examples of the shape of p(n) as a function of 
n, and also the corresponding conditional throughputs as a 
function of m, the number of users admitted into the 
subnetwork of queues.  These results were obtained using 
classical decomposition, i.e. the subnetwork in isolation was 
evaluated for all population levels m=1,…,M where M ≤ N. 
 
The probability mass tends to concentrate within a relatively 
small subset of possible values for n.  No doubt, this subset 
corresponds to the most probable “operating region(s)” of the 
system.  This observation suggests that the precise evaluation 
of the conditional throughputs u(.) should matter close to the 
operating point(s) of the system, and just a reasonable 
approximation for u(.) should suffice elsewhere.  By 
“reasonable” we mean one that would not alter excessively the 
shape of the probability distribution p(n), and, in particular, the 
location of the operating regions.   
 
Clearly, when dealing with a queueing system we generally 
don’t know where its most likely points of operation are.  It is 
possible however, to design a simple fixed-point iteration that 
quickly finds the most important points.  Note that if, outside of 
the points for which the inner model is actually solved, we use 
an upper and lower bound for the conditional throughput u(.), 
we will obtain in turn an optimistic and a pessimistic bound for 
overall performance measures such as system response time or 
expected number of customers in the system. 
 
In the next section we consider the bounds for the conditional 
throughputs u(.) in the common case when u(.) possesses a 
single type convexity.  Section 3 is devoted to the fixed-point 
iteration, and sample results.  In Section 4, finally, we present 
conclusions of this paper, and we consider the application of 
our method to systems where the conditional throughputs 
exhibit inflexion points. 
 
 

2. Bounding of the conditional throughput function 
 
We now restrict our attention to systems for which the 
conditional throughput u(.) does not exhibit inflexion points, 



akin to the function considered in Figure 3.  Note that the 
conditional throughput for the sample network of Figure 2 
conforms to this shape, even in the case of admission control, if 
we consider it as a function of m, the number of users in the 
system proper.  Our goal is to develop reasonable simple lower 
and upper bounds knowing some number of points on the curve 
u(m) (m=1,…,M). 
 
We assume in our discussion that the values of u(m) have been 
evaluated for the bounds of the domain of interest (m=1 and 
m=M), as well as for a few intermediate points. Let k be the 
number of intervals defined by the known points.  Consider 
points x i and x i+1 defining interval i, and denote by ci the chord 
through these points.  It is clear that ci defines a lower bound 
for u(x), for x contained in the interval  
[xi, x i+1].  It is also clear from the convexity of u(.) that the two 
chords c i-1 and c i+1 each define an upper bound for u(.) in the 
same interval.  To obtain the tightest bound, we select the lower 
of the two values.  For the first interval, we use c2 as the upper 
bound, and for the last interval we use the smaller of c k-1 
(chord through the next to last interval) and the value u(M).  
This is summarized below: 
 
for  x ∈ (xi, x i+1) :   finf (x)  =  ci(x),  
   fsup(x) = min{ c i-1(x), c i+1(x)} , 
 
for x ∈ (1, x2):   finf (x)  =  c1(x),    fsup(x) = c2(x) , 
 
for  x ∈ (x k-1,M): finf (x)  =  ck(x),  
  fsup(x) = min{ c k-1(x), M} . 
 
 
For the type of queueing systems under consideration, it is clear 
that solving the outer model using the lower bound on the 
conditional throughput will produce pessimistic bounds for 
overall system performance.  Conversely, using the upper 
bound for u(.), will produce optimistic values for system 
performance measures.  The next section presents a fixed-point 
approach to the selection of evaluation points for u(.). 
 
 

3. Fixed-point iteration 
 
To keep the computational effort low, it seems natural to 
attempt to select the evaluation points so that they contribute 
most to the accuracy of the result.  Since the most likely 
operating regions are not known initially, we propose the 
following procedure.  We start by computing the values of u(.) 
for m=1, m=M, and some small number of intermediate points.  
We use four evenly spaced intermediate points.  This allows us 
to create the upper and lower bounds for all missing values of 
u(.), and results in two probability distributions for the number 
of customers in the system in the outer model. 
 
Let q(n) and r(n) denote the distribution obtained using the 
upper and the lower bound for u(n), respectively.  We select the 
additional evaluation point for u(.) as being the point for which 
the difference between the upper and lower bounds weighted 
by the probability of occurrence of the given state is the largest 
in absolute value, i.e., which maximizes |u upper(n) q(n) – u 
lower(n) r(n)|.  Let j be the corresponding population level.  To 
reduce the number of iterations needed, we also compute the 
conditional throughputs for j-Δ, and j+Δ, with Δ set to some 

relatively small number (3 in our case).  If the selected j value 
corresponds to a point already evaluated, we may select a 
somewhat lower or a somewhat higher value with the allowed 
offset arbitrarily limited to 5 in our case. 
 
We repeat this procedure until either the consecutive values of 
a selected performance measure have stabilized to within a 
predefined accuracy or no new points are selected for the 
evaluation of u(.).  In the many trials, the procedure tended to 
converge within just a few iterations.  The total number of 
points evaluated for u(.) depends on the particular set of system 
parameters, and represents typically a small fraction of the total 
number of population levels.  Somewhat surprisingly, the 
bounding turns out to be generally quite tight, the difference 
between performance measures obtained using the upper and 
lower bounds rarely exceeding a couple of percent. 
 
Table 1 shows examples of our results.  The expected total 
number of customers in the system was used as the system 
performance measure of interest.  The third row in this table 
shows one of the less accurate cases. 
 
 

4. Conclusions 
 
The proposed approach uses sampling of the conditional 
throughputs that represent a subnetwork in the outer model.  
This sampling is guided towards the estimated largest “payoff” 
in terms of minimizing the difference between the upper and 
lower bounds for the conditional throughputs.  The use of 
bounds for the conditional throughputs allows us to obtain 
bounds on overall system performance measures as opposed to 
“one-sided” approximations. 
 
Experimental evidence seems to suggest that this approach 
tends to produce accurate results at a fraction of the cost of a 
full-blown decomposition.  It has the added advantage that 
accuracy can be arbitrarily refined, should the need occur, by 
simply considering additional points for the conditional 
throughput function. 
 
The bounding of the conditional throughputs presented in 
Section 2 relies on the convexity of the throughput function 
u(.).  There are queueing systems for which the throughput 
exhibits an inflexion point.  This is the case, for example, for 
systems with thrashing such as virtual memory systems or 
certain computer networks.  Clearly, to guarantee bounding of 
the conditional throughput function, the intervals containing an 
inflexion point must be detected and dealt with appropriately.  
Preliminary investigation indicates that this appears possible 
without undue computational effort, so that our method should 
apply to those systems as well. 
 
In conclusion, we have presented a bounding method designed 
to reduce the computational cost inherent in the application of 
decomposition methods to large queueing systems.  The 
resulting method is a quickly converging fixed-point iteration, 
and the bounds produced are generally tight enough to be used 
as a quality approximation. The approach we propose is not 
limited to queueing models.  The type of decomposition 
methods considered in this paper finds its application also in 
econometrics, so that our method can be applied in this context, 
as well as in areas such as Petri nets or reliability models. 
 



 
References 

 
[1] B. Baynat, Y. Dallery, “Approximate techniques for general 
closed queueing networks with subnetworks having population 
constraints”, European J. of Operational Res. 69, 250-264 
(1993). 
 
[2] A. Brandwajn, “A model of a time sharing virtual memory 
system solved using equivalence and decomposition methods”, 
Acta Informatica 4, 11-47 (1974). 
 
[3] A. Brandwajn, “Equivalence and Decomposition  in 
Queueing Systems – A Unified Approach”, Performance 
Evaluation 5, 175-185 (1985). 
 
[4] K. M. Chandy, U. Herzog, L. Woo, “Parametric analysis of 
queueing networks”, IBM J. Res. Develop. 19, 36-42 (1975). 
 
[5] P. J. Courtois, Decomposability: Queueing and Computer 
Applications, Academic Press, New York, 1977. 
 
[6] E. de Souza e Silva, P. Mejia Ochoa, “State Space 
Exploration in Markov Models”, Performance Evaluation 
Review 21, 152-166 (1992). 
 

[7] D. D. Dimitrijevic, M.S. Chen, “Dynamic state exploration 
in quantitative protocol analysis”, in Protocol Specification, 
Testing and Verification IX, 327-338, North Holland, 1990. 
 
[8] R. A. Marie, “An approximate analytical method for 
general queueing networks”, IEEE Trans. on Software Engin. 
SE-5, 530-538 (1979). 
 
[9] R. R. Muntz, E. de Souza e Silva, A. Goyal, “Bounding 
availability of repairable computer systems, IEEE Trans. on 
Computers 38, 1714-1723 (1989). 
 
[10] H. Vantilborgh, “Exact aggregation in exponential 
queueing networks”, J. ACM 25, 620-629 (1978). 
 
[11] C. L. Yang, P. Kubat, “Efficient computation of most 
probable states for communication networks with multimode 
components”, IEEE Trans. on Communications 37, 535-538 
(1989). 
  
 

Acknowledgement 
 
The author thanks Fabrice Clérot of France Télécom CNET 
Lannion (France) for fruitful discussions of linear bounds for 
the conditional throughput function. 



  
 
 

 
Figure 1:  decomposition in a queueing network 

 
 
 

 
 

Figure 2: example of queueing network 
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Figure 3: example of state probability and conditional throughput 
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Figure 4: bounding lines for conditional throughput 



 
 
 

Table 1: examples of results  
 

total number of 
customers  (N) 

maximum number 
admitted   (M) 

mean number in system number of points 
evaluated 

number of 
iterations 

300 300 16.968    17.765 33 11 
300 300 85.714    86.056  9 3 
300 100 27.658    30.740  15 5 
300 100 69.231    69.244  9 3 
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